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This paper has been written to provide experimental nuclear data researchers and data compilers with practi-
cal guidance on dealing with experimental nuclear reaction data uncertainties. It outlines some of the properties
of random variables as well as principles of data uncertainty estimation, and illustrates them by means of simple
examples which are relevant to the field of nuclear data. Emphasis is placed on the importance of generating
mathematical models (or algorithms) that can adequately represent individual experiments for the purpose of es-
timating uncertainties in their results. Several types of uncertainties typically encountered in nuclear data exper-
iments are discussed. The requirements and procedures for reporting information on measurement uncertainties
for neutron reaction data, so that they will be useful in practical applications, are addressed. Consideration is
given to the challenges and opportunities offered by reports, conference proceedings, journal articles, and com-
puter libraries as vehicles for reporting and documenting numerical experimental data. Finally, contemporary
formats used to compile reported experimental covariance data in the widely used library EXFOR are discussed,
and several samples of EXFOR files are presented to demonstrate their use.
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I. INTRODUCTION
A. Overview

Physics is an observational science. All that is known about
our physical environment has been acquired by observing,
compiling, and striving to understand the results of observa-
tions. Consequently, experimental investigation is a funda-
mental aspect of the physical sciences. However, observations
and compilation of the results are insufficient to make ade-
quate progress toward understanding Nature. There is an im-
portant role for theoretical studies that aim to make sense of
what is observed. Experiment and theory complement each
other in seeking to understand Nature.

Many contemporary theories are so sophisticated that they
can predict, with considerable confidence, certain physical
phenomena which have yet to be measured, or that may even
be impossible to measure. An example is the energy and an-
gular correlations of emitted radiations, such as gamma rays
and neutrons. Such information is essential for certain appli-
cations, e.g., homeland security technologies. Nevertheless,
with few exceptions, nuclear theories alone cannot provide the
detail and numerical accuracy required for important physical
parameters. Yet, experiments, by their nature, are imperfect.
They are designed to determine specific numerical values for
important physical properties that are as close to being cor-
rect and enduring as possible. However, these inherent values
can never be determined exactly because the results from ex-
perimentation are inevitably “fuzzy” and, to varying degrees,
biased from the truth. They are uncertain due to limitations
of measurement procedures, as well as to statistical fluctu-
ations that are uncontrollable. In this paper the term “un-
certainty”, rather than “error”, is used to describe this phe-
nomenon. The word “error” refers to a mistake or blunder,
whereas “uncertainty” refers to imperfections associated with
well-intentioned attempts to determine true values for the pa-
rameters of Nature.

Numerical values for physical parameters predicted by con-
temporary theories are also uncertain. However, uncertainties
associated with predictions from theory, or the modeling of
physical systems, are different from experimental uncertain-
ties, even though they are often treated similarly in evaluat-
ing data used for practical applications. Theory and modeling
yield well-defined numerical results, within the precisions pro-
vided by contemporary computational technology. Scientists
who calculate the same physical quantity using the same meth-
ods, algorithms, input parameters, and computational tools,
will likely produce numerical results that agree to a high de-
gree of precision. That does not mean that they are accu-
rate (i.e., close to the true values)! The uncertainties are at-
tributable to limitations of the theories, algorithms, and input
parameter values employed for the calculations. Therefore,
these uncertainties are not statistical in the usual sense of the
term. Nevertheless, progress has been made recently toward
estimating these uncertainties, and utilizing this information
in practical applications [1].

More is known about the nature of experimental uncertain-
ties than about theoretical uncertainties. A large body of lit-

erature exists on the subject, ranging from instructive guides
to sophisticated mathematical treatments [2-5]. Still, experi-
menters frequently do not provide sufficient information about
the uncertainties in their experiments to satisfy contemporary
requirements. This may result from unawareness of the need
for this information, or from a lack of practical understanding
on how to go about estimating and specifying uncertainties.
The topic of experimental data uncertainties is often given
rather limited attention in academic curricula. Also, when nu-
clear experiments are performed with pure physics objectives
in mind, detailed knowledge of uncertainties in the results may
be of lesser importance than offering interpretations of the data
in the context of theories. Nevertheless, these data are often
compiled in databases where they may influence practical ap-
plications [6].

It is unfair to criticize experimenters for shortcomings in es-
timating and reporting uncertainties in their data without also
assigning some of the blame to compilers who prepare the
databases that serve as sources upon which data users have
come to rely. As an example, a compiled cross-section data
set for >>Mn(n,y)**Mn (taken from the EXFOR library [6])
is shown in the following text. In this example, the line num-
ber designations that appear in files downloaded from EXFOR
have been eliminated so that a larger font could be used to en-
hance readability of the essential information.

ENTRY 11130 860513

SUBENT 11130001 860513

BIB 7 14

INSTITUTE (1USATNC)

REFERENCE  (R,WADC-TN-59-107,59)

AUTHOR (N.A.BOSTROM, I.L.MORGAN,].T.PRUD’HOMME,P.L.OKHUYSEN,
0.M.HUDSON JR)

TITLE NEUTRON INTERACTIONS IN LITHIUM, CARBON, NITROGEN,
ALUMINUM, ARGON, MANGANESE, YTTRIUM, ZIRCONIUM,
RADIOLEAD AND BISMUTH.

INC-SPECT INCIDENT ENERGY CORRECTED DUE TO RECALCULATION OF
THRESHOLD.

STATUS (SCSRS)

HISTORY (760628T) TRANSLATED FROM SCISRS
(800814A) CONVERTED TO REACTION FORMALISM
(850117A) DELETED SANS 012,020,025.
(860513A) BIB CORRECTION.

ENDBIB 14

NOCOMMON 0 0

ENDSUBENT 17

SUBENT 11130008 800814

BIB 2 2

REACTION  (25-MN-55(N,G)25-MN-56,,SIG)

METHOD (ACTIV) ACTIVATION

ENDBIB 2

NOCOMMON 0 0

DATA 4 2

EN EN-RSL DATA DATA-ERR

MEV MEV B B

4.0 -02 8. -03 3.9 -02 1.0 -02

3.5 +00 4. -01 1.7 -03 6. -04

ENDDATA 4

ENDSUBENT 11

ENDENTRY 2

Although cross sections and uncertainties are given, there are
few details upon which to judge the quality of these data. Per-
haps the experimenters were thorough in documenting their
work in the original report, but the EXFOR data compiler sim-
ply failed to digest this material into usable form in this EX-
FOR entry. Or, maybe the information was never available.
The chances of a contemporary data user being able to locate
the original report (issued in 1959) are small. Unfortunately,
the situation illustrated here is relatively common.
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This paper is organized as follows. First, the roles played
by nuclear data uncertainties in nuclear science are discussed,
with emphasis on a few contemporary nuclear applications.
Next, the subjects of random variables and their statistical
properties are examined, since measured nuclear parameters
can be treated mathematically as random variables. A descrip-
tion of several probability functions that play roles in analyses
of experimental nuclear data uncertainties is included. The
process of identifying the primary parameters of experiments,
and assessing their uncertainties, is explored, and simple ex-
amples are provided. The need to develop models of experi-
ments that describe how derived physical quantities, such as
cross sections, are extracted from what is actually measured is
stressed. Characteristics of the uncertainties for various types
of primary parameters that influence the outcome of exper-
iments are described. Attention is devoted to documenting
data uncertainties by means of reports, conference proceed-
ings, journal articles, and computer libraries of numerical val-
ues. The main challenge is the large volume of numerical data
that is often required to adequately document this information.
Finally, contemporary formats used in compiling covariances
for reported experimental data are discussed, and their use is
illustrated by samples from the EXFOR library [6].

B. Roles for Nuclear Data Uncertainties

Some experimenters may not realize how detailed specifi-
cation of uncertainty data can be beneficial in practice. A few
examples are presented here to illustrate the importance of nu-
clear data uncertainties in applications.

1. Nuclear data evaluations

Applied nuclear data users seldom rely on numerical data
extracted directly from original publications. Instead, they uti-
lize evaluated (recommended) data. These are values distilled
from consideration by experienced evaluators of the body of
existing experimental and theoretical numerical results. Eval-
uators strive to produce the most reliable possible recommen-
dations, based on critical assessments of the quality of data
available from the reported scientific studies. This applies to
both nuclear structure and nuclear reaction data (e.g., reaction
cross sections). The emphasis in this paper is on nuclear reac-
tion data, in particular on reactions initiated by neutrons. It is
an area of nuclear science where attention to data uncertain-
ties currently appears to be the most concentrated. Hopefully,
similar attention will be devoted in the future to uncertain-
ties for other types of nuclear data (e.g., nuclear structure and
charged-particle reaction data). The principles and techniques
discussed here are also applicable to these areas.

In earlier times, the evaluation of nuclear reaction data of-
ten involved drawing smooth eye guides through plots of mea-
sured experimental data extracted from the literature. The “er-
ror” bars (uncertainties) shown in these plots inevitably influ-
enced evaluators, but only subjectively. This approach is no
longer viewed as acceptable. More sophisticated and objec-

tive data evaluation procedures have evolved during the last
several decades. Weights are assigned to nuclear reaction data
sets, according to their perceived quality. Judgments on qual-
ity are based on both the uncertainties quoted by authors and
evaluator impressions as to the reliability of these estimates.
Rigorous statistical techniques are ultimately applied to pro-
duce the evaluated results [7-9]. If a data set is poorly doc-
umented, provides limited uncertainty information, or offers
uncertainty values that appear to be unrealistic, it is likely to
be rejected by evaluators. From the experimenter’s point of
view, the data would then have limited impact on the advance-
ment of applied nuclear science. So, it is important for ex-
perimenters to provide reasonable and well-documented un-
certainty data for their reported results, regardless of which
physical parameters are measured. The responsibility of ex-
perimenters for assigning credible uncertainties is especially
great for processes where, for practical reasons, it is likely that
only a single set of measured data will be available to directly
influence evaluations. An example would be measurements
at neutron white-source facilities of total, scattering, capture,
and fission cross sections in the resolved and unresolved res-
onance regions. Evaluated values of the resonance parame-
ters for these energy regions usually emerge directly from the
procedures used to analyze the measured data. They depend
strongly on the uncertainties assigned to the raw experimental
information [10].

The significant pieces of information which evaluators of
reaction cross section data sets need to have can be summa-
rized as follows: 1) incident particle energies (usually for neu-
trons); ii) energy resolutions; iii) cross-section values; iv) total
uncertainties in these cross sections; v) standard reactions used
in the measurements; vi) actual values of the standard cross
sections at the specified energies; and vii) estimates of the var-
ious uncorrelated and correlated uncertainty components in-
cluded in the given total uncertainties (so that overall uncer-
tainty correlations between the individual data points in the
set can be assessed). As an alternative to items (iii) and (vi),
values of the measured ratios of the unknown and specified
standard reaction cross sections, at the various energies, can
be provided. Experimenters should utilize well-established
and documented standard reactions whenever the outcomes of
their experiments depend upon reference cross sections rather
than their being based on absolute measurements. Then, if
there are changes in the recommended values for these stan-
dards, evaluators will be able to adjust the reported experi-
mental data accordingly. Additional, important pieces of in-
formation for evaluation purposes are the sample properties
and detector characteristics, as well as the procedures used
for their determination. Failure to provide this bare minimum
of information is likely to lead to the experimental data be-
ing rejected, improperly used, or not accorded the appropriate
weightings that are merited in the evaluation process. Exper-
iments are costly, time consuming, and difficult to conduct,
so experimental data tend to be relatively limited in quantity
compared with the copious results that are routinely generated
from theoretical calculations. Since experimental data are pre-
cious, experimenters should be encouraged to properly docu-
ment both measured values and the corresponding estimated
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uncertainties for their work.

2. Nuclear technology applications

The uses that nuclear data find in applications, and the em-
phases placed on these data, evolve over time. It is very dif-
ficult to envision what uses the results of a measurement may
find many decades hence. For example, consider the compiled
data entry in EXFOR for ¥Mn(n,y)**Mn mentioned above.
This cross section value was measured in 1959. More than
fifty years later, it played a role in evaluating the cross sec-
tion for a reactor dosimetry standard [11]. For illustrative pur-
poses, three nuclear technologies are selected where evaluated
neutron reaction data (including uncertainties) are currently
playing important roles: neutron radiation dosimetry, nuclear
criticality safety assessment, and the development and con-
ceptual design of advanced nuclear reactors (mainly fast reac-
tors). Many other important nuclear applications that benefit
from reliable nuclear data, e.g., accelerator shielding, medical
science, space technologies, fusion energy, defense, homeland
security, and nuclear forensics, could have been mentioned.

Neutron radiation dosimetry is an area where nuclear data
uncertainties have played a significant role for many years.
Neutron dose determinations are important in assessing the
safety and life expectancies of nuclear power plants. In partic-
ular, extended exposure of reactor pressure vessels to neutron
radiation can induce brittleness that threatens their structural
integrity. Neutron reactions with various properties (energy
thresholds, efc.) are used for dosimetry measurements. In ad-
dition to determining total neutron dosages, the integral data
are used to adjust (formerly referred to as “unfold”) a trial es-
timate of the spectrum shape that has been derived from the-
oretical modeling. This adjustment process, often carried out
using the least-squares method, relies, in part, on specifying
the uncertainties of the dosimeter integral responses and the
uncertainties of the evaluated microscopic differential cross
sections for the utilized dosimetry reactions [12].

Assurance of safe handling, transport, and storage of fis-
sionable nuclear materials is a crucial issue in the chain of
processes associated with assuring that nuclear fission is a
safe and reliable energy option. The avoidance of criticality
accidents is one of the most important objectives in this con-
text [13]. Nuclear fission is viable as an energy source if a
chain reaction is maintained within the reactor core, i.e., if the
system is critical. This critical point is achieved when the pro-
duction and removal rates for neutrons within a system involv-
ing nuclear fission are in equilibrium. Assessment of the crit-
ical state of any nuclear energy system involving fissionable
material centers upon consideration of a parameter referred
to as k-eff. Equilibrium between the production and escape
or absorption of neutrons in a system results in k-eff being ex-
actly equal to unity. In sub-critical systems (k-eff < 1.000), the
neutron inventory rapidly dies away when the driving source
of neutrons is removed (or switched off). In a super-critical
system (k-eff > 1.000), there is an uncontrollable chain re-
action (explosion), even after the initiating neutron source is
eliminated. The four-significant-figure precision shown here

for k-eff emphasizes the extreme sensitivity of nuclear sys-
tem behavior to departures of k-eff from unity. Insurance of
sub-criticality is essential to insure criticality safety whenever
materials that contain fissionable elements are handled, trans-
ported, processed, or stored outside of a reactor core [13].
Computer software is employed in the analysis of system crit-
icality for a wide variety of system geometries [14]. These
calculations utilize extensive evaluated nuclear data. Knowl-
edge of the nuclear data uncertainties enables uncertainties in
calculated values of k-eff to be estimated for these systems.
Uncertainty information for evaluated differential neutron
reaction cross sections, and for measured integral quantities,
is used in design and performance studies of conceptual ad-
vanced reactor systems [15]. The objective is to estimate un-
certainties in calculated integral parameters such as k-eff (once
again), burn-up and build-up of individual isotopic species
during operation of the reactors (minor actinides, fission prod-
ucts, efc.), sodium void effects on reactivity, etc. Knowl-
edge of nuclear data uncertainties enables determinations to
be made of the design margins that are needed for safe and
economical operation of these systems. This task can be ac-
complished in a couple of ways. First, uncertainties in eval-
uated nuclear data can be propagated directly to determine
calculated system parameter uncertainties. A less direct ap-
proach is to use this uncertainty information to create adjusted
nuclear data libraries for specific applications. The procedure
involves merging general-purpose evaluated differential data
and high-quality integral data that are pertinent to the system
under investigation [15]. The latter approach enables system
simulation calculations to be performed with greater accuracy
than would be the case using evaluated nuclear data libraries
based solely on differential data. Data libraries that have been
adjusted to optimize their use for a particular nuclear system
should not be used in applications other than the one intended
due to the potential for generating biases. General-purpose
evaluated libraries are based almost entirely on differential
data. They can be utilized in a wide variety of nuclear ap-
plications with minimal concern about such biases [7-9].

