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Mathematical Details about Uncertainty Propagation

This presentation introduces several uncertainty propagation

formulae without their proofs. See my recent article for their
proofs:

http://www-nds.iaea.org/nrdc/india/ws2017/aizawl2017/otuka.pdf
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Visit our Recent Article for Mathematical Details

f:dtp{.r., Xy, ...} = 1, where dr = dyyde,... . The mean value (best
estimate) Xpp, covariance Covix, x), correlation coefficient Corix. x;).
variance Varix,), and standard deviation Az are defined by

X = f dr xpix, xa. ), (n
Covix, x) = f i, = g = xgdpl, vy - (2
Cor(x., ) = Coviz, i) AxAx), (3)
Var(x,) = f di(x = 5ol plxy, x5 ) = Covix, x), ()
Ax, = [Var(z,). (5

respectively. By definition, 0 £ Corix,, x) < | and especially =1 when
k=1. In nuclear data, one standard deviation of the parameter is usually
treated as its uncertainty.' If x; is independent from the other
parameters, we can decompose the probability distribution as
= Plx)00xs x5, .0, (6)
and Covix,. x) = 0 (k # 1) according to the definition of the covariance.
If a set of quantities of interest {y ] are related to the parameters [, |
by = yix. x5, ..) and the relation can be linearized by expansion
around the mean values of the parameters as

Plr. Xy, Xy, ..
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with ¥, = yiry. vy, ) and a; = (o )y g (sensitivity coefficient),
the variance and covariance of x; are propagated to those of y; by

Var(y) = vm{z E&Ii] = ¥ agVar(y) + 2 ) ayCovix, ghay,
3 I i (8)

Coviy. }}} = CIJ\'[E Hy v, E apx!] = E E el Covlng, xglay.
¥ i [

(k)]
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USIla.“].T not all combinations uka and xy have correlation but correlate
each other within their n subsets such a8 (. o, o
(X4 - Gya). .- . In such a case, the covariance terms in Eqgs. (13)
and (14) can be decomposed to

oM M
Y goovin. pig, = 2 Y ¥ gcoviy. e,

i im kb L Tk (15)

Z 8, covin. x)g, = E E 8y L0V x)g,

P T (16)
with M, = 0. For example, we expect that the number of counts C;
{always independent from other parameters), number of atoms in the
samples per area n; and number of the incident particles @; acting as
six parameters {y;} (i=1,6) describing the cross sections a=0C;f (nady;)
(i=1,2) has the following fractional covariances:

var(C})
0 var{Cy)
0 ] var{m)
0 i coving, ns) var(m,)
0 ] 0 1] 0
0 0 0 0 00 (17)

if the uncertainty in @; is negligible.
When y; cannot be expressed by Eq. (10) and there is no correlation
in parameters [x}, Eq. (8] can be rewritten as

Aie ¥ = ¥ (Al

Cayf, ) Zt:!&( 1) (18)
where

s = g lavdang), oy, = (efyghag (19)

iz the relative sensitivity coefficient. Eq. (158) shows that we should
distinguish the following two statements: “Uncertainty in y; due fo the
uncertaintv in xe" (le. solAxd/oa)). and “Uncertaintv in x” (ie.




Data Reduction

Nuclear reaction quantity g (e.g., cross section) is always derived
from primary observables x, v, z, ... (data reduction) by a function f:

Example: Activation cross section (o4, 0,,..) may be derived from ...
e measured counting rate A, A,,...
o detector efficiency €, €,,...
 number of sample atoms N, N,,...
e beam flux density ¢,, o,,...
- 0, =1(A, g N;, &) = A/(g: N;-d)

——r



Basic Data Reduction

* Addition z= x +y or subtraction z=x-y
Example:
Background correction to raw count: N’ =N —-B

* Multiplication z = x-y or division z = x/y
Example:
Efficiency correction to raw count: N' =N / ¢

Real data reduction may be a combination of these operations,
e.g., N’ =(N-B)/e
or more complicated, e.g., N[1-exp(-At)]/e

——r



Data Reduction and Uncertainty Propagation

Cross sections at n energies o, (i=1,n) derived from primary
observables A, €, N, ¢, (i=1,n)
Step 1: Measurements of primary observables

Determination of means and covariances for each primary
observable <A >, AA, <e.>, A€, ...

Step 2: Data reduction to cross sections
<A>, AA, <g>, At ... - <0,> and Ao,
Step 2-1: Propagation of mean value
<0,>=<A> /[ (<€><N><d.>)
Step 2-2: Propagation of standard deviation



Uncertainty Propagation (Linear Combination)

P =21, 31X =a;X+a,X,t... (X;is @ random variable).

