ENTRY 14088 20210630 148814088 0 1 SUBENT 14088001 20210630 148814088 1 1 BIB 11 80 14088 1 2 TITLE Thermal neutron irradiation of Uranium-235, bromine, 14088 1 3 iodine in presence of organic liquid 14088 1 4 AUTHOR (M.P.Tsoukatos) 14088 1 5 REFERENCE (T,TSOUKATOS,1967) Primary reference. 14088 1 6 (J,DA/B,28,2759,1968) Abstract only. 14088 1 7 REL-REF (O,23561002,H.O.Denschlag,J,JIN,31,1873,1969) I data. 14088 1 8 INSTITUTE (1USAMHG) 14088 1 9 FACILITY (REAC,1USAMHG) Nuclear Reactor at Phoenix Lab. 14088 1 10 INC-SOURCE (REAC) The neutron flux was 2*10**12 neutron/cm2/sec. 14088 1 11 SAMPLE (92-U-235,ENR=0.90) Uranyl Nitrate + organic Liquid. 14088 1 12 Uranyl nitrate was irradiated either "suspended" in 14088 1 13 n-C5H12 or dissolved in pure tertiary butyl alcohol 14088 1 14 (henceforth TBA) or in a mixture of TBA+CH30H (3:1). 14088 1 15 The amount of uranyl nitrate irradiated was 14088 1 16 determined by weight. Irradiations were run using 14088 1 17 both natural uranyl nitrate (0.715% U-235) and 14088 1 18 enriched (90% U-235). For the former 10-30 mg uranyl 14088 1 19 nitrate were irradiated for 3-5 min., and for the 14088 1 20 latter 1-3 mg for 5-10 sec. The samples were 14088 1 21 irradiated in a small (1.4 ml) polyethylene snap-cap 14088 1 22 vial. 14088 1 23 DETECTOR (NAICR,GELI) Gamma-ray spectra were obtained by using 14088 1 24 either a 3"x3" NaI detector, or a Ge-Li detector. 14088 1 25 METHOD (CHSEP) Research has been done to determine the 14088 1 26 independent fission yields of short-lived fission 14088 1 27 nuclides or of fission nuclides with short-lived 14088 1 28 precursors. By irradiating uranium in the presence of 14088 1 29 an organic liquid the recoil fission nuclides should 14088 1 30 react with the organic molecules to form stable 14088 1 31 organic products. Because a fission product recoil 14088 1 32 energy is typically about 70-100 MeV, it would be 14088 1 33 expected to react with the organic liquid to the same 14088 1 34 extent and result in the same organic products as 14088 1 35 nuclides of the same element activated by the 14088 1 36 (n,gamma) process. The recoil atoms formed by beta 14088 1 37 decay, on the other hand, should be less reactive in 14088 1 38 forming organic products due to the significantly 14088 1 39 smaller recoil energy which typically would be about 14088 1 40 1-2 eV. What is of importance is that the chemical 14088 1 41 reaction would take place during the neutron 14088 1 42 irradiation. Thus, the typical post-irradiation 14088 1 43 chemical separation, and the time it would take to 14088 1 44 perform such an operation, would be avoided 14088 1 45 completely. However, following the irradiation, the 14088 1 46 organically bound fission products must still be 14088 1 47 separated from the precursor nuclides. But the 14088 1 48 separation method to be used can instead be based on 14088 1 49 physical rather than chemical properties of the 14088 1 50 chemically bound nuclides. Specifically, gas 14088 1 51 chromatography separations should be feasible. This 14088 1 52 type of separation method has a number of 14088 1 53 particularly important advantages. Consider the case 14088 1 54 where it is of interest to examine specific fission 14088 1 55 bromine nuclides. In this case the hot atom reactions 14088 1 56 which would occur in organic liquids would probably 14088 1 57 be experimentally favorable in that a larger 14088 1 58 percentage of the bromine nuclides would form. 14088 1 59 organic compounds than would selenium nuclides. 