II. BASIC CONCEPTS
A. Probability Distributions

In the physical sciences, it is assumed that the numerical
values obtained from performing measurements of parame-
ters are governed by the laws of probability and statistics. In
particular, measurable physical parameters can be represented
by random variables. Sometimes the term ‘“stochastic vari-
able” is used. This assumption enables nuclear parameters to
be treated using mathematical laws. Random variables come
in two forms: discrete and continuous. In the nuclear con-
text, an example of a discrete random variable would be the
spin “y” of a nuclear level. For example, when it is uncer-
tain whether the value of that spin ¢ should be either 1/2 or
3/2, but it is absolutely certain that there are no other possibil-
ities, the decision might be to assume that P(yy = 1/2) = 0.5
and P(y = 3/2) = 0.5. In other words, these two outcomes
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are treated as equally likely. The sum of these two probabili-
ties is unity (i.e., certainty). Parameters such as cross sections
are observed to be described by continuous random variables
rather than discrete ones. Measurements of these quantities
could produce an uncountable number of different values if
it were possible to measure them an uncountable number of
times. If this could be done, and if it were possible to keep
track of the outcomes, they would be found to be distributed
in predictable ways that can be described by continuous scalar
functions called probability density functions.

This section focuses mainly on the general properties of
continuously distributed parameters. Some mathematical con-
cepts are discussed, first for single random variables, then
for multiple random-variable sets. The emphasis is on prac-
tical aspects, e.g., describing how experimenters should report
their measured data (including uncertainties), and on how they
should be compiled, rather than on rigorous statistical theory.
Details are provided in this paper for only five single-variable
(univariate) probability functions, and two multiple-variable
(multivariate) functions, that are commonly encountered in
nuclear applications. Certain other probability functions, e.g.,
those that might be more appropriate in addressing specialized
situations, such as small samples of data or rare events, are
not treated here. They are encountered relatively infrequently
in nuclear data applications. The interested reader can refer
to the following three additional references for further insight
on this subject: a BIPM document [2], and monographs by
Smith [3] and Drosg [5].

1. Single random variables

With no loss of generality, let x be a single, continuous
random variable that represents an arbitrary physical param-
eter. Let p(x) be the probability density function that governs
the statistical behavior of x. It is important to always distin-

9

guish conceptually between “x” as the random variable and
“x” as a specific numerical value for this variable. In this
paper it is assumed that this distinction can always be made
based on context. Sampling (i.e., measuring) x a large num-
ber of times (say K times, where K is a large integer), while
keeping the experimental conditions under control to assure
stability of the underlying sampling probability distribution,
would generate a collection of K numerical values {x;}g, i.e.,
(X1 X0, ** 5 Xp—1» Xk» Xkt15* ** » XK—1, Xk ). The properties of this
set are governed by the probability density function p(x). We
then define a derived real number (x)x as

K
(x)x = [Z xk) K. (1)

k=1

Clearly, (x)k is the well-known average of a finite collection of
numbers {x;}x. In statistics it is called the sample mean value
for the collection {x;}x. The actual numerical value {x)x de-
pends on K, as well as on the collection of sample values x;.
Two different sequences of K measurements of x will produce
distinct averages (sample mean values) due to the stochastic
nature of the random variable x, the finiteness of the sample

set, and the nature of the measurement procedure used to gen-
erate the sample-value sets. Clearly, (x)x is not a unique quan-
tity even though p(x) is well defined.

Next, define

K
Ve =| D (% —<x>K>2} /K. @)
k=1

The quantity v,k is called the mean-square deviation from the
mean for the collection {x;}x or, more commonly, the vari-
ance of the collection {x;}x. The standard deviation of {x;}x
is closely related to vk, and it is defined by

K 1/2
SxK = (VxK)l/2 = {{Z (Xk - <X>K)2:| /K} . (3)
k=1

The advantage of considering s,x rather than v,x, when dis-
cussing uncertainties, is that the dimensions (i.e., units) of s,x
are identical to those of x; and (x)x (e.g., they are measured
in the units “barn” in the case of cross sections). Egs. (1) -
(2) define specific moments of the collection {x;}x. They are
the most important moments for practical applications. The
value K appearing in the denominators of Egs. (2) and (3) is
sometimes replaced by K — 1 in statistical analyses, for tech-
nical reasons [2]. As long as K is very large, the distinction
is of little practical importance. The mean value (x)x repre-
sents a central location around which the sampled values x;
tend to be encountered, while v,x and s,x measure the degree
to which the values x; tend to scatter or concentrate (peak) in
the vicinity of (x)x. Thus, if a particular physical parameter is
measured repetitively, under controlled conditions, the mean
value and standard deviation can be treated as the “best value”
and its corresponding “uncertainty”. Alternative definitions
are sometimes used by statisticians to represent best values
and their uncertainties [2]. One example is the median value
(i.e., the value midway between two extreme possibilities) in-
stead of the mean value. This paper considers only mean val-
ues and standard deviations. They are the most widely used in
nuclear science applications.

When size K of the sample sets approaches infinity the sam-
ple moments of all these sets approach the same numerical
values, namely those obtained from integrations that involve
the function p(x). Thus,

Xo =(x) = L x p(x) dx, 4)
Ve = (L xzp(x)dx) - x5, 5
sx= vy ©)
J; p(x)dx = 1. @)

The integrations are shown symbolically as spanning the do-
main & of all possible values of x that might be obtained from
random sampling. Eq. (7) imposes the condition of normaliza-
tion to unity on the probability density function p(x). It should
be noted that probability density is not a true probability, but
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leads to one only as a consequence of its integration over a se-
lected continuous range of possible values for x. Higher-order
moments of p can also be defined. They correspond to integra-
tion of x* (third moment), x* (fourth moment), etc., weighted
by p(x), if these integrals over the domain & are finite.

The five single-variable probability distribution functions
considered in this paper are: Poisson distribution, continuous
uniform distribution, normal (Gaussian) distribution, lognor-
mal distribution, and chi-square distribution [2, 3, 5].

a. Poisson The Poisson distribution is a function of the
discrete, non-negative integer random variable x. It takes the
form

P(x) = AT exp(-=)/x! (x=0,1,2,---,00; 1> 0). (8)
Capital “P” is used to highlight the fact that it is a discrete
function. The mean value is xy = A and the standard deviation
is s, = 472, Since the sum of terms A*/x! (x from 0 to co)
equals exp(A), this function is normalized for all positive A [3,
16]. Thus,

Z P(x) = 1. ©)
x=0

Fig. 1 is a plot of this distribution for two choices of parameter
A (Lambda): A = 4 and A = 36. When x is large, it is difficult
to calculate A* or x!. Computational programs are available
from the Internet to determine P(x) for individual cases
(e.g., [17]), and computer software can also be employed. The
normal (Gaussian) distribution can be used to approximate
the Poisson function when A > 30. Fig. 1 demonstrates this
point. It also shows that the Poisson function is noticeably
asymmetric for small values of A, but it approaches symmetry
as A becomes larger. The underlying Poisson distribution
mean value A and uncertainty 1!/ are often assumed to be
N and N'/2, respectively, when N counts are observed in an
experiment. If N is large, this is an adequate approximation.
However, for small values of N, this approximation is unac-
ceptable.

b. Continuous uniform Unlike the other probability dis-
tributions discussed in this paper, the continuous uniform dis-
tribution is unlikely to reflect the outcome from actual mea-
surements of physical parameters. Nevertheless, it is still very
useful for certain practical applications. It is defined as [3, 16]

1/(b—a) ifa<x<b,

P = {0 otherwise. (19)
Parameters a and b are usually taken to be positive numbers.
Any value of x within the interval (a, b) is equally likely to
occur in sampling, while the probability of finding x outside
these limits is zero. The mean value is xo = (a + b)/2. It
is positive if a and b are positive. The standard deviation is
sy = [(b — @)*/12]/2. This probability distribution is useful
if it is suspected that the value of a particular random variable
should be somewhere within a specific range.

0.25

A=4
0.20 ¢

0.05

0.00 * e
0 2 4 6 8 10 12

0.07 : : PR
0.06 S -

0.05 ]/ ﬁ
;o
!

Q. 0.03
foon

0.02

0.01 '{/
0.00 e
10 20 30 40 50 60 70
X

FIG. 1. Examples of the Poisson distribution for two distinct values
of the parameter Lambda (1). Top: 4 = 4. Bottom: A = 36. The

corresponding normal distribution approximation for the case A = 36
is also shown here as a smooth curve.

Consider this scenario: An experimenter might be tempted
to suggest a value for a measured physical quantity, and then
estimate that its uncertainty (i.e., standard deviation) should
be in the range 5% to 10%. Unfortunately, this unwillingness
to quote a specific uncertainty value will confuse users of
these data. They will have difficulty in assessing its quality.
Should they assume 5%, or 10%, or perhaps even 7.5%
(splitting the difference) as the uncertainty? The experimenter
has an obligation to be more definite about this matter. A
better approach is to suggest a likely range of possible values
for the measured result, and stipulate a continuous uniform
distribution. This satisfies a desire to be somewhat vague,
yet it also offers a statistically acceptable option for data
users. A well-defined mean value and standard deviation
can then be deduced. A numerical example illustrates this
point. Suppose the experimenter believes that a measured
parameter x should have a value somewhere in the range 16
to 20 (@ = 16, b = 20). This assumption produces a mean
value xo = 18 and standard deviation s, = 1.15470 (to six
significant figures), corresponding to a fractional uncertainty
of = 6.4%.

c. Normal (Gaussian) The normal (Gaussian) function
is the most widely employed statistical distribution in nuclear
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applications [3, 16]. It is a continuous function of x that in-
volves two parameters, v and s,. It takes the form

p(x) = exp [—(x - v)z/(zsi)] /Qrs?)2, (11)

The random variable x can assume any real number. The mean
value is xo = v. It can also be any real number. The standard
deviation, s,, must be a positive real number. Function p(x) in
Eq. (11) is normalized, since integration from x = —oo to +co
yields unity. This function is symmetric about its mean value,
and it is often referred to as the “bell-shaped curve” because
of its characteristic shape (see Fig. 1). In nuclear applications,
the convention that measured parameters x are positive is gen-
erally adopted. This tends to restrict practical use of this dis-
tribution to cases where xop = v > 0 and s, < Xy, i.e., when the
fractional uncertainty f, = (s,/xXo) is fairly small. In practice,
the normal distribution can be useful for most applications in
nuclear science when (s,/xp) < 0.3 [18, 19]. The likelihood
of obtaining negative values in random sampling will then be
minimal, without having to artificially truncate the sampling
space.

The Central Limit Theorem states that the normal dis-
tribution governs random events that are the consequences
of relatively large numbers of small, unrelated linear dis-
turbances (e.g., [2, 3]). This property can be demonstrated
by examining the result of dropping a large number of
balls from a single location through a maze of uniformly
distributed barriers. The balls bounce randomly as they
travel through the maze. The distribution of accumulated
balls below the maze approaches a normal distribution
centered on the drop point, when the number of balls
dropped becomes very large (e.g., see the following web-
site for an animated demonstration of the phenomenon:
http://www.squadron13.com/games/balldrop/balldrop.htm).
Other distributions mentioned in this paper, i.e., the Poisson,
lognormal, and chi-square distributions, approach the nor-
mal distribution under limiting conditions. The Maximum
Entropy Principle, introduced by Shannon [20], and further
elaborated by Jaynes [21], states that if all one knows about
the statistical properties of a random variable are estimates of
the mean value and standard deviation, the best assumption
about the unknown probability distribution is that it is likely
to be normal. An important exception is when the fractional
standard deviation is large (see above). Then, the lognormal
distribution is more appropriate.

d. Lognormal The lognormal function is defined for
positive real number random variables x as [3, 16]

p(x) = exp [-(Inx = v)* /2] /@y )2 (12)

Parameter v can be any real number, while y must be positive.

The mean value xj and standard deviation s, for the lognormal
function are

% = exp|v+(*/2)], (13)

’ 2172

sy = [exp(2v+27 )—exp (v +y )] : (14)

This function is asymmetric for large values of the standard
deviation relative to the mean value. In the limit of param-

eter choices for v and y such that s, <« xj, the lognormal
distribution approaches the symmetric normal distribution.
This is illustrated in Fig. 2. Furthermore, if a transformation
is made from a lognormally distributed random variable x
to random variable y, where y = Inx and “In” signifies the
natural logarithm function, y will be normally distributed.
Then, v is the mean value of y and v is its standard deviation.
Since x ranges from 0 to +oo, y ranges from —oo to +oo. The
lognormal distribution can be useful in representing random
variables with large uncertainties. Negative values are never
encountered in random sampling of x, even for very large
standard deviations. This can occur for some parameters in
nuclear astrophysics [19]. It can be demonstrated that any
random variable which is the consequence of a sequence of
a relatively large number of small, independent, positive,
multiplicative random disturbances will be lognormally
distributed [22]. This can be understood as follows. Suppose
that a variable x is represented by a product (IT) of J variables
wj, i.e., X = H_/':IJ wWj. Then, y = Inx = Zj:lJ IIIU.)_/‘. Thus,
multiplicative disturbances in ordinary space become additive
disturbances in logarithm space.

1.2 |
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FIG. 2. Comparison of shapes of the lognormal distribution for xo =
100 and s, =1, 10, 20, 50, 100, and 150 [19]. These distributions are
normalized so that p(x,,) = 1; where x,, = exp(v — ¥?) is the mode of
the distribution.

e. Chi-square The chi-square (y*) probability distribu-
tion plays a special role in statistics that differs in several re-
spects from the other distributions mentioned here [3, 16]. It
is applied in tests of goodness of fit, or assessments of the
significance of observed differences (scatter) among individ-
ual experimental and/or theoretically calculated data, relative
to a stated hypothesis that these data should be normally dis-
tributed, with a specified set of distribution parameters. The
chi-square distribution is a member of the gamma distribu-
tion family [3]. For all positive real numbers x, and integers
n=1,2,3,---, the normalized chi-square probability density
function is given by

p(x) = APV exp—x/2)/ 27T (/2)|,  (15)

[(n/2) = J: A2~ exp(—1) dr. (16)
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I'(n/2) represents the value of the gamma function I'(a) for
the argument @ = n/2. The mean value is xo = n and the
standard deviation is s, = (2n)'/2. The integer parameter  de-
notes degrees of freedom [3]. Values for the gamma function
cannot be expressed in closed form for arbitrary values of the
argument @ > 0, so it must be calculated numerically. Com-
puter software or on-line computational programs can be used
to perform this task (e.g., [23]). In the limit of very large n,
the chi-square distribution approaches the normal distribution,
also as a consequence of the Central Limit Theorem [3].

The cumulative probability P (8; n) for the chi-square prob-
ability density function p(x), and a specific real number 8 > 0,
must be considered in applying the chi-square test to data sets.

P(B;n)is

B
PB;n) = J p(x)dx. (17

0

It is the probability, for a particular data set, of encountering a
value x (called the test statistic) < 8. Since probability must be
normalized, 0 < P (8;n) < 1. The certain event, 0 < x < +oo,
has a probability of unity. The number “S” is often denoted
by “¥*” (chi-square). The distinction between parameter and
distribution name must be based on context. In this paper,
“B” is employed exclusively to avoid any confusion regard-
ing this matter. In practical applications, it is convenient to
consider the quantity Q (8;n) = 1 — P(B;n). Q(B;n) is the
probability of encountering a value of x > . Plots of Q (8; n),
as a function of S, and for various choices of n, are given in
Fig. 3 (Top). Egs. (15) and (16), as well as Fig. 3, indicate that
the values of P (8;n) and Q (B; n) for a particular choice of 8
depend strongly on the degree-of-freedom parameter n. For
B < n, P(B;n) < 1. For 8> n, Q(B;n) < 1. The probabili-
ties of encountering values of § either much smaller, or much
larger, than the mean value » are small. This is true regardless
of the value of n. Tables of values for P (8;n) or Q (B; n) are
sometimes provided only forn = 1, i.e., P(8; 1) or Q(5; 1), to
save space. In some cases, the information provided in these
tables can be applied for other values of n, based on the as-
sumption P (B;n) =~ P(B/n;1) or Q(B;n) =~ Q(B/n;1). The
validity of these assumptions can be judged from the plots
shown in Fig. 3, in particular by examining the bottom plot
which shows the ratio Q (8/n; 1)/ Q (8; n) as a function of 8/n.
The assumption that this ratio should be approximately unity
holds only for assumed values of 3 in the vicinity of param-
eter “n” or, alternatively, for §/n ~ 1. Since computational
algorithms are readily available these days to produce values
of P(B;n) or Q(B;n), for arbitrary 8 and n, it is advisable to
avoid using this approximation when applying the chi-square
test. The degree-of-freedom parameter “n” equals the num-
ber of data points N being tested for consistency, but only if
these data are independent, i.e., if there are no constraints in-
volved. Otherwise, the degrees of freedom must be reduced
by the number of constraints v, i.e., n = N — v. The following
example illustrates the chi-square test.

