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Stochastic Nature of Measurement 

We believe physical quantity has a unique true value (within 
classical approx.) which is what evaluators want to determine. 

 

Experimental results are stochastic due to statistical fluctuation and  
limitations of the measurement procedures – random variables. 

 

Example: Number of events N 

By repeating a counting experiment n times, we obtain a set of 
counting number 

{N}=N1, N2,…,Nn 

They do not agree in general. N is a random variable. 
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Probability Distribution 

We believe that a random variable distributes with a peak around 
the true value (probability distribution). 

 

In general, this distribution is described by 

Pk  : probability for a discrete random variable k. 

P(x): probability (density)  for a continuous random variable x. 

 

By definition, 

Σk Pk = 1 (discrete random variable)  

∫dx P(x)=1 (continuous random variable) 
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Discrete Random Variables – One Dice 
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Probability to find a value (1, 2, 3, 4, 5 or 6) on a dice 
 
k (=1,2,, or 6): random variable 
Pk  (= 1/6 for each k): probability distribution 

k 1 2 3 4 5 6 

Pk 1/6 1/6 1/6 1/6 1/6 1/6 
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 Discrete Random Variables: Sum from Two Dices 

2017-03-13 EPNRDM 2017 (Mizoram Univ.) 5 

Probability to find k=i+j with i and j (=1,,6) on two dices 
i=(1,2,, or 6) – random variable 
j=(1,2,, or 6) – random variable 
→ k=(2,3,4,…,12) is also a random variables. 

k 2 3 4 5 6 7 8 9 10 11 12 

Pk 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 
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Mean, Variance and Standard Deviation  
(Discrete Variable) 

Definition of mean, variance and standard deviation for a discrete 
random variable k following the probability distribution Pk: 

•Mean 

<k> = Σk=1,n k·Pk 

•Variance 

v = <(k-<k>)2> = <k2>-<k>2 

•Standard deviation 

Δk=(v)1/2 

 

Mean and standard deviation are often adopted as “best estimate” 
and “uncertainty” (will be discussed later). 

 
2017-03-13 EPNRDM 2017 (Mizoram Univ.) 6 



International Atomic Energy Agency 

Mean, Variance and Standard Deviation 
(Continuous Variable) 

For a continuous random variable x, similarly 

 

•Mean 

<x> = ∫dx x·P(x) 
 

•Variance 

v = <(x-<x>)2> = <x2>-<x>2 

•Standard deviation 

Δx=(v)1/2 
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Population (<k>, v, Δk) 

Sample (N samples) 
(<k>’, v’, Δk’) 

Population and Sample 

In general, we cannot know the probability 
distribution (e.g., 1/6) without experiment.  
 
We cannot measure the whole set (“population”) 
to extract the statistical property. 
 
The statistical property of the population 
may be estimated by sampling (size n). 
 
For a discrete random variable k, 
•  mean <k>’ = Σi=1,n ki / n 
•  variance v’= Σi=1,n ki

2 / n - <k>’2 
•  standard deviation Δk’=(v’)1/2 
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Population (<k>, v, Δk) 

Sample (n samples) 
(<k>’, v’, Δk’) 

Population and Sample (cont) 

The properties of the population is 
related with those of a size n sample 
(<k>’, v’, Δk’) as follows: 
 
• <k> = <k>’ (equal!) 
• v = v’  [n/(n-1)] 
• Δk = Δk’[(n-1)/2]1/2 Γ[(n-1)/2]/ Γ(n/2)  
 
Γ: gamma function 
 

If the sample size n is large enough,      
n-dependent factors ~ 1. 
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Mean, Variance and Standard Deviation: One Dice 
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k 1 2 3 4 5 6 

Pk 1/6 1/6 1/6 1/6 1/6 1/6 

k: number on a dice 

• mean <k> = Σk=1,6 k·Pk  ~ 3.5 

• variance v = Σk=1,6 k2·Pk  - <k>2 ~ 2.9 

• standard deviation Δk=(v)1/2  ~ 1.7 

 

<k> 
Δk 

Even if the probability is equally 
distributed, we can define mean 
and standard deviation. 
 