14088 1 60 Further, any bromine formed from selenium beta-decay 14088 1 61 would react to form organically-bound bromides. To 14088 1 62 inhibit these latter reactions it is desirable to 14088 1 63 separate the organic bromides from the selenium as 14088 1 64 quickly as possible. Described in this thesis is a 14088 1 65 semi-automatic injection method devised to permit 14088 1 66 separation of the inorganic and organic fractions 14088 1 67 within a few seconds after the end of the neutron 14088 1 68 irradiation. The organic fraction is then carried by 14088 1 69 helium flow gas to the gas chromatography column 14088 1 70 where separation of the organic compounds begins to 14088 1 71 occur. This latter separation procedure permits the 14088 1 72 isolation of individual chemical compounds containing 14088 1 73 in each compound all fission nuclides of the element 14088 1 74 characterizing the compound. 14088 1 75 HISTORY (20051230C) DR 14088 1 76 (20110531A) OS. Author's initials, title and status 14088 1 77 modified. 14088 1 78 (20210630A) BP: Updated REFERENCE, corrected FACILITY 14088 1 79 location, SAMPLE, DETECTOR and INC-SOURCE, 14088 1 80 added METHOD and REL-REF, included actual 14088 1 81 thesis data. 14088 1 82 ENDBIB 80 0 14088 1 83 COMMON 1 3 14088 1 84 EN 14088 1 85 EV 14088 1 86 0.0253 14088 1 87 ENDCOMMON 3 0 14088 1 88 ENDSUBENT 87 0 14088 199999 SUBENT 14088002 20210630 148814088 2 1 BIB 4 9 14088 2 2 REACTION (92-U-235(N,F)ELEM/MASS,IND,FY,,FRC) 14088 2 3 DECAY-DATA ((1.)34-SE-81-M,61.0MIN,B-) 14088 2 4 ((2.)34-SE-83-M,69.0SEC,B-) 14088 2 5 ((3.)34-SE-84,3.3MIN,B-) 14088 2 6 ((4.)34-SE-85,39.0SEC,B-) 14088 2 7 ((5.)34-SE-86,16.0SEC,B-) 14088 2 8 STATUS (TABLE) Table 16, page 56 of the thesis. 14088 2 9 HISTORY (20210630A) BP: Replaced the University of Illinois 14088 2 10 data with the thesis data. 14088 2 11 ENDBIB 9 0 14088 2 12 NOCOMMON 0 0 14088 2 13 DATA 5 5 14088 2 14 ELEMENT MASS ISOMER DATA DECAY-FLAG 14088 2 15 NO-DIM NO-DIM NO-DIM NO-DIM NO-DIM 14088 2 16 34.0 81.0 1.0 0.0088 1. 14088 2 17 34.0 83.0 1.0 0.1473 2. 14088 2 18 34.0 84.0 0.3437 3. 14088 2 19 34.0 85.0 0.5502 4. 14088 2 20 34.0 86.0 0.6045 5. 14088 2 21 ENDDATA 7 0 14088 2 22 ENDSUBENT 21 0 14088 299999 SUBENT 14088003 20210630 148814088 3 1 BIB 8 15 14088 3 2 REACTION (92-U-235(N,F)ELEM/MASS,IND,FY,,FRC) 14088 3 3 MONIT-REF ((MONIT)13097001,A.C.Wahl+,J,PR,126,1112,1962) 134I 14088 3 4 data. 14088 3 5 METHOD CH3I-H2O phase, Exp. 347. 14088 3 6 ERR-ANALYS (DATA-ERR) Experimental errors. The uncertainty in 14088 3 7 these calculated values arise from the uncertainties 14088 3 8 in the activity data as well as the uncertainty in 14088 3 9 the 134I fractional chain yield used as monitor. 14088 3 10 MONITOR (92-U-235(N,F)53-I-134,IND,FY,,FRC/MXW) 14088 3 11 DECAY-DATA ((1.)53-I-131,8.05D,B-) 14088 3 12 ((2.)53-I-133-G,20.8HR,B-) 14088 3 13 ((3.)53-I-135,6.75HR,B-) 14088 3 14 STATUS (TABLE) Table 26, page 94. 14088 3 15 HISTORY (20210630A) BP: Replaced the University of Illinois 14088 3 16 data with the thesis data. 14088 3 17 ENDBIB 15 0 14088 3 18 COMMON 2 3 14088 3 19 MONIT MONIT-ERR 14088 3 20 NO-DIM NO-DIM 14088 3 21 0.12 0.02 14088 3 22 ENDCOMMON 3 0 14088 3 23 DATA 5 3 14088 3 24 ELEMENT MASS DATA DATA-ERR DECAY-FLAG 14088 3 25 NO-DIM NO-DIM NO-DIM NO-DIM NO-DIM 14088 3 26 53.0 131.0 0.0048 0.0022 1. 14088 3 27 53.0 133.0 0.052 0.014 2. 14088 3 28 53.0 135.0 0.65 0.25 3. 