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1 Poisson distribution

It is often assumed in nuclear physics experiments that the probability to obsevesits during the mea-
surement follows the Poisson distribution:

Ang
n -

P(n) = (1)

Show that
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1. the functionP(n) is normalized to probability distribution, namez P(n) = 1. Usee* = Z o
n=0 n=0

2. the mean valuéy = Z nP(n) is A.
n=0

3. the variance Van) = Z n?P(n) — (n)? is A.
n=0

4. the standard deviatiotn is V2.

2 Estimation of irradiation time

One wants to measure th&U(n,f) cross section at 5 MeV within 1% accuracy by using an uranium-235
layer (areal number density = 5 x 10 atomgbarn) in a fission chamber and a neutron source (flux

¢ = 2 x 10° neutrongsec).

1. The number of the fission N = ¢not, wheret is the irradiation time. It is known that the cross
section is about 1 b. How many fission events are expected after 1-hr irradiation?

2. How long we have to irradiate the sample in order to measure the cross section with the uncertainty
due to counting statistics of 1%? Assume that (1) the number of observed fission events follows
the Poisson distribution, (2) the number of observed fission events represents the mean value of the
distribution, (3) the statistical uncertainty is the standard deviation of the distribution. Note that the
fractional uncertainty in the cross sectiap- due to counting statistics is related with the fractional
uncertainty in the number of the observed reachbioy Ac-/o- = AN/N.



3 Time-of-flight measurement

The time-of-flight (TOF) method is a typical method to determine the kinetic energy of nelfrtunys
measuring the velocity of neutrorsIf we measure the time-of-flightwith the flight path length.,
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in the non-relativistic approximation.

1. The fractional uncertainty in the energy is related with the fractional uncertainties in the flight path
length and time-of-flight by
AE\? AL\? At\?
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with the relative sensitivity caBcients
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Calculate these relative sensitivity ¢heients.

2. We would like to measure the energy with an accuracy of 0.1%. We can determine the flight path
length with an accuracy of 1 cm whereas the uncertainty in the time-of-flight is negligible. How long
flight path should we keep for the measurement?



4 Uncertainty propagation to thermal cross section

The thermal (2200 y8) neutron capture cross sectionrmeasured by the activation method under a mono-
energetic neutron field can be derived by the following data reduction equation:
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whereC, 1, ¢, n, ¢, | are the number of counts, decay constant, neutron flux, number of target atoms per
area, detectionfBciency and gamma intensity. Al$g t. andt,, are the irradiation time, cooling time, and
measurement time.

1. There are 10 parameters on the right-hand side of the data reduction equation. The uncertainties in
some parameters can be propagated to the uncertainty in the cross section by the quadrature sum rule,

namely
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fory = y(x1, X2, ..., Xn). However this rule is not valid for some parameters in the data reduction

equation. Identify four such parameters.

2. The quadrature sum rule is generalized to
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wheres = (x/y)dy/dx is the relative sensitivity cdicient. Calculate the relative sensitivity ¢be
cients forC, ¢ andA for error propagation fromC/C, A¢/¢ andAd/Ato Ao /o.

3. When the neutron field is not mono-energetic but thermalized neutrons (i.e., thermally equilibrated at
the room temperature) plus epithermal neutrons, one can still determine the thermal neutron capture
cross sectiorr by using a "Cd-filter” which removes neutrons below 0.55 eV from the neutron
field. By using the counts without the filte€) and with the filter C’), the data reduction equation is
modified to
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whereF andg are the Cd transmission factor and Westcott factor. Calculate the relative sensitivity
codficient for error propagation fromC/C to Ao-/o for this extended data reduction equation.




5 Uncertainty propagation to averaged cross section

Use EXCEL for numerical calculation to keep enough number of digits.