Example 1 The stated hypothesis is that a particular collection of
independent sampling data should be described by a univariate nor-
mal distribution with mean value x, and standard deviation s,. A

D.L. Smith and N. Otuka
1.0 per ‘
0.8 1 —
E 06 \ 2 ]
0.0 R ‘

Q(B/n;1)/Q(B;n)
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FIG. 3. Top: Curves correspond to Q (8;n) = 1 — P(B;n) versus

B, for various n. Bottom: Curves correspond to Q (B/n; 1)/ 0 (B; n)
versus 3/n, for various n.

collection of n statistically independent sampled data values, {x;} =
(X1, X2, , Xiy =+ + 5 Xy), is produced (e.g., from an experiment). These
data are then examined for consistency with the stated hypothesis.
The appropriate parameter £ is

B= Z [ = x0)*/52] (18)
i=1

Eq. (18) is an example of a quadratic form. Quadratic forms play im-
portant roles in applied mathematics, including chi-square data con-
sistency tests such as the present one. In this example, there are n
degrees of freedom, since there are n independent sample values with
no constraints. If 8 = n (the mean value for the chi-square distribu-
tion) and Q (B, n) =~ 0.5, then the data set {x;} is said to be reasonably
consistent with the hypothesis. If 8 < n, and Q (B, n) is fairly close
to 1, the scatter of the sampled values x; relative to xj is far less than
might be anticipated, based on the hypothesis. If 8 > n, and Q (8, n)
is fairly small, the scatter of the various x; relative to x is far greater
than would be expected, based on the assumed hypothesis. In the
two latter cases, there is cause to suspect that the sampling data do
not support the stated hypothesis. It would then be appropriate to first
propose different values of x; and s, for the normal distribution that
defines the hypothesis. Alternatively, least-squares procedures could
be used to try and optimize these parameters [24]. However, taking
this last step would require considering a degree-of-freedom value
n smaller than the data set, since data fitting introduces constraints.
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If the test results are still inconsistent, based on the computed value
of B, the sampled data are probably not normally distributed. It is
instructive to consider a simple numerical example involving five in-
dependently sampled values: x; = 105, x, = 97, x3 = 101, x4 = 95,
and x5 = 111. The hypothesis (stated prior to the sampling) is that
xo = 100 and s, = 4. When all five sample values are considered,
Eq. (18) yields 8 = 11.3125. Referring to the plot of Q (8;n) in
Fig. 3, it is seen that it is very unlikely (Q (8;5) < 0.1) that these five
values support the stated hypothesis regarding the mean value and
standard deviation for sampling data that are assumed to be normally
distributed. However, if x5 is eliminated, and the chi-square test is re-
peated, Eq. (18) yields 8 = 3.75. This is a reasonable outcome from
this test that supports the given hypothesis. It would appear quite
likely that xs is a discrepant outlier, while the other sampled values
collectively support the indicated hypothesis.

More complicated expressions for S (generally of the
quadratic form variety) are used in chi-square testing for
multiple-variable situations, and for those cases that involve
correlated (i.e., constrained) data. Extensions to this theory to
deal with such situations are not explored in this paper.

The chi-square test of statistical significance is strictly valid
only for normally distributed data, although it is frequently ap-
plied rather indiscriminately by investigators. What often hap-
pens is that a particular data point included in the chi-square
test appears to be an outlier (as illustrated in Example 1). This
outlier can contribute to failure of the data set to be consis-
tent with a normal distribution. It is usually suspected that this
might be due to an error on the part of the experimenter. How-
ever, statistical tests cannot prove that a particular data point
is wrong. They can only serve to suggest that it is more likely
that it is wrong than correct, based on the information avail-
able to the analyst at the time the chi-square test is performed.
Of course, there is always a chance, albeit seemingly small,
that the apparently discrepant point is actually closer to the
correct value than the others if, unbeknownst to the analyst,
or possibly even to the experimenters, an important factor that
was not considered in the majority of the measurements, was
taken into account in the experiment that produced the out-
lier. Discrepancies of this nature do tend to become resolved
in the long term, but they can plague data analysts for many
years before the underlying cause of the problem is eventually
discovered.

2. Multiple random variables

Texts dealing with probability, statistics, and data uncer-
tainties often focus on treating single variables, with limited
mention made of multiple variable sets (e.g., [2]). Nuclear ex-
perimenters generally measure and report more than the value
and uncertainty for just a single physical parameter, e.g., they
might report a set of cross sections measured at several differ-
ent neutron energies. It is actually relatively straightforward
to extend the discussion of the statistical properties of single
random variables to collections of random variables. Assume
that n distinct variables {x;} = (x1, x5, -+, X;,--* , X,,) are to be
considered. This should not be confused with n samples of a
single random variable, as discussed earlier. This collection

can be represented by the n-dimensional vector . Bold-face
symbols are used in this paper for vectors and matrices.

We let p(x) denote a normalized scalar probability density
function of n continuous random variables. The mean value
for each of the n random variables is

xoi = (x;) = J xiplx)de (i=1,n). (19)

The vector of mean values x; is @x; it is referred to as the
mean-value vector. Integration encompasses an n-dimensional
domain & inclusive of the ranges of all the random variables in
the array «. The quantity “dx” is an n-dimensional differential
volume element (voxel) in this space. Integration of p(x) over
domain G yields unity. The corresponding variances are

Vyii = J Xp@)dz - x5, (i=1,n). (20)

[TEXL]

The significance of the double subscript “ii” used in labeling
these variances is clarified below. The standard deviation for
each of the random variables is

si = a)'? (i = 1,n). (1)

Additional second-order moments can be defined for the prob-
ability function p(zx). They are

Vyij =J x; xj p(x)dx — xp; x0; (i, j=1,n;1# j).
(22)

The v,;; are known as the covariances for the probability func-
tion p(x). The elements defined by Egs. (20) and (22) form a
symmetric n X n matrix V,, called the covariance matrix [3].
The symmetric n X n matrix C,, with elements cy;;, is the
correlation matrix. Its elements are

Caij = Vaijl i v (= 1,n). (23)

The diagonal elements of C, are unity and the off-diagonal
elements must satisfy the requirement

(G, j=Lnyi# ). (24)

Eq. (24) is related to the Cauchy-Schwarz inequality [16].
This paper adopts the convention of specifying only the el-
ements of the lower triangle for V, or C,, with the under-
standing that the upper triangle is a mirror image. The dimen-
sions of the covariance matrix elements are equal to squares
of the variables, while the correlation matrix elements are di-
mensionless. This paper addresses only those properties of
covariance matrices that are essential to understanding the re-
lationship between the mathematical concepts and actual un-
certainties of physical parameters. Information on additional
mathematical properties of covariances matrices can be found
in the literature (e.g., [3]). Scientific investigators frequently
consider uncertainties, but fail to consider the effects of non-
zero correlations. When data sets are partially correlated, there
is a degree of “stiffness” that can strongly influence their im-
pact in applications.

Two specific multivariate probability distributions are
discussed in this paper: the multivariate normal distribution
and the multivariate lognormal distribution.

-1< Cxij < +1
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a. Multivariate normal This distribution is widely em-
ployed in nuclear science (e.g., [3]), e.g., it is the ba-
sis for many contemporary nuclear data evaluation schemes
(e.g., [25]). The normalized multivariate normal distribution
is

p@)= Qn)™?[det(V)]™"/?

1
xexp|-3(@-z0) Vi @-m)|. (25

The mean-value vector is @y and the covariance matrix is V.
The superscript symbol “*” signifies matrix transposition.
The inverse matrix V,~! will exist if V/ is positive definite [3].

b. Multivariate lognormal The relationship between the
multivariate lognormal and multivariate normal distributions
is conceptually similar to that for their single-variable coun-
terparts (e.g., [26]). This distribution is applied in economics,
medical science, and atmospheric studies (e.g., see [27, 28]),
but it is not very commonly seen in nuclear science applica-
tions. The transformation between corresponding normally
and lognormally distributed multiple variable sets follows
from the normalization of probability, as in the univariate case,
but the mathematics is more involved (e.g., see [26, 27]). The
multivariate lognormal distribution for an n-dimensional vari-
able set x is (e.g., see [27])

p@) = @0 [det @) (]_[ le)

i=1

X exp [—%(ln x-v) U '(Inx - I/)] . (26)

Matrix U must be nonsingular in order for its inverse U~! to
exist. The notation “In x” represents the n-dimensional array
(Inxy,---,Inx;,---,Inx,). The n-dimensional vector v (with
elements v;) and n X n matrix U (with elements u;;) appearing
in Eq. (26) do not correspond to the mean-value vector x and
covariance matrix V, for the multivariate lognormal distribu-
tion. The elements of xy and V/ are given by (e.g., see [29])

Xoi exp [vi + (u;i/2)], 27
Viij = exp{vl- + v+ [(u; + ujj)/Z]} [exp(uij) - 1] .(28)

3. Confidence intervals

It is often desired to know the absolute probability
P(Xiow, Xhign) that random sampling of a single-variable (i.e.,
univariate) probability function will produce a value x within
the interval (Xjoy, Xhigh). Clearly,

Xhigh
P(Xiow, Xnigh) = J p(x)dx (29)

Xlow

for a continuous probability density function p. That proba-
bility depends on the range (Xiow, Xnigh) and the characteristics
of function p. This probability is unity for the entire sampling
space, since p is assumed to be normalized. Confidence inter-
vals correspond to particular ranges of x in the vicinity of the

mean value xy. For symmetric distributions they involve up-
per and lower limits located equidistant above and below the
mean value.

For the continuous uniform distribution, as defined by
Eq. (10), the probability of sampling x within one standard de-
viation from the mean value, i.e., in the interval (xg — s, Xo +
sy), 18 always 0.577350 (to six significant figures), indepen-
dent of the parameters a and b. However, the fractional un-
certainty f, = (s,/xo) can be very small when (b — a) < xp.
Therefore, it can be quite useful to apply this distribution in es-
timating the impact of uncertainties assumed for certain phys-
ical parameters. One advantage is that sampling of a vari-
able governed by this distribution can be performed easily us-
ing an ordinary random number generator. It is worth noting
that larger confidence intervals, e.g., two-sigma or greater, are
meaningless for this distribution, since they extend to regions
of zero probability.

Confidence intervals associated with the normal distribution
are of great interest for statistical applications in nuclear sci-
ence. The normal distribution is symmetric, so these confi-
dence intervals are centered on the mean value. The regions
above and below these intervals involve equal probabilities
that samples will not be drawn from within the confidence in-
tervals. Table I shows probabilities for the univariate normal
distribution that correspond to one-, two-, three-, and four-
sigma confidence intervals.

TABLE 1. Confidence interval probabilities for a single-variable
(univariate) normal distribution (to six significant figures). The val-
ues were obtained from [30].

Confidence Interval Probability
(X0 = 8x, X0 + 5x) 0.682689
(%0 = 255, X0 + 25,) 0.954500
(X0 — 3584, x0 + 35%) 0.997300
(x0 — 45y, x0 +45,) 0.999937

Since the lognormal distribution is asymmetric, and ap-
proaches symmetry only in the limit of very small standard
deviations (see Fig. 2), any interval centered about the mean
value will not result in equal sampling probabilities above
and below such an interval. In order to observe equal prob-
abilities above and below the interval, corresponding to non-
occurrence of a designated event, it is necessary that the in-
terval not be symmetrically situated with respect to the mean
value. Uncertainty bars for lognormal distributions are asym-
metric, with unequal upper and lower lobes. If an experi-
menter believes the reported results ought to correspond to
sampling from a lognormal distribution, then uncertainty bars
with unequal upper and lower lobes relative to the mean val-
ues should be provided. If experimental data are quoted with
uncertainty bars having unequal upper and lower lobes, but no
explicit specification is made as to the underlying probabil-
ity distribution, there is a good possibility that these data are
lognormally distributed. However, since there are other asym-
metric probability distributions, it would be wrong to auto-
matically assume that the lognormal distribution applies. Fur-
ther details on this point can be found in the literature, along
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with formulas that define the uncertainty bars for various con-
fidence levels, when the distribution is lognormal (e.g., [31]).

The concept of confidence intervals can be applied in a sim-
ilar manner to multivariate probability functions. These inter-
vals are not as simple to visualize as in the univariate case, nor
are they as commonly considered. For example, one could de-
fine a region of vector space near the mean-value vector x,
and integrate the probability density function over this region.
This volume could be quite arbitrary as long as it is fully con-
nected topologically. In particular, one could choose to define
the region in such a manner that each random variable is lim-
ited to excursions of no more than one standard deviation from
its mean value.

Investigators should strive to estimate uncertainties for all
their measured parameters that correspond to the same level
of confidence. It is usual to assume that experimental data
correspond to sampling from univariate or multivariate nor-
mal distributions, and that the estimated uncertainties reflect a
one-sigma level of confidence [2, 3]. Then, roughly 68% of
the measurements of these parameters are likely to yield re-
sults falling within one-sigma confidence intervals (according
to Table I). Unfortunately, this guidance is often ignored by
experimenters. This can lead inadvertently to overestimation
of some uncertainty components and underestimation of oth-
ers.

B. Covariance Matrices and Correlations

This section discusses several properties of covariance ma-
trices, and describes a few useful techniques for dealing with
them. The reader can refer to the literature for more informa-
tion on this topic (e.g., [3, 16]).

1. Features of covariance matrices

a. Uncertainties and correlations ~ An element of covari-
ance matrix V can be expressed as vy;; = Sy Cyij Sxj» Where
sy and s,; are standard deviations and c,;; is an element of
the correlation matrix C. Matrix algebra formalism can also
be used, ie., V, = S7C.S,. Symbol “*” signifies matrix
transposition. S, is a n X n diagonal matrix with elements
(81)ij = 0ij sy, and §;; is the Kronecker Delta (equal to 1 if
i = jand 0 otherwise) [3]. Since S, is diagonal, S} = S,. So,
the matrix transposition notation is not needed. There are ad-
vantages to this representation, e.g., as shown in the following
example.