14088 3 29 ENDDATA 5 0 14088 3 30 ENDSUBENT 29 0 14088 399999 SUBENT 14088004 20210630 148814088 4 1 BIB 8 14 14088 4 2 REACTION (92-U-235(N,F)ELEM/MASS,IND,FY,,FRC) 14088 4 3 MONIT-REF ((MONIT)13097001,A.C.Wahl+,J,PR,126,1112,1962) 134I 14088 4 4 data. 14088 4 5 METHOD CH3I-CHCl3 phase, Exp. 347. 14088 4 6 ERR-ANALYS (DATA-ERR) Experimental errors. The uncertainty in 14088 4 7 these calculated values arise from the uncertainties 14088 4 8 in the activity data as well as the uncertainty in 14088 4 9 the 134I fractional chain yield used as monitor. 14088 4 10 MONITOR (92-U-235(N,F)53-I-134,IND,FY,,FRC/MXW) 14088 4 11 DECAY-DATA ((1.)53-I-131,8.05D,B-) 14088 4 12 ((2.)53-I-133-G,20.8HR,B-) 14088 4 13 ((3.)53-I-135,6.75HR,B-) 14088 4 14 STATUS (TABLE) Table 26, page 94. 14088 4 15 HISTORY (20210630A) BP 14088 4 16 ENDBIB 14 0 14088 4 17 COMMON 2 3 14088 4 18 MONIT MONIT-ERR 14088 4 19 NO-DIM NO-DIM 14088 4 20 0.12 0.02 14088 4 21 ENDCOMMON 3 0 14088 4 22 DATA 5 3 14088 4 23 ELEMENT MASS DATA DATA-ERR DECAY-FLAG 14088 4 24 NO-DIM NO-DIM NO-DIM NO-DIM NO-DIM 14088 4 25 53.0 131.0 0.0050 0.0023 1. 14088 4 26 53.0 133.0 0.052 0.015 2. 14088 4 27 53.0 135.0 0.84 0.23 3. 14088 4 28 ENDDATA 5 0 14088 4 29 ENDSUBENT 28 0 14088 499999 SUBENT 14088005 20210630 148814088 5 1 BIB 8 14 14088 5 2 REACTION (92-U-235(N,F)ELEM/MASS,IND,FY,,FRC) 14088 5 3 MONIT-REF ((MONIT)13097001,A.C.Wahl+,J,PR,126,1112,1962) 134I 14088 5 4 data. 14088 5 5 METHOD CH3I-H2O phase, Exp. 349. 14088 5 6 ERR-ANALYS (DATA-ERR) Experimental errors. The uncertainty in 14088 5 7 these calculated values arise from the uncertainties 14088 5 8 in the activity data as well as the uncertainty in 14088 5 9 the 134I fractional chain yield used as monitor. 14088 5 10 MONITOR (92-U-235(N,F)53-I-134,IND,FY,,FRC/MXW) 14088 5 11 DECAY-DATA ((1.)53-I-131,8.05D,B-) 14088 5 12 ((2.)53-I-133-G,20.8HR,B-) 14088 5 13 ((3.)53-I-135,6.75HR,B-) 14088 5 14 STATUS (TABLE) Table 26, page 94. 14088 5 15 HISTORY (20210630A) BP 14088 5 16 ENDBIB 14 0 14088 5 17 COMMON 2 3 14088 5 18 MONIT MONIT-ERR 14088 5 19 NO-DIM NO-DIM 14088 5 20 0.12 0.02 14088 5 21 ENDCOMMON 3 0 14088 5 22 DATA 5 3 14088 5 23 ELEMENT MASS DATA DATA-ERR DECAY-FLAG 14088 5 24 NO-DIM NO-DIM NO-DIM NO-DIM NO-DIM 14088 5 25 53.0 131.0 0.0050 0.0018 1. 14088 5 26 53.0 133.0 0.051 0.015 2. 14088 5 27 53.0 135.0 0.78 0.18 3. 14088 5 28 ENDDATA 5 0 14088 5 29 ENDSUBENT 28 0 14088 599999 SUBENT 14088006 20210630 148814088 6 1 BIB 8 14 14088 6 2 REACTION (92-U-235(N,F)ELEM/MASS,IND,FY,,FRC) 14088 6 3 MONIT-REF ((MONIT)13097001,A.C.Wahl+,J,PR,126,1112,1962) 134I 14088 6 4 data. 14088 6 5 METHOD CH3I-CHCl3 phase, Exp. 349. 14088 6 6 ERR-ANALYS (DATA-ERR) Experimental errors. The uncertainty in 14088 6 7 these calculated values arise from the uncertainties 14088 6 8 in the activity data as well as the uncertainty in 14088 6 9 the 134I fractional chain yield used as monitor. 14088 6 10 MONITOR (92-U-235(N,F)53-I-134,IND,FY,,FRC/MXW) 14088 6 11 DECAY-DATA ((1.)53-I-131,8.05D,B-) 14088 6 12 ((2.)53-I-133-G,20.8HR,B-) 14088 6 13 ((3.)53-I-135,6.75HR,B-) 14088 6 14 STATUS (TABLE) Table 26, page 94. 14088 6 15 HISTORY (20210630A) BP 14088 6 16 ENDBIB 14 0 14088 6 17 COMMON 2 3 14088 6 18 MONIT MONIT-ERR 14088 6 19 NO-DIM NO-DIM 14088 6 20 0.12 0.02 14088 6 21 ENDCOMMON 3 0 14088 6 22 DATA 5 3 14088 6 23 ELEMENT MASS DATA DATA-ERR DECAY-FLAG 14088 6 24 NO-DIM NO-DIM NO-DIM NO-DIM NO-DIM 14088 6 25 53.0 131.0 0.0050 0.0018 1. 14088 6 26 53.0 133.0 0.047 0.015 2. 14088 6 27 53.0 135.0 0.82 0.17 3. 14088 6 28 ENDDATA 5 0 14088 6 29 ENDSUBENT 28 0 14088 699999 ENDENTRY 6 0 1408899999999