There are two neutron fields which group-wise neutron energy spegtage summarized with the group-
wise evaluated cross sections of a standard reactj@s follows:

Field Group Emn Emax Dy ok Aoy /o Correlation co#ficient
(i (K) MeV MeV neutronfggrp/uC b %
1 1 0.9 1.0 12 x 10 0.800 1 1.00
2 1.0 1.1 08 x 10’ 0.700 1 0.10 1.00
2 3 1.6 1.7 10x 107 0.600 1 0.05 0.05 1.00
4 1.7 1.8 10 x 107 0.600 1 0.05 0.05 0.10 1.00
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n
1. Calculate the spectrum averaged standard cross sections for the two neutro(ﬁrﬂadsz Wik Ok,
k=1

n
where the weighting factom is wi = @/ Z D).
I=1

\2
2. Calculate the fractional uncertainties in the averaged standard cross s&gtons(o);. Use(%) =
i
n n
A A 1 M . .

Z Z Sik (_Xk)COr(Xk, Xl)(—x') s with the relative sensitivity cdicient sy = X (ﬂ) for

=y " § i\ 0% y=Yi

Y = Y(X1, X2, ... Xn)-

3. Calculate the fractional covariance c@vy; , (o"),) and correlation ca@icient Cor{o), , {(0),), where
the fractional covariance is defined as cavk,) = Cov(xi, X2)/(X1X2). Note that cow,y;) =
n n
Ay; Ay
D7) skcovix, x)sy and Corgi, yj) = cov(y, ;) /(i—')
k=1 =1 Yi Y;j



6 Uncertainty propagation to interpolated detection dficiency

Use EXCEL for numerical calculation to keep enough number of digits.

One measured the detectioffi@ienciese(E) of a germanium detector for several gamma-lines, and
parameterized the result by
€(E; e, &, Eg) = epeXpE/Ep) + €. (10)
1. Calculate three partial derivativBg(E) = de(E)/deo, SE(E) = de(E)/0Eq andS¢(E) = de(E)/de..

2. Whenp dependence of a quantifyis parameterized by parameters(i = 1,n) such asy(p) =
Y(p; X1, X2, ..., Xn), the covariance betwesfip) andy(q) is propagated from the covariance{sf} by
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Show that the covariance of the detectidiioiencies at two energids andE; is

_Ei*Ej 9 EgEi E; _&
e B (AEO) + —4e
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Cov(e(E:). (E))) &' (AE0) + (Acc)’

Ei+E; _&5
£2 e F Cov(e, Eo)

0

+ €
_E _E
+ (e B +e Eo)Cov(eo, &)
€ _E _E
+ = Eie ® + Eje % |Cov(Ey, ). (12)
0
Note that Ax )% = Var(x) = Cov(x;, X).

3. The result of the fitting is summarized as follows:

Parameter Value Uncertainty Correlation fiméent

Py 4.0 0.1 1.0
Eo (keV) 300 10 0.8 1.0
€ 0.40 0.01 04 -07 1.0

. . . . . . .
0 200 400 600 800 1000 1200 1400
Gamma energy (keV)



Calculate the three variancesef)?, (AEp)? and (Ae.)?> as well as three covariances CayEo),
Cov(ep, &) and CovEy, ;). Note that Covx,y) = Cor(x, y)AxAy, where Cork, y) is the correlation
codficient betweerx andy.

4. Calculate the interpolated detectidfi@encies and their uncertainties at 800 kejd) and 1000 keV
(e1000) as well as the covariance between them. Us€E))? = Var(e(E)) = Cov(e(E), e(E)) for
calculation of the uncertainties.

5. Calculate the fractional uncertainti®eggg/ 00 andAerooo/ €1000, and fractional covariance
coV (€00, €1000) = COV(€go0, €1000) / (€800 €1000) -
6. Show that the fractional variance of thé@ency ration(E;, E;) = €(Ei)/e(E;) is
var(n(E;, Ej)) = var(e(E:)) + var(e(Ej)) - 2 cov(e(E:). (E;)). (13)

where the fractional variance and fractional covariance are defined as) var(Var(xi)/xi2 and
cov(x;, xj) = Cov(x, Xj)/(X - Xj), respectively. Use