Example 2 Suppose that V; is a covariance matrix which has an
inverse Vx’l. From the rules of matrix algebra [3],

V'=(5.C.8)" =5.'(8.Cco =S]'C'S. (30)

Since S, is diagonal, its inverse exists, with elements &;;/s,;. The
s,; are non-zero since all reasonable standard deviations should be
positive. The elements of V7! are therefore given by (V'); =
(C; DY /(54 8xj). So, it may be advantageous for the elements of VX‘I
to be determined by inverting C, and dividing the elements of C!
by products of two standard deviations.

b. Relative covariance matrices It is often useful to
work with the relative covariance matrix R,. It is constructed
from the covariance matrix elements v,;; or, alternatively, the
correlation matrix elements c,;; and the standard deviations s,;
and s,;, along with the mean values xo; and xo;. The elements
of R, are

Taij = Vxij/ (Xoi X0;) = (Sxi/ X0i) Cxij (Sxj/X0;) = fui Cxij fxj-

€1V

The factor f,; = (s,/x0;) is the fractional uncertainty in
x;. Relative covariance matrices are useful in tabulating
uncertainty data in documents and compiled experimental or
evaluated nuclear data libraries [6, 32, 33].

c. Covariance matrix properties Standard deviations
should always be positive. If s, were zero that would suggest
that the variable x; is perfectly known. This cannot happen
in reality. However, when a physical parameter is considered
to have negligible uncertainty in a particular context (e.g., the
speed of light), compared with the other variables, it is rea-
sonable to treat it as a fixed constant of the experiment, like
the numbers “2” or “x” (pi). It should be excluded from the
variable set . A covariance matrix V that represents uncer-
tainty information for a measured data set {x;} with dimension
n should generally be nonsingular. It should have rank », not
n—1, nor n — 2, etc. If V, has rank n, its determinant will
satisfy the inequality det (V) > 0, and it will be positive def-
inite [3]. If the rank of V/ is less than n, the determinant will
not be positive, V, will be singular, and its inverse V,~! will
not exist. One consequence is that the multivariate normal
probability function, which contains the factor [det (V;)]'/? in
the denominator, and requires existence of the inverse V;‘l L 18
ill defined. So, experimenters should insure that covariance
matrices that represent uncertainties for their data are positive
definite, unless there is a reason why this should not be the
case, e.g., when constraints are mandated by the nature of the
variable set. Relationships will then exist between the x;, and
this signifies redundancy [3].

Unfortunately, covariance information provided by data
measurers and evaluators, even when properly generated, can
be corrupted by limitations of the formats used to represent
these data in libraries, or by the manner in which users manip-
ulate these data [3]. Problems can also arise due to numerical
precision issues. Discussion of various ways that these anoma-
lies can develop is beyond the scope of this paper. Neverthe-
less, measurers and evaluators should be aware of this issue.
Fortunately, quality assurance procedures used to test candi-
date evaluations submitted to the ENDF/B library do test for
such effects (e.g., [34]).

Uncertainty correlations tend not to be well understood by
many nuclear researchers. The following example provides
some insight as to their meaning.

Example 3 Consider two random variables, x; and x,, with stan-
dard deviations s,; and s,,, and one distinct off-diagonal correlation
coeflicient ¢,y;. Collectively, they form a covariance matrix V. Since
—1 < ¢,p1 < +1, it is instructive to represent ¢, by the cosine func-
tion, since it spans the same numerical range. Thus, c,,; = cos@. If
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6 = 90°, cn; = 0 and x; and x, are said to be orthogonal (i.e., com-
pletely independent). If 8 = 0°, ¢,o; = 1 and x; and x; are fully cor-
related. Other values of the angle 6 between 0° and 90° correspond to
partial positive correlation. Anti-correlations (negative correlations)
can be represented by values of 6 in the range 90° to 180°. Next,
envision two new random variables, y; and y,, that are linear com-
binations of x; and x,. They have standard deviations, s,; and s,,,
corresponding to a new covariance matrix V;. We choose to require
that y; and y, be uncorrelated (i.e., completely independent), so the
off-diagonal correlation coefficient is ¢y; = 0. Such a transforma-
tion, from variables « to y, is called a linear orthogonal transforma-
tion [35]. This is possible if V is positive definite, and this is assured
if ¢ satisfies the conditions stated above, i.e., 0° < 6 < 90° or
90° < 8 < 180°. For two variables, this transformation can be seen as
a rotation of the coordinate system. For larger random-variable sets,
such a simplistic geometric picture cannot be provided. However, lin-
ear orthogonal transformations are possible for all dimensions n > 2
as long as V, is positive definite.

Diagonalization of a positive definite n X n matrix V,, to
produce an n X n diagonal matrix Vj, is accomplished by a
linear orthogonal transformation of variables from « to y. In
general terms, V;, = P~'V,P where P is the n X n matrix that
performs the transformation. As long as an invertible matrix
P can be found, V/ is said to be diagonalizable. Otherwise, V,
is defective [35]. The diagonal elements of V, are the eigen-
values of V,. If a covariance matrix is found to be defective,
the problem is usually due to flaws in the method used to gen-
erate it, or possibly to numerical precision issues. Since the
diagonal elements of V. correspond to variances, i.e., squares
of total uncertainties estimated by the experimenter, they are
unlikely to be problematic. That leaves the correlations as the
most likely candidates for producing defective covariance ma-
trices. It is advisable to derive the correlation matrix C, and
inspect the off-diagonal elements as a first step toward resolv-
ing this matter.

2. Dealing with covariance matrices

a. Large covariance matrices Covariance matrices can
be very large when large data sets are involved. A covari-
ance matrix that provides uncertainty information for » differ-
ent random variables has the dimension n X n, so there are
n? elements. Since covariance matrices are symmetric, there
are actually only n (n + 1)/2 distinct elements. This can still
be a large number if n is large, as illustrated in the following
example.

Example 4 A recent evaluation of neutron reaction data for >>U
considered 3,193 resonances for (n,y) and (n,f) reactions in the
resolved-resonance (RR) region [36]. The analysis involved esti-
mating mean values for 3,193 x 5 = 15,965 resonance parame-
ters (Eg, Iy, Iy, T'yi, and I'yy). The covariance matrix to represent
the uncertainty information for these parameters therefore contained
1.2745 x 108 distinct elements!

Such large matrices can be cumbersome to manipulate.
It is important to find ways to deal with them by making

some adjustments or approximations that will render them
manageable without sacrificing essential information. This
paper discusses some techniques to address this problem.

b. Ordering and labeling variables Although an n X n
covariance matrix V, could have n (n + 1)/2 distinct elements,
there may be correlation coefficients that are either zero or
very close to zero. Also, certain groups of variables may have
non-zero correlations within individual groups, but no corre-
lations between variables belonging to other groups. If certain
correlation elements are zero, or whole regions off the diago-
nal consist of zero elements, it may be possible to alter vari-
able labels without changing the information content. The full
matrix is then a collection of sub-matrices. This is referred to
as partitioning. An example demonstrates the concept.

Example 5 Suppose an n x n covariance matrix V, can be parti-
tioned into 3 sub-matrices Vi (k = 1,3). Then

Va
Vi=| 0 Va : (32)
0 0 Vs

The zero blocks are indicated by the symbol “0”. These off-diagonal
blocks need not be square or even have the same dimensions. A ben-
efit of partitioning can be seen when calculating the inverse matrix
V1. Ttis easier to invert several smaller matrices than a single large
one. Thus,

v
vi=l o Vv : 33)
0 o Vv

If the dimensions of the sub-matrices are n; X n, n, X n,, and n3 X ns,
with n = n; + ny + n3, the number of elements of V, to be considered
is 2?:1 ni(n, + 1)/2, which is smaller than n (n + 1)/2. How much
smaller depends on the specific values n;, n,, and n3. Suppose n; =
n, = n3 = n/3 (assuming # is divisible by 3). The number of elements
to consider is n (n + 3)/6. For large n, storage volume is thus smaller
by about a factor of 3.

Very small correlations can often be set to zero with no sig-
nificant consequences. The altered matrix will approximate
the original matrix V/, but that may be adequate for practical
purposes. It is a matter of judgment whether such a technique
can be employed effectively.

Sometimes, it is possible to reformulate a problem by
resorting to algebraic manipulations that reduce the dimen-
sions of certain matrices that have to be manipulated. This
technique has been exploited in algorithms employed by some
nuclear data analysis codes, e.g., SAMMY [10].

c.  Numerical precision Numerical precision can be a
concern when covariance matrices are manipulated, e.g., mul-
tiplied or inverted. Modern computational assets can perform
these operations quite accurately, but limitations of precision
might still be encountered. They could generate biases that
are impossible to trace. Covariance matrices that are positive
definite in their original form might become singular due to
round-off errors. Precision issues can also arise when data
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span a numerical dynamic range of several orders of magni-
tude, e.g., energy-dependent cross sections for an (n,y) reac-
tion can range from thousands of barns at thermal energies to
just a few millibarn at higher energies. It may be helpful to
rescale data by changing units or transforming variables. An
example of this is transformation to natural logarithm form.
While this technique might solve a dynamic range problem, it
could also lead to unacceptable distortions in the results com-
puted using these transformed data [37]. There may also be
advantages to carrying out matrix operations using correlation
matrices rather than covariance matrices. Matrix inversion is
one such instance, as illustrated in Example 2.

Matrix size and computational precision issues may be
intertwined in such a way that tradeoffs are required to
avoid conflicts. One approach that can be used to reduce
data storage needs is to represent correlation coefficients
by integers. Integers require less storage capacity than do
comparable real (decimal) numbers, and correlations need
not be expressed with high precision. What is often done is
to scale correlation value to the range (-100, +100), which
provides two-significant-figure precision, or even to the range
(-1,000, +1,000), which provides three-significant-figure pre-
cision. When performing arithmetical operations using these
altered values, actual correlations are obtained by dividing
the stored integer values by 100 or 1,000. Since variances
(or standard deviations) are estimates of uncertainty, it is also
unnecessary to specify them to high precision. However, it is
advisable to store them as real numbers because they can span
wide ranges of values. The potential for reducing storage
requirements by these techniques can be significant. The
extent to which significant computational accuracy might be
lost by this approach should be investigated in specific cases,
but it unlikely to be problematic. However, when resorting to
such approaches, it is essential to preserve the integrity of the
covariance matrices, e.g., to avoid introducing singularities.

d. Uncertainty attributes It may be possible, in certain
situations, to adequately represent the information provided
in a covariance matrix V, by a sum of several distinct matrix
components, each one corresponding to a specific type of un-
certainty or category of uncertainties. This is referred to as
decomposing V, according to distinct uncertainty attributes.
If there are Q distinct uncertainty attributes, then

[Y
Vix > Vi, (34)

g=1

The sign “ ~ ” is used, rather than strict equality, since ap-
proximations are usually involved. Each matrix V,, has di-
mension n X n, which is identical to that for V,. A particular
matrix V,, may involve uncertainty components that are com-
mon to all the variables represented in the full matrix V. The
process of decomposing a covariance matrix is quite different
from partitioning it. The sub-matrices associated with parti-
tioning have smaller dimensions than the full matrix, and the
different sets of variables corresponding to the distinct parti-
tions have no common uncertainty components. It is conve-
nient to introduce the terminology: “micro-correlation” and

“macro-correlation”. Micro-correlation coefficients are corre-
lation coefficients of the individual correlation matrices C,,
that correspond to the matrices V,,. Macro-correlation coeffi-
cients are correlation coefficients of the correlation matrix C
associated with the matrix V;. An advantage to substituting
QO matrices, comprised of Q X n? parameters, for one matrix,
with n? elements, is illustrated by the following example.

Example 6 Suppose that n = 3 and Q = 2. Then, Eq. (34) in-
dicates that V, =~ V,; + V,,. Let x, x,, and x3 identify the three
parameters. Their mean values are xo;, Xo2, and xo3. It is not possible
to specify the uncertainties using only three numbers (variances or
standard deviations). Six values are needed: e,, e,12, and e,3 for
V., and e, e, and en; for V,. Two sets of micro-correlation
coeflicients are also required: cy121, Cx131, and cy32 for Vi, and ¢y,
ca31, and ¢ 3, for Vi,. The micro-correlation coefficients not listed
are unity diagonal values and those equal to listed off-diagonal ones
by symmetry, e.g., 112 = Cy121- The labeling convention used here
is that the first integer subscript of each listed parameter indicates
whether it belongs to V;; or V,,. For this example, it is assumed
that cy121 = cu31 = ¢z = 0. This would apply if the first attribute
represented statistical counting uncertainties. Next, assume that the
second attribute involves a common, fully-correlated fractional un-
certainty f for x;, x,, and x3 (e.g., it might be 0.05 or 5%). Thus,
€21 = €31 = Ca3x = 1. This would occur if all counting were done
using the same detector, with a common efficiency. The absolute un-
certainty components are e,o; = fXo1, €x2 = fXo2 and e,o3 = fxg3. It
is assumed that mean values are provided elsewhere for this data set.
In this example, only four parameters need to be specified instead of
12. They are e,1, e,12, €y13, and f. The data user should be informed
that the first uncertainty attribute is uncorrelated, while the second
uncertainty attribute is fully correlated. For large data sets, and addi-
tional uncertainty attributes, this approach can lead to significant sav-
ings in uncertainty data specification and storage requirements. The
total uncertainties for these three data values are s,; = (¢2,, + ¢2,)'/*
fori = 1,3. V, can be constructed according to Eq. (34).

The sub-matrices V,, are unlikely to share the same proper-
ties as the full covariance matrix V,. There may be duplicate
rows and columns, leading these matrices to be non-positive
definite. If V, is formulated this way, it must be insured that
it fulfills all the requirements of a proper covariance matrix.
If experimental covariance data can be represented by uncer-
tainty attribute decomposition, then the complete data for an
experiment can be specified by giving mean values (measure-
ment results), partial uncertainties, and micro-correlation val-
ues. This approach has been used in nuclear data compilations
such as EXFOR [6].

It is common to consider the total uncertainty as consist-
ing of a “statistical component” and a “systematic compo-
nent” (e.g., [2]). In fact, the assumption that variables have
only “statistical” and “systematic” uncertainties is usually ex-
cessively simplistic. It is misleading to refer to “statistical”
and “systematic” uncertainties as if they are different species
governed by distinct mathematical laws [38]. All uncertain-
ties should be interpreted as standard deviations of random
variables, governed by probability distributions, and differen-
tiated only by the roles they play in particular situations. This
paper refers only to “uncorrelated” and “correlated” (or “par-
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tially correlated”) uncertainty components (i.e., uncertainty at-
tributes), and avoids using “systematic” in discussing data un-
certainties.

Actual “errors” are often committed in experiments, e.g.,
the incorrect calibration of a detector. Then, an experimenter
does not measure what was intended, due to the erroneous
detector calibration, but he is unaware of the mistake. Such
“errors” are often the sources of discrepancies observed
in compiled databases of experimental values. Since these
“errors” were unrecognized, the assigned uncertainties appear
to have been underestimated [3, 6]. When undertaking nuclear
experiments, it is essential that consideration of the possible
sources of “errors” and uncertainties be given adequate
attention.

e. Approximate micro-correlations Provision of some
uncertainty correlation information is better than giving no
correlation information at all, whenever the circumstances
of an experiment strongly suggest that non-zero correlations
should be present. The absence of provided correlation val-
ues can lead data users (e.g., evaluators) to assume that all the
correlations are zero, with potentially undesirable, and largely
untraceable, consequences (e.g., [39, 40]). The absence of cor-
relation information for differential data can lead to unrealisti-
cally small uncertainties being determined for integral results
computed using these data (e.g., [34]).

In some cases, it can be extremely difficult to do a credible
job of estimating uncertainties and their correlations. If a par-
ticular uncertainty attribute is expected to make only a minor
contribution to the total uncertainties in an experiment, it may
be justified to provide estimates that are relatively crude, yet
nevertheless plausible, especially regarding correlations. An
example would be the effects associated with neutron scat-
tering perturbations to neutron cross-section data. Experi-
menters should try to keep such corrections as small as pos-
sible through the design of their experiments, even if the need
for corrections cannot be completely eliminated.

This section discusses three ad hoc approaches that have
been used by experimenters in estimating uncertainty corre-
lations for their data at the micro-correlation level. While it
may appear that the correlation values these methods yield are
“plucked out of thin air”, there is a degree of rationality as-
sociated with these approaches. If the potential benefits of
attempting more objective techniques to generated the covari-
ance data do not appear to warrant the amount of effort that
would be required, these may be the most practical options.
Still, such crude approaches to estimating correlations should
be considered only as a last resort, when more objective meth-
ods, based on thorough analyses of the experimental details,
are impractical.