There is no concept of “true value” and “uncertainty”. 
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Mean, Variance and Standard Deviation: Two Dices 
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k=m+n with m and n (m, n=1,,6) on two dices 

k 2 3 4 5 6 7 8 9 10 11 12 

Pk 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 
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<k> 
Δk 

 

•mean <k> = Σk k·Pk~7 

•variance v = Σk k
2·Pk  - <k>2 ~5.8 

•standard deviation Δk=(vk)
1/2~2.4 



International Atomic Energy Agency 

Poisson Distribution 

If the event occur 

•   with a known mean rate (= λ events in a given time span ΔT); 

•   independently of the time since the last event; 

•   one time at maximum within an appropriate Δt (<< ΔT); 

the probability distribution is described by Poisson distribution: 

 

Pk = λkexp(-λ)/k! 
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Occurs Independently of the Time Since the Last Event? 
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Occurs dependently of the time elapsed since the last subway 
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Basic Properties of Poisson Distribution 

You may prove that Poisson distribution Pk = λk exp(-λ)/k! satisfies 

 

• normalization Σk=0,∞ Pk =1 

• mean <k> = Σk=0,∞ k·Pk = λ 

• variance v = Σk=0,∞ k2·Pk  - <k>2 = λ 

• standard deviation Δk=(v)1/2 = λ1/2 
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mean = variance! 
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Poisson Distribution: Counting Experiment 

Suppose we repeated counting experiment n times, and obtain 
count Ni (i=1,,n). If the phenomenon follows the Poisson 
distribution, we obtain 

 

• mean <N> = (Σi=1,n Ni)/n 

• variance v = (Σi=1,n Ni
2) / n - <N>2  

• standard deviation ΔN =v1/2 
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~ <N> 

~ <N>1/2 
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Counting Statistics and Irradiation Time 

Measurement of an yield Y=N/ε by measuring count N with a 
detector (efficiency ε, Δε/ε=5.0%). We expect 500 counts/min. 
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N ΔN/N (%) Δε/ε (%) ΔY/Y (%) time (min) 

100 10.0 5.0 11.2 0.2 

500 4.5 5.0 6.7 1.0 

1,000 3.2 5.0 5.9 2.0 

10,000 1.4 5.0 5.2 20.0 

20,000 1.0 5.0 5.1 40.0 

50,000 0.4 5.0 5.0 100.0 

100,000 0.3 5.0 5.0 200.0 

200,000 0.2 5.0 5.0 333.3 

Counting more than ~100 min does not improve the uncertainty! 
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Mean and Standard Deviation from One Measurement 

In nuclear reaction measurements, count N from a single counting 
measurement (namely i=1) is treated as <N>. (Namely N~<N>, 
ΔN~<N>1/2).  
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Example: 
A single measurement gives N1=<N>=10 without repeating 
the experiment.  
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Cross Section Evaluation 
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A set of experimental results 
following probability distribution 
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Normal (Gauss) Distribution 

For an enough large mean number, the Poisson distribution is well 
approximated by the normal (Gauss) distribution 

       Pk = λkexp(-λ)/k! → P(k) = exp[-(k-λ)2/(2λ)] / (2πλ)1/2 

 
 

2017-03-13 EPNRDM 2017 (Mizoram Univ.) 19 

<k>=30 

Note that P(k) is a probability density distribution. The probability 
to find a value k within [xmin,xmax] is Pk~ ∫xmin

xmax dx P(x).  

<k>=3 

Johann Carl 
Friedrich Gauß 
(1777 – 1855) 
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Properties of Normal (Gauss) Distribution 

You may prove that normal distribution, P(x) = exp[-(x-λ)2/(2λ)] / 
(2πλ)1/2 satisfies that 

 

•Normalization ∫-∞ 
+∞

 dx P(x) = 1 

•mean x0 =<x> = ∫ -∞ 
+∞

 dx x·P(x) = λ 

•variance v = ∫ -∞ 
+∞

 dx x2·P(x) - <x>2= λ 

•standard deviation Δx=(v)1/2= λ1/2 

 

         ∫-∞
+∞dx exp(-ax2)=(π/a)1/2,  

         ∫ -∞ 
+∞dx x·exp(-ax2)=0,   

         ∫ -∞ 
+∞dx x2·exp(-ax2)=(π1/2)/(2a3/2) 
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Remarks on Normal Distribution 
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Poisson distribution Px is defined for a non-negative random 
variables x. 
However normal distribution P(x) may give finite probability for 
negative x.  