n n
var(y) = Z SCOV(Xi, Xj)S;
i=1 j=1
with
%oy
y 0%

fory = y(xq, X2, ..., Xn)-

7. Calculate theféiciency rationgoq1000 = €800/ €1000 and its fractional uncertainty.



7 Answers

1-1
ZP(n)_ Z —elel=1
1-2 . N N
(ny =" nP(n) = ZnP(n) = AZ = 1)' = AZ P(-1)=2) P(n) =2
n=0 n=1 n=0
1-3
sl 5 B © _ /ln le A © /ln—le—/l i /ln—le—/l
n; P(n) = nZ; ?P(n) = AZ n(n = 4; oo /an:;(n— 1)—(n_ o
= AZ P(n- 1)+AZ(n— 1)P(n-1) = /li P(n) +/li nP(n) = A + A2.
n=1 n=1 n=0 n=0
Therefore . .
Var(n) = Z n?P(n) — (n)? = Z n?P(n) — A% = A
n=0 n=0
1-4
= WVar(n) = Va
2-1

N=¢gnot=2x10-5x10°.1.36x10° = 3.6 x 10°.

2-2 From the answer of the first question, the number of the reactions expectedteluriingadiation is
N(t) = 3.6t x 10° and its statistical uncertainty isN(t) = vN(f) = V3.6t x 103 = 60+X. In order to
make the fractional statistical uncertaimti}{(t)/N(t) = 1/ VN(t) to 1%, we have to irradiate the foil
fort = (1/60/0.017 ~ 2.8 hr.

3-1 s =25 =2

3-2 By using the answer to the first question,

AE AL
—| =4
SRL
when the uncertainty in the time-of-flight is negligible. This equation shows that we have to maintain
the uncertainty in the flight path length within 0.05% to maintain the fractional uncertairiy in

within 0.1%. If we can measure the flight path length with 1 cm accuracy 4ile=1 cm), then we
need the flight path length of 1 ¢th05=20 cm.

4-1 A, t, t; andt,, because they are relatedadhrough exponential functions.

4-2
Coo
= —_——= 1
% o dC ’
¢60’
= =-1
% 0'6¢



are obvious becausgeis proportional or inversely proportional to these two parameters.

In order to calculates;, we define the four variable#s = C/(¢nel), Ay = 1 — e, A, = e and
Az = 1 - e Then the data reduction equation is
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The partial derivative in the second term is
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The second to fourth terms show the deviation from the quadrature sum rule in the error propagation.
Note thats; — —1 whenat;, At. andAt, — O.

4-3
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The second terms show the deviation from the quadrature sum rule in the error propagation.
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where thek andl under the summation symbols run from 1 to 2 for the field 1, and from 3 to 4 for
the field 2. Namely

2 2 2 2 2
A os (A o5 (A A A
( <0—>1) = w,—= (—o-l) +We,—% (—0-2) + Wiy, 12 (—o-l)( Uz)Cor(o-l,o-Z)
o1 02 01

(o) (o) 2(o)2 (o) o2
~ 0.558%,
—A<O->22 = \Nzo-_g %Z_F\NZO-_‘Z‘ %2.’_\/\/ \W- 0304 % AO’4 Cor( )
<0.>2 - 23(0’)% o3 24<0_>§ o4 23 24( >2 o4 703,04
~ 0.525%.
Therefore
(—A <0>1) ~ 0.747%
(o)
2
(AWZ) ~ 0.725%
(o)

These results show that the fractional uncertainties of the averaged cross sectii%o] are
smaller than those in the original group-wise cross sections (1%).

5-3

DM T

cov(o)1, (o))

4
Z 5<U>1cov(o_k’o_l)5<0')2i
= (o) oo

4
lg?;Wlk Ao >lECOV(CTk,O'l)

= WpWw, 23— —COV(UL 073) + WpiW 24— —CO (c1,04)

<><> <><>

+  WioWoz—— COV(0'2, 0'3) + W12W24 COV(O'z, 0'4) =0. 050/02

<><> <><>

cov((a)y , (o)) /( A(gil A(((;Zz) ~ 0.05/0.75/0.72 ~ 0.09,

We can summarize the averaged cross sections, their uncertainties and correlation as follows:

=
1

Cor((o)1,(0)2)

Field Emin Emax (o) A{o)/{o); Correlation cofficient
) MeV MeV b %
1 0.9 1.1 0.76 0.75 1.00
2 1.6 1.8 0.60 0.72 0.09 1.00