The first approach assumes that the micro-correlation cor-
responding to uncertainty attribute “g”, for two variables x;
and xj, is cyy; = +0.25 (weak), or cyy; = +£0.5 (moderate),
Or cyqij = =0.75 (strong). The possibility that these might be
either positive or negative is considered, although experience
suggests that it is generally more difficult to envision negative
correlations than positive ones. The choice cy;; = 0.5 is
the most reasonable option if it is suspected that there should

be some correlation, but there is no justification for assuming
that it should be either weak or strong. This default choice
is “moderate”, with a magnitude half way between 0 (none)
and 1 (full). Weak correlation is assigned cy,;; = £0.25, since
this magnitude is half way between 0 (none) and 0.5 (moder-
ate). Strong correlation is assigned c,g; = +0.75, since this
magnitude is half way between 0.5 (moderate) and 1 (full).
These assumptions, applied in the absence of any evidence
other than the experimenter’s intuition, stem from a general
principle known as Occam’s Razor [41]. It states that, in the
absence of concrete information, one makes choices (or deci-
sions) that appear to involve a minimum number of arbitrary
prior assumptions.

A second approach to estimating micro-correlations can be
described as follows: Consider a data set {x;} which entails
an intrinsic parameter that can be used to characterize each
member of the set (e.g., neutron energy E; for neutron cross
sections). Estimated micro-correlations based on the con-
cept of “range” can be specified. For example, suppose that
E, > E;| and E;;; > E; for all the data points, and that
neutron-scattering corrections are considered. It is then as-
sumed that c¢.,;; = +{1 — abs[(E; — E})/(E, — E1)]}. Notice
that only positive correlations are considered in this approach.
The correlation is strong between points with neighboring en-
ergies, and tapers to zero linearly for the points most widely
separated in energy. Alternatively, either the exponential func-
tion or the normal function can be used. However, details of
such assumed “range” functions should not be taken too seri-
ously since they are very subjective.

A third approach toward representing uncertainty correla-
tions incorporates the concept of short-, medium- and long-
range correlations (e.g., see [37]). Implementation of this con-
cept is frequently found in evaluated nuclear data files, and
the ENDF-6 formats [33] support its use. In this approach it is
postulated that the covariance matrix for a set of experimental
data is comprised of three distinct partial uncertainty compo-
nents, with magnitudes to be specified. One component (short-
range) involves correlations only between neighboring data
points (e.g., using energy separation to measure “distance”).
The usual assumption is that it is strong, e.g., cy4i; = +0.75.
The second component is assumed to be medium-range, in-
volving more than just the “nearest neighbor” data points, but
no distant points, and it is usually assumed to be moderate,
e.g., Cxqij = +0.5. The third component is usually taken to be
weak, e.g., Cxi; = +0.25. It introduces correlations through
the whole data set. Notice once again that only positive corre-
lations are considered in this approach.

Smith [42] demonstrated that the consequences of making
crude estimates of the micro-correlations for relatively small
uncertainties are rarely damaging. If there is a fairly large
number of uncertainty attributes involved, there is a tendency
to average out over-estimates or under-estimates of micro-
correlation strengths for particular components. This is an-
other manifestation of the central limit concept. Neverthe-
less, such subjective approaches to generating correlation data
should not be employed if more objective information about
the actual correlations of the various considered uncertainty
attributes can be determined.

3019



Experimental Nuclear Reaction Data . ..

NUCLEAR DATA SHEETS

D.L. Smith and N. Otuka

Two final comments are worth mentioning: Uncertainties
corresponding to several attributes can sometimes be lumped
together in quadrature to reduce storage requirements if their
correlation properties are all identical, e.g., either random or
fully correlated (e.g., [43]). It should be re-emphasized that it
is a mistake to assume that c,,; = 0, when it is strongly sus-
pected that some degree of correlation exists, simply because
it is too difficult to generate an objective estimate of the actual
correlation.

C. Uncertainty Propagation Methods

Most of the physical quantities of interest in nuclear sci-
ence are not measured directly, but rather are derived indi-
rectly from parameters that are actually measured or otherwise
determined. For example, neutron cross sections are not mea-
sured directly, but instead detector counts, detector calibra-
tions, standards, efc., are determined. The cross sections are
then derived from these primary (i.e., lower-level) parameters
by means of formulas or data analysis algorithms. It is nec-
essary to evaluate the uncertainties of derived quantities based
on the uncertainties of measured or otherwise determined pri-
mary parameters.

An important property of random variables is that any con-
tinuous, differentiable real function of a continuous, real-
number random variable is also a random variable. It will be
governed by the laws of probability, and can be treated using
mathematical tools that are described in preceding sections of
this paper. For example, if x is a primary random variable, and
y is related to x through the function y = f(x), then one can
define its mean value yy, variance vy, and standard deviation
Sy as

Yo = {y)= Lyp(X) dx = L S p(x)dx, (35)

Vy

L Y p(x)dx -y = J [F0) p(dx - ¥, (36)

S S

5 = vl (37)

The probability distribution that governs the primary random
variable x is p(x). Extension of this formalism to a collec-
tion of m derived random variables y = (y1,* - , Yk, *** ,Ym) 1S
straightforward. Each y; involves a distinct function f; of the
n random variables © = (x, -, X;, -+ , X)), i.e., yr = fi(x)
or, using vector notation, y = f(x). An interesting example is
a single random variable y, defined by y = f(x) = Zj=1, x;. If
n is large, and the x; are independent, then the probability dis-
tribution for y converges to a normal distribution, consistent
with the well-known Central Limit Theorem (e.g., [3]). Fur-
thermore, the Lyapunov Theorem states that this holds true
regardless of the nature of the distributions of the individ-
ual x; (they all may be different), as long as the mean val-
ues, variances, and third moments exist for these distributions
(e.g., [44]). For this particular case, v, = Xj-1, vy;. Variances
are seen to exhibit an additive property when several distinct
sources of uncertainty are involved. However, standard devi-
ations generally cannot be added linearly to determine total
uncertainties. They can be added in quadrature.

Egs. (35) and (36) are symbolic, so there is a need to es-
tablish how the moments of y should be calculated when the
moments of x are known. There are two distinct ways of ac-
complishing this task: deterministic and stochastic.

1. Deterministic approach

If f is a linear function of x, i.e., y = f(x) = a+bx, with “a”
and “b” as constants, the relationship between the moments of
x and y can be determined easily. Thus,

Yo = a+ bxy, (38)
vy = b, = b*s> (39)

The translation constant “a” and scale constant “b” both affect
the mean value yy. Only the scale constant “b” affects the
variance vy. The relationship between y and x is rarely linear,
so it is frequently necessary to linearize the problem, i.e.,

y & f(x0) + f(x0)(x = xo). (40)

This expression involves the first two terms of a Taylor se-
ries expansion. The first derivative of function f with respect
to x, evaluated at x = xo, is f’(xp). The mean value of y is
yo = f(xp). Rearranging Eq. (40), squaring both sides of the
equation, averaging over the function p(x), and applying the
definition of variance given in Eq. (36), yields

vy 2 [y = FGo)?) = [f o) ((x=x0)>) = [ (x0)]? v
(41)

The standard deviation is s, = v)l,/ 2. This is commonly referred
to as the deterministic approach. It provides a reasonable ap-
proximation for yo and v, only if v, < xg.

The formalism can be extended to collections of nonlinear
functions, y = f(x), of a primary variable set . The mean
values are given by yo ~ f(x(), and the covariance matrix V;
can be obtained from the expression

V,~TV,T". (42)

V,isanm X m matrix, V; is ann X nmatrix, T isanm X n
matrix known as the sensitivity matrix, and T'* is its trans-
pose, with dimension n X m. The elements of 1" are the par-
tial derivatives #; = (0fi/0X)|peg, (kK = 1,m; i = 1,n), ie,
derivatives evaluated at * = x,. Eq. (42) is known as the
Law of Error Propagation [3]. It provides an approximate ex-
pression for propagating uncertainties from a primary variable
set « to a derived variable set y, based on linearization of the
functional relationships between y and x.

If the partial derivatives cannot be expressed in analytic
form, it is necessary to calculate approximate values for these
derivatives numerically. For a single variable

[ (x0) = [f(xo + Ax) — f(x — Ax)] /2Ax. (43)

A carefully chosen small increment, Ax > 0, of the variable x
will usually provide an adequate approximation to the value of
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the derivative at x = xy, if the function is reasonably “smooth”
in the vicinity of xy, and there are no fluctuations. The
increment Ax must not be too small (to avoid computational
instability) nor too large (resulting in a poor approximation
to the derivative). Convergence can be sought by trying
various choices of Ax. For multivariate situations, analogous
expressions can be used to approximate the partial derivatives
seen in matrix T'.

a. Attributes of derived uncertainties It was indicated
that an n X n matrix V, can sometimes be approximated by
a sum of n X n matrices, each corresponding to a distinct un-
certainty attribute. In accordance with Eq. (34), the formula
for the covariance matrix elements produced by this matrix
decomposition is

0
(V;c)ij = Viij = Z Cxqij €xqi €xqj- 44)
g=1

This concept can also be applied to derived variables, and ex-
ploited in tabulating the uncertainties and correlations for the
derived quantities produced by an experiment.

A particular decomposition of V; can be generated for cases
where the covariance matrix V, for the primary variables can
be partitioned, as shown in Eq. (32). The primary variables
are relabeled so that they form groups that may be internally
correlated within each group, but are uncorrelated between
distinct groups. It is assumed that there are Q such distinct
groups of variables, and that V; can be partitioned so that the
essential covariance information is contained in a collection of
sub-matrices V, (g = 1, Q). Thus,

Q0 0
Vi TV.T = ) TV, T} = >V, (45)

g=1 g=1

This expression can be understood by considering Egs. (32)
and (42). Since y consists of m elements, each term in the
sum appearing on the right-hand side of Eq. (45) must be an
m X m matrix. If a particular sub-matrix V,, has the dimen-
sion a X «, then the dimension of T;, must be m X « and its
transpose T;" has dimension & X m. The various T}, appearing
in Eq. (45) are sub-matrices of the original sensitivity matrix
T'. Due to the partitioning of V, and the fact that portions of
that matrix consist entirely of zeroes, many of the elements of
T will amount to “deadwood” for the computations indicated
by Eq. (45). Only the elements of the sub-matrices T, enter
into these calculations. Other sensitivity coefficients from T
are multiplied by zeroes and play no roles in the analysis. The
elements of V are

[
(Vo ~ D (TyVigTy g

q=1

Vyko

[Y] [
Z(qu)ke = Z €ygk Cyqkd €yq0- (46)

gq=1 q=1

The ¢, that appear in Eq. (46) are micro-correlation coeffi-
cients, and the e, are the partial uncertainties for the derived

parameters y; associated with the uncertainty attribute g. The
standard deviation sy of yy is

0 172
Syk = Z equ . @7

g=1

b. Effects of constraints Covariance matrices generally
ought to be positive definite so they can be inverted and their
determinants calculated. However, there are cases where they
must be singular. The following example illustrates this point.

Example 7 Let o, 071, and oy, represent the neutron total, elas-
tic, and non-elastic cross sections at a specific energy. A physical
requirement is that oo = 0 + Opon. S0, these three parameters can-
not vary independently. For convenience, we write 0on = Tyor — Tl
Then, assume that o, and o were measured independently and
their uncertainties estimated. The uncertainty in o, is to be de-
termined. Also, a single covariance matrix that includes uncertainty
information for all three cross sections is to be determined. For con-
venience, let x; = oy and x, = 0. The corresponding standard
deviations are s,; and s,,. These two variables are independent, so
the correlation coefficient is ¢y = ¢,2 = 0. This defines a2 x 2
covariance matrix V, which is clearly positive definite. Next, define
three random variables: y; = x;, y» = xp, and y; = x; — x,. Here,
y3 represents the non-elastic cross section, o,,. The objective is to
derive a 3 x 3 covariance matrix V;. The Law of Error Propagation,
i.e., Eq. (42), is applied. Since ys is defined as a linear combination of
x; and x,, no approximations are involved. Matrix algebra yields the
following results for the variances of V;: vy = s%, vy = 5%, and
Vy33 = sil + Siz- The corresponding covariances are vy = vy15 = 0,
T>and vz = vip3 = —5)2(2. The uncertainty of the elas-
tic cross section therefore is anti-correlated (negatively correlated)
with that for the non-elastic cross section, since the parameter vari-
ations are constrained by o = 0 + Oyon. Sums of the elements
in both the second row and second column of V; are zero. Finally,
det (V) = 0 since the matrix Vj is degenerate (singular).

Vy3t = Vyi3 = S

Experimenters should take care to insure that their covari-
ance matrices are always positive definite when there are no
constraints among the included variables. However, aug-
mented covariance matrices for constrained variables should
be constructed by propagating uncertainties and correlations
for the redundant variable set in the manner shown in the
preceding example. Often, constraints among sets of ran-
dom variables will introduce anti-correlations between certain
members of the set. This is very obvious in the case of two
variables. An increase in one of them must lead to a decrease
in the second one to satisfy the constraint.

Consider another example that demonstrates the effect of
constraints on sets of random variables.

Example 8 A measured neutron spectrum is represented by energy-
group flux parameters {¢;}, for i = 1, n. Neutron spectra are generally
represented in normalized form so that a sum over all group fluxes
yields unity. Normally, measured spectrum values would not be nor-
malized. So, these data must be normalized by defining a new vari-
able set {y;}

Ui = @il 0. (48)
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Here, ® = Z.,,¢; . Clearly, 2o ,¢; = 1. We assume that a
proper covariance matrix V,, has been generated by considering var-
ious sources of uncertainty in the experiment. It is then possible to
compute a covariance matrix V,, for the normalized set {i;} by ap-
plying the Law of Error Propagation, i.e., Eq. (42). Expressions for
the elements of the n X n sensitivity matrix T" are needed. They are
given by

ti = O/ 0g) = (D6 — 1) /D

Here, 6, is the Kronecker Delta function. It can be shown that all
rows and columns of Vj, sum to zero, and det (V) = 0 3, 35].

(k=1ni=1,n). 49

There are advantages and disadvantages to deterministic un-
certainty propagation.

Advantages

e It is transparent, and the calculations yield well-defined
and, for many cases, sufficiently accurate results.

o It tends to be relatively fast by comparison with stochas-
tic (Monte Carlo) approaches.

Disadvantages

e If uncertainties are large, and the functions that relate
primary to derived variables are nonlinear, then de-
terministic uncertainty propagation may produce unac-
ceptably biased values. These deficiencies may be par-
tially compensated by including higher-order terms in
series expansions that represent the functional relation-
ships, but in practice this approach can be awkward to
implement.

e There are limited opportunities for further analysis. For
example, estimation of higher-order moments of the
probability distributions, such as skewness or kurtosis,
tends to be impractical to carry out this way.

e Uncertainties for discrete variables that are governed by
discrete probability functions, e.g., nuclear spin param-
eters, cannot be analyzed deterministically.

2. Monte Carlo approach

The second approach to uncertainty propagation is a
stochastic one. Its use for certain applications in the nuclear
data field has been rendered feasible (and often practical) as a
consequence of recent advances in computational power [45].
In this approach, « is a vector of primary variables, with di-
mension n, and y is the vector of derived variables, with di-
mension m. The variables of y are derived from those of x
through a collection of m functional relationships, f = {f},
such that y; = fi(x) for k = 1,m. The uncertainties asso-
ciated with x are represented by the covariance matrix V.
The method involves producing a large collection of A vec-
tors , (4 = 1, A) by randomly varying each component x; of
x in accordance with the probability function p(x) governing
x. A set of vectors, y, = f(x,;) (1 = 1,A), is generated using
the random collection of primary variables.

Correlations between component variables of @ should be
taken into account in these sampling exercises. Algorithms
for performing this task are available. One of these is the
Metropolis-Hasting scheme [46, 47]. Another approach in-
volves carrying out an orthogonal transformation of the orig-
inal variable set . Each transformed component variable is
then sampled independently, and the entire set is transformed
back to the original variable space [3, 16]. This process is
repeated A times. It may be revealed that one or more of the
eigenvalues of the primary parameter matrix V, are either zero
or even negative, so the matrix is not positive definite. This
could occur due to numerical round-off. Usually, the magni-
tudes of these pathological eigenvalues, if they are negative,
will be small. A possible “fix” in such circumstances (with
minimal consequences) is to set all zero or negative eigenval-
ues to small positive values before transforming back to the
original variable space. Fortunately, in many situations it suf-
fices to assume that the components of x are independent, and
that correlations between the components of y are introduced
by the functional relationships between y and «. The stochas-
tic sampling of the variables « is then more straightforward.