The normal distribution is a good approximation of  the 
Poisson distribution when we have enough counting number x. 
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An Example of non-Gaussian Poisson Distribution  
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S. Noda et al., Phys. Rev. C 83(2011)034604 (EXFOR 14290) 

SUBENT        14290002   20111006 

BIB                  3          7 

REACTION   (92-U-235(N,F),PR,NU/DE,,AV/REL) 

            Spectra are normalized to unity by integrating the 

             spectra in the 2.0-6.5 MeV emission energy range 

ERR-ANALYS (ERR-S) Statistical uncertainty, considering 

                   - foregound counting statistics  (Poisson) 

                   - background counting statistics (Gaussian) 

STATUS     (TABLE) Plotted in Fig.7 of Phys.Rev.C83(2011)034604 

ENDBIB               7 

NOCOMMON             0          0 

DATA                 6         63 

EN-MIN     EN-MAX     E          DATA       -ERR-S     +ERR-S 

MEV        MEV        MEV        ARB-UNITS  ARB-UNITS  ARB-UNITS 

 1.         2.           1.5      7.6634E-01 3.4578E-01 2.9948E-01 

 1.         2.           2.5      5.1220E-01 1.9031E-01 1.6367E-01 

 1.         2.           3.5      2.7136E-01 4.7978E-02 4.5734E-02 
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Normal Distribution:Standard Deviation (SD) and HWHM 
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Each result falls within <x>± SD in 68% probability (confidential 
level) in the normal distribution (SD: standard deviation s). 

By using the definition of the normal distribution, you can easily 
prove that (HWHM) = (2 ln 2) Δx ~ 1.2 Δx. 

Standard deviation (SD) Δx 

HWHM(=FWHM/2) 
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Uncertainty ≠ Resolution (Example) 

Both uncertainty and resolution are often  related with the 
Gaussian shape. 

However they are different and must be distinguished: 

 

Uncertainty: 

Statistical fluctuation around the true (mean) value of a quantity. It 
becomes smaller if we repeat the measurement. 

 

Resolution (Dispersion): 

“True” distribution. It does not become smaller even if we repeat 
the measurement. 
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Example: Fission Fragment Mass Distribution 
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L. Dematte et al. Nucl.Phys.A617(1997)331  

Mean mass and its 
uncertainty 

Mass distribution width (standard 
deviation) and its uncertainty 

<MH
*> 

σMH* 
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Best Estimate and Uncertainty 

The mean and standard deviation (SD) are often adopted as the 
best estimate and uncertainty, respectively. 
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SD 
1.5SD 

The definition of “uncertainty” is 
not unique. 
 
For example, one may adopt 1.5SD 
instead of SD as another definition 
of the uncertainty. 
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Definition of Uncertainty 
(“Review of Particle Physics”) 
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The caption clearly states that 1SD is adopted as the uncertainty in 
the table. 

J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) 
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Uncertainty and Error 
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c.f. Fig.D.2 of GUM2008 

Measurements 

Arithmetic mean 
(not very common 
in ND experiment) 

Correction 

Result 

x 

x’=cx 

Δx 

true value 
(unknowable) 

uncertainty 
Δx’ (>Δx) 

error 
(unknowable) 

The true value is within the uncertainty. 
(successful estimation) 
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Example of Corrections– 55Mn(n,γ)56Mn 
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Effect of low-energy 

neutrons? 
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Various Corrections for Lower Energy Neutrons 
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O. Schwerer et al., Nucl. Phys. A264(1976)105 (EXFOR 20670) 

Note: Correction procedures improve the best estimate, 
but also introduce a new source of uncertainty.  
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Summary 

• Direct observables are random variables. 

• Standard deviation (square root of variance) is often adopted as 
the “uncertainty”. 

• Poisson distribution: Mean=<N>, Uncertainty=<N>1/2 

• <N>=N, ΔN=<N>1/2 are often done from a single measurement. 

• If N is enough large, Poisson distribution →normal distribution. 

• Uncertainty ≠Resolution, Uncertainty≠Error 
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