6-1
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6-2

Cov(e(E). €(E})) = So(Ei)So(E;)CoV(eo. &) + So(Ei)Sk(E;)CoV(eo. Eo) + So(Ei)Sc(Ej)Covieo. &)
Se(Ei)So(Ej)Cov(Eo, €) + Se(Ei)Se(E;)Cov(Eo, Eo) + Se(Ei)Sc(Ej)Cov(Eo, &)
Sc(Ei)So(E;j)CoV(e, €0) + Sc(Ei)Se(Ej)CoV(ec, Ec) + Sc(Ei)Sc(Ej)Covie, &)
So(Ei)So(Ej)Cov(eo, €0) + Se(Ei)Se(E;j)CoV(Eo, Eo) + Sc(Ei)Sc(Ej)Cov(e., &)
+ | So(E)SE(E;) + So(E;)Se(E)| Covleo, Eo)

+ [So(E)Sc(Ej) + So(E;)Sc(Ei)| Covieo, &)

+ [Se(E)Sc(E)) + Se(E))Sc(E)| Cov(Eo. &)

= So(Ei)So(Ej)(A€)? + Se(Ei)Se(Ej)(AE0)? + (Aec)?

+ [ So(ENSE(E;) + So(E;)Se(Er)| Covieo, Eo)

+ [So(EN) + So(Ej)| Covieo, )

" [SE(Ei) + SE(Ej)] Cov(Eo, &)

+ o+

Ej+

€2EE; Ej
= € B (Aq)?+ e % (AEo)? + (Ae)?

4
0
E; + Ej _Ei+§j
+ € 2 e B COV(E(), Eo)
EO

_E _E
+ (e B +e Eo)Cov(eo, &)

+ E Eie 0+Eje 0 COV(E(),EC).

0
6-3
(Ae)? = 0.01
(AEg)?> = 100 (keV?),
(Ae)®> = 0.0001
COV(E(), Eo) = AeoAE()COT(Eo, Eo) =-0.8 (keV),
Cov(e, &) = AeAeCor(en, &) = 0.0004
Cov(Eg, &) = AEAeCor(Eo, e) = —0.07 (keV)

6-4 First, the equation to obtain the variance in the interpolated detedficiercy is

Var(e(E))

CoV(e(E), €(E))

-E 2 E(ZJEZ _ZE 2 2

e f (AE()) + Fe Eo (AEO) + (AEC)
0

260E

=

e’% Cov(eo, Eo)

+ 2e’?EfJ Cov(e, &)
260 E
ES

e’?Eo Cov(Eo, &).
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The interpolatedféiciencies at two energies and their uncertainties are

€800 ~ 0.6779+ 0.0139
€1000 ~ 0.5427+ 0.009Q
COV(6800, E]_ooo) ~0.0001160

6-5

AEgoo/Egoo ~ 00139/06779~ 2053%
A€1000/61000 ~ 0.009(}/0.5427'\‘ 1.650%
COV(Eng, 61000) ~ 0.0001160(0.6779' 0.5427)~ 3.1530/@.

6-6 If we setg = €(E;i) ande; = €(E;), we can writeg = (e, €) = €/€j. Then

(%Z—Z)cov(l, ')(ngZ.) (n gn)cov(e"q)(n ggj)

0 € 0 0 j o
(naZ])COV(eJ,el)( 62)+(nan)cov(q,q)( 62)

CoV(e, ) — COV(g, €j) — COV(gj, ) + COV(gj, €))
var(g) + var(e;) — 2covig, €;j).

var(n)

6-7

7801000 =  €goo/ €r000 ~ 1.2492
var(ysoaioo0) = Var(esoo) + Var(eiooo) — 2COV(€soo: €1000)
(2.053%Y + (1.650%Y — 2 x 3.153% ~ 0.63129%.

Angoat000/ 8001000 =  yVar(rsoaioon) ~ V0.6312%8 ~ 0.7945%

¢

The fractional uncertainty of the detectioffieiency ratio 0.8%) is smaller than the fractional
uncertainty of the detectionfteiencies £2%) because of the covariance term.
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