The collection of A generated sample vectors y,; (1 = 1,A)
can be used to estimate sample mean values, i.e.,

A
A = (Z Yk
=

Eq. (50) is similar in form to Eq. (1). The numerical values
obtained depend on A, and two different sequences of A gen-
erated values of y, will lead to distinct mean values [46—48].
Sample variances and covariances are obtained in a similar
manner, i.e.,

/A (k=1,m). (50)

A
(ya)n = (Z Vi )m} IA =GN (k0 =1,m).

=1
(5D

The sample standard deviations are (sy)a = [(Vyrr) AlY2 . The
collection of elements (vyy)a forms a sample covariance ma-
trix (V})a that depends on sample size and stochastic history.
As A becomes large, all these results will converge to the col-
lection of values gy and Vj, determined by the primary vari-
able probability distribution p(x).

The stochastic (Monte Carlo) approach also offers both ad-
vantages and disadvantages.

Advantages

e Egs. (50) and (51) are consistent with an intuitive un-
derstanding of mean values and covariances.

e This approach is impervious to nonlinear effects, since
there is no need to linearize the functions f;. This is
an important advantage since there may be instances
where such nonlinear effects cannot be neglected in un-
certainty propagation or related applications.

o It is flexible, since collections of randomly derived vec-
tors, {y1}a, can be utilized for a wide variety of pur-
poses. These include calculating higher-order moments
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of probability distributions and contemporary reactor
physics applications (e.g., [49]).

e This method can be used in modeling experiments,
where data analyses may involve complex numerical al-
gorithms as well as analytical functions.

Disadvantages

e The Monte Carlo approach is computationally inten-
sive, and its application can be impractical in many cir-
cumstances. However, such computational barriers are
rapidly disappearing as computer hardware and soft-
ware capabilities become more powerful.

e Unique results are not obtained, since outcomes always
depend on A and the stochastic history. However, since
Monte Carlo techniques are widely used with great suc-
cess in many areas of nuclear science, this lack of exact
predictability for the obtained results is acceptable for
most practical applications.

o It is difficult, but not impossible, to obtain estimates for
parameter sensitivity coefficients by this approach. In
some applications such sensitivity information is useful.

The choice of whether to use the deterministic or stochas-
tic approach is generally left to the discretion of the practi-
tioner. It may also be dictated by the computational tools that
are available to deal with the problems at hand. Many of the
computer programs that are currently used for nuclear applica-
tions, e.g., for data evaluation or reactor physics calculations,
are based on the deterministic approach, largely because it has
been in use for a much longer time. However, new computa-
tional procedures and computer codes that incorporate Monte
Carlo methods for dealing with uncertainties are under devel-
opment [49].

3. Some simple examples

It is instructive to consider several simple examples in order
to clarify the concepts discussed in this paper.

Example 9 Consider the simple linear expression y = a + bx. Let
a =1 and b = 2. Then, let x be governed by the uniform distribution
over the interval (4.5, 5.5). Therefore, xo = 5, v, = 1/12 = 0.083333,
and s, = 0.28868. The fractional uncertainty in x is f, = 0.057735,
i.e.,, * 5.8% (a modest uncertainty). Eqgs. (38) and (39) lead to
the deterministic results yo = a + bxy and v, = b*v,. Therefore,
Yo = 11, v, = 0.33333, and s, = 0.57735. The fractional uncertainty
fy = 0.052486 (= 5.2%). An analysis of this problem by Monte
Carlo, tracing 1,000 histories (A = 1,000), generated the results
A = 11.013 and vy, = 0.33521. A second set of results from 1,000
different Monte Carlo histories yielded the values (y)» = 11.017 and
vya = 0.33722. Several additional tests were performed, and each
yielded values that were comparable (within anticipated statistical
uncertainties) to the first two trials, and to the values that were ob-
tained deterministically. Adequate Monte Carlo convergence is ob-
served for this simple, linear situation for A = 1,000 histories. Good

agreement is also seen for the results from both the deterministic and
stochastic methods.

In the following example, the variables x and y are not lin-
early related, and the uncertainty in x is substantial.

Example 10 Consider the following functional relationship: y =
Aexp(—tx). This nonlinear function describes radioactive decay,
where y is the activity at time ¢ > 0, x is the decay constant, and
A is the activity at time ¢+ = 0 [3]. Then, suppose that x is gov-
erned by the uniform distribution over the range (0.05, 0.15), with
xp = 0.1, v, = 0.01/12 = 0.00083333, and s, = 0.028868. The
fractional uncertainty is f, = 0.28868 (~ 28.9%). Let A = 1 and
t = 10. The deterministic solution for the comparable derived pa-
rameters yields are y, = 0.36788, v, = 0.011278, s, ~ 0.10620, and
fy = 0.28868 (= 28.9%). The Monte Carlo approach is then applied.
Table II gives results for three distinct sampling exercises of 1,000
histories each. Good convergence is provided by A = 1,000 histo-
ries. The Monte Carlo values are a bit larger than the deterministic
results for both the mean value (= 5% larger) and standard deviation
(= 3% larger). But, these differences are relatively minor considering
the uncertainties involved, and the fact that y decreases in magnitude
by a factor of 2.7183 as x increases from 0.05 to 1.5.

TABLE II. Mean values, variances, standard deviations, and frac-
tional uncertainties derived from three separate Monte Carlo exer-
cises.

” vy Sy Jy(%)
0.38508 0.011955 0.10934 28.4
0.38768 0.012049 0.10977 28.3
0.38869 0.011856 0.10889 28.0

The following example examines the propagation of uncer-
tainties for ratios of random variables, and it demonstrates the
effect of correlations.

Example 11 Consider two variables, x; and x,, and let y =
f(x1,x%) = x1/x,. The standard deviations for the two primary
variables are s,; and s,,, and c,,; is their correlation. If x;9 = 1,
X0 = 2, Sx1 = 0.3 (30%), Sy = 0.6 (30%), and Cyl2 = Cx21 = —0.5,
a deterministic analysis yields the results yo = 0.5, v, = 0.0675,
sy = 0.25981, and f, = 0.51962(~ 52%). The negative correla-
tion (anti-correlation) between x; and x, leads to enhancement in the
uncertainty of y. The opposing variations for these two primary vari-
ables accentuate the variation for the derived ratio. Other possible
outcomes are as follows: ¢,;; = —1 yields 60% uncertainty in y;
cp1 = 0 yields » 42% uncertainty in y; and ¢,o; = +0.5 yields 30%
uncertainty in y.

Correlations for derived variables can arise from the func-
tional relationships between the derived and primary variables,
even if the primary variables are uncorrelated.

Example 12 Consider two primary variables x; and x,. The stan-
dard deviations of the primary variables are s,; and s,,, and we as-
sume ¢, = ¢y = 0. Then consider two derived variables y; =
X1 + xp and y, = x; — x,. The derived mean values are yo; = X1 + Xg2
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and yp, = xo; — X2 The covariance matrix can be determined from
an application of Eq. (42). Its elements are vy = v, = 5%, + 5%, and
Vo1 = Vyio = 82, — 5%, If 52, # 5%, then vyo; # 0, and y; and y, are at
least partially correlated. However, if 52, = s%,, the covariance ma-
trix is diagonal. Only then is ¢y1» = ¢yo; = 0. This unique occurrence
does not suggest that y; and y, should be treated as uncorrelated. If
two variables are truly uncorrelated, then their covariance matrix is
always diagonal. However, the opposite statement is not true. If a
covariance matrix happens to be diagonal, this does not imply that
the variables are uncorrelated. This exemplifies the “necessary and
sufficient” condition often encountered in mathematics.

III. MODELS OF EXPERIMENTS
A. Mathematical Models

The following words were written by a prominent academic
economist, in collaboration with a journalist.

“Knowing what to measure and how to measure
it makes a complicated world much less so. If
you learn how to look at data in the right way,
you can explain riddles that otherwise might have
seemed impossible. Because, there is nothing like
the sheer power of numbers to scrub away layers
of confusion and contradiction.”*

*Steven D. Levitt and Stephen J. Dubner, Freako-
nomics: A Rogue Economist Explores the Hid-
den Side of Everything, Harper Collins Publish-
ers, New York (2005).

An experimenter might ask: “Why should I spend extra time
estimating the uncertainties in my experiment rather than de-
voting that time to doing the best possible job I can at obtain-
ing the actual experimental results?”” The answer is: By spend-
ing time considering the sources of uncertainty associated with
an experiment, an investigator will gain a much better under-
standing of that experiment and, as a consequence, be more
likely to achieve better results than might otherwise have been
the case. Careful attention to the likely sources of uncertainty
in an experiment, before performing the measurements, will
likely lead to a better designed and more efficient enterprise.
An understanding and acceptance of the benefits of including
uncertainty analysis as an integral part of experimental work
should serve to adequately motivate experimenters to devote
proper attention to this matter.

Experiments often involve false steps, repetition, perform-
ing certain measurement tasks out of natural order, efc. How-
ever, in spite of the superficially chaotic appearance of typi-
cal experiments, they can be organized into sequences of rea-
sonably well-defined steps: i) establish the objectives of the
experiment; ii) design the experiment to optimize chances for
success, considering the constraints of available time, physical
and financial resources, and contemporary methodologies; iii)
decide specifically what should be measured; iv) conduct the
actual measurements; v) analyze the measured data; vi) inter-
pret the experimental results; vii) document these results and

their interpretation; and viii) suggest improvements for future
experiments. Uncertainty analysis is not listed as a separate
task, since the consideration of uncertainties should be an in-
tegral part of all of the above mentioned steps. It should not be
viewed as a separate chore to be addressed as an afterthought
to conform to professional conventions, or to satisfy a man-
dated requirement. Approaches taken in performing the mea-
surements tend to be guided by how the acquired data will be
analyzed, while the data analysis procedures are clearly influ-
enced by what could (or could not) be measured in the given
circumstances. What is eventually documented, regarding de-
tails and results of an experiment, depends on what has been
measured and derived from the measured data through analy-
sis. Finally, the course followed in an experiment will likely
be influenced by how the experimenter intends to document
the work. That could be affected by an experimenter’s percep-
tion of how the results might eventually be used. Advanced
planning and modeling of an experiment are key factors in
producing good results. They also establish a framework for
properly estimating the experimental uncertainties. Attributes
of an experiment that are likely to contribute significantly to
uncertainties in the data should, to a large extent, be foreseen
as a consequence of good planning. Analysis of data mea-
sured in nuclear experiments is usually accomplished using
software developed for this purpose. Many components of this
software can be developed before the measurements actually
begin. The modeling of experiments and development of data
analysis software are closely related tasks, and both of them
involve the consideration of uncertainties.

1. Formulas and algorithms

In planning a nuclear experiment, it is very useful to develop
amodel that reflects the significant features of that experiment.
This is similar to the way reactor physicists use mathematical
models in designing nuclear reactors prior to their construc-
tion. A distinction needs to be made between use of the term
“model” in the present context and the more common usage
of this term in the nuclear data field. The latter usage refers to
theoretical models of physical processes that are used to cal-
culate numerical values of physical parameters for comparison
with experimental results. These models can also be employed
to generate nuclear data beyond the realm where experiments
are currently capable of yielding results. The distinction be-
tween these two usages of the term “model” has become some-
what blurred due to the growing sophistication of modern nu-
clear science. For example, information based on theoretically
derived models is often used in contemporary experiments to
calibrate detectors, to correct for perturbing effects in exper-
iments (such as neutron scattering), etc. Models of experi-
ments can help in defining the parameters to be measured, and
in clarifying the relationships between measured parameters
and those derived through analyses, based on the objectives of
the experiments. In complex experiments, the process of de-
veloping such models might well entail undertaking auxiliary
measurements and analytical studies, e.g., calibration of appa-
ratus, trials to established likely detector count rates, ezc. Their
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purpose is to insure that the developed models conform to re-
ality. Models provide the opportunity to simulate some, or all,
aspects of an experiment, and to vary certain parameters (and
their likely uncertainties), to determine whether the experi-
ment has the potential to achieve the desired objectives. Mod-
eling can enable the exploration of various possible measure-
ment scenarios at much less cost of time, effort, and treasure
than would be expended in actually performing the measure-
ments. Such exercises can enhance the efficiency of an experi-
ment, because knowledge gained from simulation provides the
experimenter with insight as to which observables are the most
important to measure carefully, measurement times needed to
achieve the desired accuracy, etc. Mathematical models of ex-
periments facilitate analyses of measured data and determina-
tions of uncertainties.

Next, we examine the process of modeling experiments
from a mathematical perspective. Let the variables x repre-
sent a collection of primary parameters of the model, with
covariance matrix V.. It includes variables to be measured
and those obtained from other sources, e.g., the literature. The
vector y, with covariance matrix Vj, represents the results
to be derived from the experiment. Among the primary
parameters of an experiment, there will be certain members
that contribute noticeably to the uncertainties of the final
experimental results, and others where the contributions are
considered to be small enough to neglect. Both categories of
primary parameters are needed in modeling experiments, but
they should be distinguished when assessing the uncertainties.
We will assume that only those primary parameters which
contribute significantly to the uncertainties in the derived
results should appear in the collection . Parameters which
the experimenter knows can be treated as constants, but that
are needed to derive the desired results, are included in a
vector 17. Examples of parameters in the latter category might
be the speed of light, the mass of the neutron, efc. Exper-
imental planning should focus on choosing the parameters
in sets & and 1 so as to optimize the chances of obtaining
accurate values for the derived variables y, with the smallest
possible uncertainties, as represented by V. The final step of
an experiment is then the interpretation and documentation of
these results.

a. Primary random variables The choice of a parameter
set x is rarely unique. The experimenter usually has consid-
erable latitude in what to measure, and how to carry out the
experiment. Experimenters should seek to identify primary
physical parameters x at the most elementary level possible.
That is, they should correspond to those physical entities that
will actually be measured, or otherwise be determined directly,
and that are as uncorrelated to each other as possible so that in
many cases they can be represented by independent variables.
This may mean that « could be a rather large set of parameters,
perhaps numbering in the hundreds, or even many thousands,
for a modern nuclear experiment. If experimenters make an ef-
fort to choose independent primary parameters to characterize
their experiments, they will be rewarded by not having to be
as concerned with estimating their correlations. Propagation
of uncertainties from primary parameters to derived parame-

ters will then be relatively straightforward. However, when it
is impossible to avoid certain correlations, orthogonal trans-
formations can be used to facilitate the analysis procedure.

It is understood from statistical theory that mean values xg
correspond to weighted averages of primary random variables
a with respect to known probability distributions, or at least
to averages calculated from reasonably large numbers of sam-
pled values. Unfortunately, it is rarely possible to perform suf-
ficient repetitions in nuclear experiments to fulfill this require-
ment. An investigator’s knowledge of a particular primary pa-
rameter frequently stems from a single experimental determi-
nation. The mean value xy; for variable x; is then taken to be
the single measured value x,,; of that variable, i.e., xo; & X;, or
in vector notation, o = x,,. This is certainly the case for pri-
mary parameters like detector counts, sample masses, sample
thicknesses, detector efficiencies, efc. In discussing experi-
mental data, the vector x is therefore equated to x,,, with the
understanding that rarely is it a collection of mean values in
the statistical sense, but instead it corresponds to a collection
of specific measured results that are assumed to be reasonably
comparable to the mean values.