Mean:

<p>=2._,, a<X>

i=1,n *i

Variance:
Var(p)=<p?>-<p>?
=< (2o, @)™ - <X, ax>?
=210 @2 Var(x) + 2 2y o1 niq @ @ Cov(x;,x)

= 2110 @7 (BX)7 + 2 21y 1 o1 niiqg @ @; COP (X, %) Ax,AX

ﬁ



Uncertainty Propagation (x,y)—=2>z for z=x+y

z=x+y (e.g., background subtraction N’=N-B)
<Z> = <X> + <y>
Var(z) = Var(x) + Var(y) + 2Cov(x,y)
(Az)2 = (Ax)2+ (Ay)2+ 2Cor(x,y)AxAy

If x and y are independent (i.e., c,,=0),

(Az)?=(Ax)*+(Ay)? (gquadrature sum rule)

ﬁ



Uncertainty Propagation (x,y)=2>z for z=x+y

Z=X+Y
<Z> = <X> + <y>
Var(z) = Var(x) + Var(y) + 2Cov(x,y)
(Az)? = (Ax)?+ (Ay)? + 2 Cor(x,y)AxAy

=(Ax)*+(Ay)?
(if x and y are independent, Cor(x,y)=0)
=(Ax)%+(Ay)2+2AxAy = (Ax+Ay)?
(if x and y are fully correlated, Cor(x,y)=+1)
=(Ax)%+(Ay)%-2AxAy = (Ax-Ay)?
_ (if x and y are fully anti-correlated, Cor(x,y)=-1)

Which case gives the largest and smallest uncertainties?
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Uncertainty Propagation (General Function)

P=p(Xy X,,...X,): function of n random variables x,

15t order expansion of p around <p> = p(<x,,<X,>,...<X,>):
P -<p>"~ Zig n = (OP/0X;)yioauis (X; -<X>)

If we set p’=p-<p> and x.’=x.-<x.>, we obtain the linear combination
P = Ziy n =(0P/0X;) i axis X/

This is a linear combination, therefore
Var(p)=Var(p’) ~ 2i=1 n (0p/0%;) =cxi> Var(x;)
+22i=1,n; j=1,n;i<j (ap/dxi)xi=<xi> (dp/axj)xj=<xj> COV(Xi’Xj)

- Ba—T



Limitation of Linear Approximation

P=p(Xy X,,...X,): function of n random variables x,

15t order expansion of f around <p> = p(<xl'<xz>'---<xg>)3
p-<p>"~ Ziy, =(0p/0X))imeri> (X; -<X;>)

This linear approximation is valid when x, -<x> <<x.>, namely valid
only when the uncertainty is small enough than its mean value.
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Uncertainty Propagation (General Function)

P=p(Xy X,,...X,): function of n random variables
Var(p)=Var(p’) ~ Zi., , (0p/0X;)i-cxi> Var(x))
+22, 1 1 =1 nsii (0P/0%;),icxis (ap/axj)xj=<xj> COV(Xi'Xj)

This relation can be easily extended to covariance between two

functions p=p(x; X,,...X,), A=A(Y1 Y2,--Ym):
Cov(p,q)~ 2i=1 n: j=Lm (0 p/axi)xi=<xi>(aq/ayj)yj=<yj> COV(XpXj)
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Special Case: Product/Quotient Function

For two quantities

{ P=(X1,X2, s+ X o) (Xest, pXma2,pre- X )
0=(X1, X3 g+ Xim, )/ (Xins1,qXme2, g7+ X, )
fractional covariance cov(p,q)=Cov(p,q)/(p-q) is
cov(p,d)™ Zy_1 , COV(Xy o, Xy o)
~ 31 COrlX X o) (BX o/ <X o) (DX o/ <Xy o)

If p=q,

cov(p,p)=var(p,p)~Z,y , (A% /<X, ,>)?
Namely (Ap/<p>)? =Z,_; (DX, /<X ,>)?
(Quadrature Sum Rule)

——



o
Example: Activation Cross Section

Activation cross sections at two energies (o, and o) derived from
e counts A (corrected for decay)

* by the same detector (g€) and sample (thickness N)
* under flux ¢, and ¢

0,=A,/(eNd ) and o,=(A,/eNd,)

Fractional variance (uncertainty):

var(o,)=(Ac,/0,)2=(AA /A )+(Ag /e )+(AN /N )2+(Ad, /b )
Fractional covariance:
cov(op,oq)=(Aep/ep)2+(ANp/Np)Z (p#£q)

——



e
Summary

e Uncertainty propagation depends on combination of random
variables

" |inear combination (e.g., z=x+y)

* non-linear combination (e.g., z=x/y) - Taylor expansion
around mean value

* Product/quotient combination (e.g., activation formula)

e Quadrature sum rule for the fractional uncertainty
The formula (Ay/<y>)>=%,_; (Ax/<x;>)* is applicable when
= yisa product/quotient combination (X;X,....X,,)/ (X4 1X40---X,,)
= Ax: is enough smaller than <x,> (for 1%t order approximation)
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