Standard deviations s,; for these primary variables are
often estimated quite subjectively, rather than being derived
from statistical analyses. The experimenter stipulates that
the postulated uncertainties for certain primary variables of
the experiment are reasonable based on experience [3]. Not
all uncertainty estimates are necessarily this subjective. For
measured detector counts N, the usual approach, based on
Poisson statistics, is to adopt the value N'/? as an approxi-
mation to the standard deviation. This is acceptable provided
that N is sufficiently large [3, 16]. For detector calibrations,
objective uncertainty estimates can often be deduced from
detector calibration procedures. It is important, regardless
of the method used, that experimenters strive to provide
standard deviation estimates that correspond to one-sigma
uncertainties, i.e., to a confidence level of ~ 68% that the
quoted values x; should lie within the ranges xo; + s,;. Larger
or smaller estimates of uncertainty, especially with different
levels of confidence for different primary parameters of the
experiment, should be avoided because this corrupts the
entire process of generating covariances V; for the derived
results y that can be interpreted by data users as satisfying the
one-sigma uncertainty condition. Data users are likely to be
misled in assessing the quality of the reported experimental
values if there is not a tacit understanding that a “best effort”
was made by the experimenter to adhere to the one-sigma
rule.

b. Modeling an experiment Modeling an experiment,
and selecting the primary parameters to characterize it, are
closely related aspects of the experimental process. For ex-
ample, if it is intended to measure a neutron total cross sec-
tion by transmission, it is necessary to specify density and
thickness of the transmission sample. They are primary pa-
rameters of the model for this particular experiment. How-
ever, the process of experiment modeling involves more than
just specifying the primary parameters. Mathematical expres-
sions that specify the relationships between derived variables
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vy and primary variables x are required when analyzing the
measured data. Just as the choice of primary parameters is not
unique, the development of an experiment model that relates
them to the derived parameters, and dictates how the data are
to be analyzed, is also not unique. Some experiment mod-
els may be very detailed while others are rather sketchy. In
general, the more detailed the model of an experiment, the
better the outcome, since the experimenter is less likely to
overlook factors whose neglect could lead to biases (errors)
in the derived results. For example, some of the cross sec-
tions archived in EXFOR [6], for certain neutron reactions at
energies ~ 14 MeV, often measured many years ago, are con-
sidered to be excessively large. This effect can be observed
by using an on-line EXFOR data plotting program, e.g., that
found at http://www.nndc.bnl.gov/exfor/. A particular case to
examine involves the >>Mn(n,y)*®Mn reaction. The procedure
is: Check the boxes and enter the following parameters into
the template provided by this program: Target (MN-55), Reac-
tion (N,G), Quantity (cs), Energy from (10) to (20) MeV. Then,
click on “Submit”. Finally, check the “All” and “Quick Plot”
boxes on the next screen, and click on “Retrieve” to gener-
ate a survey plot. It is suspected that the data analysis proce-
dures employed by many early investigators neglected to treat
the additional reaction yield produced by neutrons scattered in
the laboratory environment in analyzing their measured data.
Measurements of cross sections for reactions with no thresh-
old (e.g., certain fission and all capture cross sections), or re-
actions with thresholds well below 14 MeV (e.g., certain (n,p)
and (n,a) processes) are vulnerable to this effect.

For simple experiments, or individual aspects of more
complicated experiments, developing workable models can be
fairly straightforward, and they can be quite comprehensive.
In other situations, it is necessary, for practical reasons,
to develop experiment models that involve simplifying
approximations regarding the experimental setup. Generally,
the models used to derive the results yy from the measured
data x( (and fixed parameters 1) tend to be more detailed
than those used for corresponding uncertainty analyses. The
reasons are largely pragmatic ones. In order to obtain the
best possible values for the derived parameters, it is necessary
to take into account as many details of the experiment as
possible, even if some of their effects are relatively small.
However, models used for uncertainty estimation generally
focus on aspects of an experiment that are believed to generate
the most significant sources of uncertainty. Small uncertainty
components, attributable to minor aspects of the experiment,
are often estimated rather crudely, or they may even be
neglected. Identification of primary parameters that are likely
to involve significant sources of uncertainty in a particular
experiment must be done by original investigators, since they
are the persons best acquainted with the experimental details.
Evaluators, regardless of their experience, are not equipped to
do as good a job as the experimenters.

¢. Data analysis and uncertainties Given a set of pa-
rameters xo (actually, =, ~ (), the covariance matrix V/,
and the fixed parameters 7, the next step is to determine yq
and V, using the model (or models) developed for data analy-

sis. For simplicity, it is assumed that the same model can be
used to obtain both gy and Vj, although, as mentioned above,
this may not be the case for complicated experimental situa-
tions. Some models, especially those representing simple ex-
periments, will involve a collection of functions {f;}. Then,
the derived values y, can be calculated using analytical for-
mulas: yor = fi(x9,n). Where appropriate, the deterministic
Law of Error Propagation, as given in Eq. (42), can be used to
determine the covariance matrix V.

However, the data analysis procedures dictated by the ex-
periment model are often so complex that some, or all, of
the relationships between primary and derived variables must
be represented by numerical algorithms rather than analyti-
cal functions. Then, it is more appropriate to use the nota-
tion F{xo, Vi, n} — {yo, V;} to signify the fact that y, and V;
are obtained by applying the algorithm & to xy, V;, and 7.
When the experiment model involves algorithms such as ,
the Monte Carlo method may be simpler to use for evaluating
the covariance matrix V; than the deterministic approach. A
routine can be prepared to perform repetitive applications of
the algorithm &, in which some or all of the parameters of «
are varied randomly within ranges governed by xy and V. If
only a few primary variables belonging to x are varied, and
the remaining ones are treated as constants, this would corre-
spond to using a simplified model of the experiment for the
uncertainty analysis. Then, the same algorithm & could be
used to conveniently determine both ¢y and V;. This may be
adequate for all practical purposes. The Monte Carlo approach
to generating the covariance matrix V;, may be computation-
ally intensive, but that time is likely to be relatively modest
compared to the time actually spent in carrying out the mea-
surements and analyzing the data.

2. Simple experiment examples

Three simple examples of nuclear data experiments are pre-
sented here for demonstration purposes.

Example 13 This experiment measures the neutron total cross sec-
tions o1, 0, and o3 for aluminum at three distinct energies, E|,
E,, and E;. Aluminum is mono-isotopic (3’ Al) and chemically sta-
ble. A pure metallic sample with uniform thickness ¢ is used. Let ny7
represent its atomic density. Homogeneous, parallel beams of mono-
energetic neutrons are provided, and a single, stable detector, with
efficiencies &1, &,, and &; for the indicated neutron energies, is used
in the measurements. Neutron total cross sections are usually mea-
sured by comparing sample-in and sample-out count rates. Suppose
the neutron flux on the sample is constant in time and the same mea-
surement time, T, is selected for the measurements. Also, assume
that time 7 can be established so accurately that there is negligible
uncertainty from this source. Let Ny represent the sample-out counts
at energy Ey, and Ny the corresponding sample-in counts due to the
neutrons transmitted through the sample (k = 1,2, 3). Subscript “T”
indicates “transmitted”, and subscript “I” indicates “incident”. The
mathematical model for this experiment is

o = erexp(-ny doy) (k=1,2,3). (52)

Here, ¢y is the incident neutron flux, and @7 is the transmitted neu-
tron flux through the sample at energy E;. Detector counts, not fluxes,
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are actually measured. Thus, Ny = ¢p&t and Ny = opret(k =
1,2,3). The efficiencies &; of the detector are assumed to be count-
rate independent. Thus, Eq. (52) reduces to

Nrw = Nyeexp(=ny 6oy)  (k=1,2,3). (53)

The time and efficiency parameters cancel, leading to a simple model
for the experiment. Transmission measurements of total cross sec-
tions are self-normalizing, since no standard cross section informa-
tion is required. Eq. (53) can be rewritten to provide an explicit for-
mula for the derived total cross section o in terms of the measured
parameters, i.e.,

o = [1/(n70)]In(Nye/Npye) - (k = 1,2,3). (54)

This equation provides a mathematical representation of the model
for this experiment that can be used for analyzing the experimental
data.

In this experiment there are eight measured parameters and three
derived ones. For convenience, let x; = Ny, x» = Nri, x3 = Np,
X4 = NTZ, X5 = N[3, Xo = N7‘3, X7 = Ny7, and Xg = 0. Likewise, let
Y1 = O, Y2 = 0p, and y; = 053. The eight primary parameters in
this experiment are clearly independent. This will not be the case for
the derived parameters since all three of them involve two common
primary parameters, x; and xs. Using the relabeled variables, Eq. (54)
is replaced by the three equations

1 = fi(x) = [1/(x7x8)] In(x; /x2), (55)
Y2 = fo(®) = [1/(x7x8)] In(x3/ x4), (56)
y3 = fa(@) = [1/(x7x8)] In(xs5/X6). (57)

The components of y, can be obtained directly from these formu-
las by substituting values from the vector x, for those from x in
Eqgs. (55) - (57).

The uncertainties associated with total cross section measurements
are usually modest, so nonlinear effects can be ignored and the deter-
ministic approach represented by Eq. (42) can be used. The elements
of the 3 x 8 sensitivity matrix T", defined by #; = (0fi/0x)|z=z, (k =
1,3;i = 1,8), need to be calculated. Twelve of these matrix ele-
ments are seen to be zero as follows: t13 = t;4 = t15 = tig = 0;
by =ty = ts = thg = 0; 31 = t3p = t33 = 334 = 0. The par-
tial derivatives with respect to x; and xg are easily obtained. They
are ti7 = —yor/Xo7 (k = 1,2,3) and frg = —yo/xos (k = 1,2,3).
This leaves six additional sensitivity parameters to evaluate. They
are f1; = 1/(xo1X07X08), t12 = —1/(Xo2Xo7X08)s 123 = 1/(X03X07X08)s
tag = —1/(x04X07X08), 135 = 1/(XosXo7%08), and 135 = —1/(Xo6X07X08)-

According to Eq. (42), the elements of covariance matrix V; are

8 8
Vykg = Z(T)ki Vi (T)jo = Z i Vxij tgj- (58)

ij=1 i,j=1

By the definition of matrix transposition, (I"") s = ty;. V, is diagonal,
S0 v,; = 0if i # j. The double sum in Eq. (58) reduces to a sum over

the index “i”, i.e.,

8

8
2
Vykg = Z i Vaii toi = Z i S; Loi- (59)
=1 =1

Six of the standard deviations that appear in Eq. (59) can be deduced
from Poisson statistics. Thus, s, =~ x('),/f (k = 1,6). That leaves only
two standard deviations to be estimated by other means, i.e., 5,7 and
s,g for the two primary variables x; and xg. The experimenter must
estimate the uncertainties in n,7 (x7) and ¢ (xg). These will generally

be rather small for an experiment designed to yield results of high

accuracy. The diagonal elements (variances) of V are deduced from
Eq. (59)

8 8
2 2 2
Vy11 = lei sy hi = Zl‘” S (60)
i=1 i=1

8 3
2 2 2
Vyoo = Z b Syt = Z 1y Sis (61)
i=1 i=1
8

8
2 2 2
Vy33 = E 13 S i = E B Sy (62)
i=1 i=1

Expressions for #;; given above are substituted into these equations.
Also, fractional uncertainties in x; are defined as fy = Su/xoxe (kK =
1, 8). This yields the following formulas for the variances:

var = [ 1/ Gor x0s)? | (13 + £5) + 581 (£5 + £%) (63)
Vo = [1/ (%07 x08)2] (fxzz + fx24) + Y0 ( o+ ffg), (64)
Vy33 = [1/(X07 xos)z]( S ff,) + 05 (5 + %) (65)

Off-diagonal elements of V; (covariances) are obtained from

Vy21 = Yo1 Yoz (ff7 + ng), (66)
V31 = Yot Yo3 (f37 +f ng), 67)
Vy32 = Y02 Y03 (fA27 +f, ,(23) . (68)

By symmetry, vy12 = Vo1, Vyi13 = V31, and vyo3 = Vy35. As expected,
the off-diagonal elements of V; can be attributed entirely to the un-
certainties in x; and xg. Correlation matrix C| can be calculated
from cyrg = Vyo/ (Vyrs Vyen) > (k,0 = 1,3), using the formulas from
Eqgs. (63) - (68). Egs. (63) - (65) show that each variance is a sum of
four terms. The origins of these terms are exhibited in Table III. For
convenience the notation w = 1/(xq7 xpg) is used.

TABLE III. Origins of the components of the variances for each
derived quantity y; in terms of the primary variables x; of the experi-
ment.

Y1 V2 )3
X W f3 0 0
X2 w? x22 0 0
X3 0 W f3 0
X4 0 W fy 0
X5 0 0 W? ,\'25
X6 0 0 W f2
X7 Yoy Yool % Yos L
A3 y%l ,\'28 yéz ,'(28 3%3 )528

It is intuitively more challenging to understand the form of the
off-diagonal covariance matrix elements given in Egs. (66) - (68).
Each expression in these equations is the sum of two terms, one
corresponding to the uncertainty in x; and the second to the uncer-
tainty in xg. Recall that vy = (7 — Yor)(Vo — Yop)) from the defi-
nition of covariance, where (- - - ) signifies averaging with respect to
an assumed probability distribution. The deterministic linear approx-
imation is embodied in the expressions y; =~ yor + (0fx/0x7) (X7 —
Xo7) + (Of/0x8)o (x5 — Xo8) and yg = yog + (0fp/0x7)0 (X7 — Xo7) +
(0fp/0xs)o (xg — xog) Where, e.g., (0fi/dx7)o represents the partial
derivative of f; with respect to x; evaluated at * = x,. Further-
more, (8fi/0x7)0 = —Yor/Xo7 and (Ofi/Oxg)o = —yox/Xos. If these
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factors are considered, and we recall that both variables x; and xg are
fully correlated for all the yj, but are uncorrelated to each other, then
Vyka = Yok Yoo [(Sx7/x07)2 + (st/xos)z] = yoe Yoo ([ + f7) for k # 6, as
in Egs. (66) - (68). Note that only the variables x; and xg are consid-
ered in this treatment since we are only interested in the off-diagonal
elements of the covariance matrix where the correlations are intro-
duced.

It is instructive to examine some numerical results that can be ob-
tained using the present formalism. The following analysis is based
on Eqgs. (63) - (68). For simplicity, assume that the total cross section
values at each of the three energies are about the same. Actually, we
are not interested here in actual values of these cross sections, but
rather just the total and correlated fractional uncertainties. Consider
just one data point (e.g., the first one), and specify the fractional un-
certainties in percent. Suppose xo; = 100,000 and xg, = 80, 000, i.e.,
80% transmission. These are the recorded incident and transmitted
detector counts. Then, f;; = 0.32% and f,, =~ 0.45%, if statistical
counting uncertainties are considered to be the only source of uncer-
tainty in the measured neutron transmission. This is a reasonable as-
sumption for the present example, but it is oversimplified in the case
of actual experiments, where detector background effects need to be
considered. Finally, assume that the sample density uncertainty is
fer = 0.1% and the sample thickness uncertainty is fig = 0.2%. The
correlated uncertainty, which depends only on these sample proper-
ties, is therefore only 0.22% for this data point. It is independent of
the number of recorded counts. The resulting total uncertainty in the
measured total cross section (for the indicated numbers of detector
counts) is f;; = 4.9%. This is rather poor accuracy for this type of ex-
periment. How can the overall uncertainty be reduced? Suppose the
total counts recorded are increased by a factor of 10, while maintain-
ing the same transmission property (e.g., by using the same sample),
i.e., xo1 = 1,000,000 and x¢, = 800, 000. The resulting total uncer-
tainty is f;; = 1.6%, which is considerably improved. Finally, if the
sample thickness is increased so that the transmitted flux is 50%, i.e.,
if xgp = 500, 000, then the total uncertainty is only ~ 0.6%. Then, the
correlation coefficient is ~ 0.13 between values at the three distinct
energies. The achievable accuracy in a total cross section measure-
ment is thus strongly dependent on the numbers of recorded counts
and the sample transmission factor.

Considerable analysis is required to determine mean val-
ues and a covariance matrix for derived parameters, given the
measured results and their covariance matrix. This is evident
from Example 13, which describes a quite simple experiment
(with its simple model). Other approaches to designing a total
cross section experiment might have led to much more com-
plicated models, e.g., if different times had been used for each
measurement and time uncertainty had proved to be a sig-
nificant consideration. Corrections might have been needed
to account for neutron beams that were not completely par-
allel, for neutron background effects that were not entirely
negligible, for dispersive neutron-energy spectra rather than
purely mono-energetic neutrons, efc. Nevertheless, the ba-
sic approach described above in Example 13 for analyzing
the data, including the determination of covariances, would
remain the same. Clearly, it behooves experimenters to de-
sign their experiments to be as simple as possible, consistent
with achieving the intended objectives, and with the resources
(time, materials, equipment, personnel, efc.) at their disposal.

Experienced experimenters know that seemingly innocuous
complications introduced during the course of an experiment
can greatly complicate the data analysis procedures that fol-
low completion of the measurements. These complications
may also lead to larger uncertainties and/or difficulties in es-
timating them. This further justifies carefully considering the
experimental procedures to be employed before the measure-
ments actually begin, and assessing their potential impact on
analyzing the accumulated data. The surest way for an ex-
perimenter to propagate uncertainties from primary to derived
parameters, and to generate a proper covariance matrix for the
experimental results, is to use the deterministic formalism (il-
lustrated in the preceding example) or, alternatively, the Monte
Carlo approach. Mistakes can be made easily when shortcuts
are taken, especially when determining off-diagonal elements
of covariance matrices.

The next example demonstrates use of the Monte Carlo ap-
proach in generating the covariance matrix for a set of results
derived from an experiment.

Example 14 A sample is irradiated in a steady neutron beam in
order to measure a neutron activation cross section. The sample is
not radioactive prior to irradiation. The irradiation proceeds until the
sample approaches saturation activity, i.e., the formation rate of ac-
tivated atoms by the considered reaction is exactly balanced by the
decay rate of already radioactive atoms. At this point the neutron
source is switched off abruptly. Immediately thereafter the sample
activity is measured for a fixed time period. These assumptions are
idealistic compared to what actually happens in most experiments of
this genre, but they serve to provide a relatively transparent exam-
ple that demonstrates use of the stochastic approach (Monte Carlo)
to estimate the uncertainties. Further simplification is achieved by
avoiding corrections for background, neutron multiple scattering, ra-
diation absorption, depletion of sample atoms by transmutation, sam-
ple irregularities, efc.

The differential equation that governs the formation and decay of
radioactivity in the irradiated sample is

ANyt /dH(?) = Niye @n R — A Nyt (0). (69)

N,(?) is the number of active atoms in the sample at time 7 > 0, Ny,
is the target nucleus density in the sample, ¢, is the steady incident
neutron flux rate (neutrons per unit area per unit time), o is the re-
action cross section (units of area), and A is the radioactivity decay
constant (reciprocal of the mean lifetime). The solution to this dif-
ferential equation, for # > 0 and the constraint N, (t = 0) = 0, is

Nuei(t) = (Noe 0 o/ ) (1= €7). (70)

Clearly, Ny(t = ) = (Nyue@nOr/A) is the saturation number of
atoms in the sample. In practice, if the neutron source is switched off
at a time #) > A7, then Ny (fy) = Ny (t = o). In this experiment,
the sample activity is counted for a time AT that begins immediately
after the neutron source is switched off. Thus, the total number of
atoms that will have decayed during this counting time interval is

ANt (N @ 0w/ ) (1= 7). (1)

This is very similar to Eq. (70). The number of decay events mea-
sured by the emitted-radiation detector is Nz = AN, &g, Where &g is
the detector efficiency. A 100% decay branching factor is assumed.
The total number of counts recorded by the detector that monitors the
neutron flux during the irradiation period #, is N, = ¢,&,ty, where &,
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is the efficiency of that detector. Substitution of the expressions in-
volving AN, and ¢, into Eq. (71), leads to the following expression
for the cross section op:

or ~ [(Ne A e, 10)/ (N, Nowe )] (1 - 7). (72)

Three determinations are made of the reaction cross section,
i.e., Ori, Ory, and ogs. So, three yield measurements with
the activation detector are required, i.e., Ngi, Ngy, and Ngs,
as well as three comparable measurements with the neutron
flux monitor, ie., Ny,Ng, and Ngz.  Thus, there are twelve
primary variables x; (i = 1,12), as defined in Table IV.

TABLE IV. Primary parameters and their assumed uncertainties
(standard deviations) for a simple activation experiment.

randomly derived values yy, y,, and y; is produced using Egs. (73)
to (75). A statistical analysis is then performed to produce the
desired covariance matrix. Ten separate stochastic exercises were
performed, each one comprised of 1,000 histories. Averages of these
results were determined to demonstrate the possible outcome from
one exercise of 10,000 histories. Six distinct quantities specify the
covariance matrix for the derived cross sections. The numerical
ranges of the standard deviations (in percent) obtained from the ten
Monte Carlo exercises (given to two significant figures) are s,; (6.0
t0 6.3%), sy (6.0 to 6.3%), and s,3 (5.9 to 6.2%). The results for the
off-diagonal correlation coefficients are cy»; (0.31 to 0.36), ¢,3; (0.31
to 0.38), and c,3, (0.32 to 0.37). Average values for these quantities
(corresponding to 10,000 histories), with the correlation coefficients
multiplied by 100 for more convenient visualization, are

Parameter Physical quantity Uncertainty®
X1 Ngi 4% (uncorr) Std Dev Correlations
X2 Nia 4% (uncorr) 6.2% 100
X3 Ni3 4% (uncorr) — y, 6.1% 33 100
X4 Ny 3% (uncorr) 3 6.1% 35 34 100
X5 Ny 3% (uncorr)
X6 N3 3% (uncorr) . . .
x7 2 1% (corr) Thls exermse demonstrates that 1,000 histories a?e not‘ suﬁ?—

cient to achieve adequate convergence for the experiment in this

*8 Noue 0.5% (corr) example. However, 10,000 histories are sufficient. The following
*o Er 2% (corr) simple approach to estimating these uncertainties and their correla-
X10 & 3% (corr) tions was applied to test this conjecture. It can be shown that the
11 AT Negligible uncertainty in the cross section attributable to the multiplicative
X1 fo Negligible factor g(1) = A(1 — e~*T)! that appears in Eq. (72), is = 0.4%, if

&

Uncertainties for the primary parameters in this table are typ-
ical of what might be expected in such an experiment. Each
uncertainty corresponds to an independent uncertainty attribute.
However, they are labeled as either “uncorr” (uncorrelated)
or “corr” (fully correlated) depending on how their individual
effects impact on the three derived reaction cross sections.

The following three derived variables serve to represent the three
derived cross sections: y; = Ogy, Y2 = Oga, and y3 = o3. These
definitions, those in Table IV, and Eq. (72), lead to the following
formulas:

yio= (X7 X109 X12/%a/Xg/%0) [1 = exp(=x7x11)] ", (73)
Y2 = (X7 Xi9 X12/X5/Xs/%0) [1 — exp(=x7x11)] ", (74)
y3 = (x3x7 X10 X1/ X6/ X3/ %9) [1 — exp(—x7x11)] " . (75)

It is evident from Eqs. (73) to (75) that correlated uncertainties in
Y1, ¥2, and y; will be introduced from uncertainties in the primary
variables x7, xg, X9, and x;o. The time variables x|, (AT) and x;, (¢y)
are assumed to have negligible uncertainty. AT plays a part in the
uncertainty analysis through the factor (1 — e~*4T)~!. For simplicity,
it is assumed that the mean value for each of the ten primary variable
parameters is unity. AT is also set to equal to unity, and #, is assumed
to equal 10 (so that the condition #, > A7! is satisfied). The goal
of this exercise is to determine cross-section fractional uncertainties,
and their correlations, not mean values or absolute variances, so it is
evident from Eqs. (73) to (75) that there is no loss of generality in
making these simplifying assumptions.

The Monte Carlo procedure involves randomly sampling the ten
primary variable parameters independently many times, according
to their expressed uncertainties (listed in Table IV). The continuous
uniform distribution is used in this exercise. A collection of

the uncertainty in A is 1% and AT = 1 (with no uncertainty). The
fully-correlated cross section uncertainties (in percent), obtained
from combining individual component uncertainty values listed
in Table IV in quadrature, is Sycor = 3.7%. If this correlated
component is then combined in quadrature with the two random
uncertainty components for each cross section, the total standard
deviation values (in percent) are s,; = s, = §,3 = 6.2%. These
values are almost identical to the Monte Carlo results. Furthermore,
if the correlation coefficients are computed using the expression
Cyij ~ Sonl(8yi 8yj) the result ¢,o1 = €31 = ;32 ~ 0.36 is obtained.
This value also agrees quite well with the stochastic results.

Why should an experimenter bother to pursue the more
computationally laborious Monte Carlo approach if a simple
deterministic “hand calculation”, as illustrated in Example 14,
yields essentially the same results? The short answer is that
one should resort to simplified approaches to estimating co-
variance data only when the conditions warrant their use. Most
realistic experiments are considerably more complex than the
one in Example 14. Deterministic uncertainty propagation can
certainly be used in such complicated situations, if the un-
certainties are modest, but Monte Carlo analyses yield more
reliable estimates of the uncertainties for the derived results
whenever the primary variables have large uncertainties and
nonlinear effects come into play. Under these circumstances,
the Monte Carlo approach is an appealing option. Also, it
may lead to simplifications in the analysis of experimental
uncertainties, since the bookkeeping may very well be more
straightforward.

The techniques discussed in this section can be useful to
data compilers as well as to experimenters. The following
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example discusses how a covariance matrix can be generated
from information provided for an actual experiment in doc-
uments prepared by the original investigators [50, 51]. The
work in question was completed over 27 years ago. The lab-
oratory notes and raw data have long since been discarded,
the laboratory itself has closed, one of the experimenters is
deceased, the whereabouts of another experimenter (who was
then a student) are unknown, and the third experimenter, who
led this experiment, and is one of the authors of the present pa-
per, has forgotten many of the experimental details. It would
ordinarily be necessary in this particular situation for a con-
temporary compiler (in 2012) to rely completely on the avail-
able documentation for this experiment. This is a very com-
mon set of circumstances encountered in compiling (or eval-
uating) older data. Fortunately, the data for this particular ex-
periment were compiled relatively soon after the experiment
itself was completed [6]. It is advantageous for experimen-
tal data to be compiled as soon as possible following com-
pletion of the experiment. Unfortunately, this is not always
the case. An examination of the documentation reveals that
the experimenters made an effort to document the experimen-
tal procedures and sources of uncertainty (including correla-
tions) [50, 51]. This simplified the compiler’s task when the
EXFOR compilation was prepared (see Accession Number
12898 in the EXFOR data library [6]).

Example 15 The activation method was used to measure
3'V(n,p)>'Ti reaction cross sections relative to the 23U neutron
fission cross section, from near threshold at 2.856 MeV up to 9.267
MeV. Forty-five approximately mono-energetic values for the ratio
were obtained, with FWHM resolutions of 0.08 to 0.1 MeV below
4.9 MeV and 0.14 to 0.28 MeV above 4.6 MeV. Data corresponding
to both these categories were acquired in the overlap region, 4.6 to
4.9 MeV. The "Li(p,n)'Be reaction was used as a neutron source for
the lower energies, and the 2H(d,n)*He reaction provided neutrons at
the higher energies. Both of these neutron sources were used in the
overlap region. Various details were considered by the investigators
in converting measured data to cross-section ratios. °'V(n,p)’'Ti
cross sections were then derived using evaluated 2*U fission
cross sections. The experimental details, including the uncertainty
analysis, are documented in a laboratory report [50] and a journal
article [51]. Attention is given in this example to the measured
ratios and corresponding uncertainties. Nineteen distinct uncertainty
attributes were examined. They are summarized in Table V.

Seven are uncorrelated (None), eight are fully correlated (100%),
g = 15 and 17 are partially correlated (Par), and for ¢ = 14 and
16 correlation is irrelevant (Irrel) since the uncertainties are negligi-
ble. The investigators in this experiment did not propagate uncer-
tainties from primary to derived variables as recommended in the
present paper. This task could not be performed today since insuf-
ficient information is available about the primary variables and al-
gorithms that were originally used to produce these data. The ex-
perimenters estimated uncertainties and correlations at the level of
the derived variables, in a manner similar to that used to provide the
simple estimates discussed in Example 14. A covariance matrix can
be constructed using Eq. (46) to combine partial uncertainties ey
and micro-correlations ¢,y obtained from information in the doc-
umentation [50, 51] (partly summarized in Table V). Fig. 4 shows
combined uncorrelated uncertainties (Uncorrelated), combined cor-
related uncertainties (Correlated), and total uncertainties (Total) for
m = 45 measured cross-section ratio values. Fig. 5 exhibits the
macro-correlation matrix for this data set. The experimenters made

a distinction between data measured using the two different neutron
sources. This is important in determining the micro-correlation pa-
rameters for some uncertainty attributes considered in this work. In
treating the uncertainty attributes ¢ = 15 and 17, the linear “range”
rule, cyo = 1 — abs [(Ey — Eg)/(E,, — E1)], was assumed by the ex-
perimenters for the micro-correlation parameters, but only for data
points involving the same neutron source. For different neutron
sources, cygo ~ 0 for these two attributes. The information origi-
nally in EXFOR for this experiment was quite detailed, but still in-
complete by contemporary standards. Combined uncorrelated and
combined correlated uncertainties were documented for each exper-
imental point. However, information on the partial uncertainties and
micro-correlations for the individual attributes was limited. No for-
mats were available in EXFOR in 1982 for specifying detailed micro-
correlation data [6]. Expanded EXFOR format options have been
developed and approved recently (2012) to enable detailed covari-
ance data to be included in future compilations. Detailed covariance
information cannot be provided in compilations such as EXFOR un-
less it is generated and documented by the original experimenters.
When critical details about a particular experiment are omitted -
or become lost - it is virtually impossible for compilers to specu-
late, with any degree of reliability, as to what they might have been.

TABLE V. Sources of uncertainty in the measurement of >' V(n,p)>' Ti
cross sections relative to 2**U neutron fission.

q Description % Unc Correl
1 Time factors 0.2 None
2 y-ray yield 0.3-47.8 None
3 Fission yield 0.7-1.5 None
4 Extrapolation® 1-2 None
5 (n,f) background Neg?-3 None
6 (n,p) background 0.2-1.2 None
7 Geometry 1.5 None
8 SITi half life 0.1 100%
9 U sample assay 2 100%
10 V sample assay 0.2 100%
11 U deposit® 0.8 100%
12 Count efficiency 24 100%
13 y-ray branching 1 100%
14 Sample orientation Negligible Irrel

15 Neutron source 2 Par

16 Environmental® Negligible Irrel

17 Scattering effects 1.4-2.1 Par

18 Geometry 1.5 100%
19 Neutron energy 0.5-19.5 100%

 Fission events lost in the fission deposit.
b U deposit thickness correction.

¢ Room-return fission events.

4 Neg = Negligible.

The material in Example 15 originated from an experiment
that is much better documented than most others found in the
literature, in spite of its imperfections. The situation is less
favorable for most of the experiments represented in EXFOR.
This poses a major problem for nuclear data evaluators that
must be addressed in the years ahead.
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FIG. 4. Plots of uncertainty components for a set of measured

SV (n,p)' Ti-to-238U fission cross-section ratios, as generated from
information extracted from the original documentation of this exper-
iment [50, 51].
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FIG. 5. Uncertainty correlation pattern for a set of 45 measured

31V (n,p)’! Ti-to-23U fission cross-section ratios generated from data
found in the original reference [50, 51]. The x and y axes are keyed to
the incident neutron energy, with the lowest energy given index “1”
and increasing in neutron energy. The color scale indicates degree
of correlation in percent. The low correlations seen between the first
few low-energy data points and all the others are attributed to large
statistical event counting uncertainties near threshold.

B. Special Situations

This section addresses some special situations involving the
determination of covariance matrices for physical quantities
(such as cross sections) that are derived from a collection of
primary random variables. These cases find many useful ap-
plications in practice, and they can serve as useful templates
for experimenters to consider when analyzing uncertainties in
their experiments. For convenience in the following discus-
sions, the subscripts “y” will generally not be shown as they
have been previously. However, it should be assumed that all

numerical calculations involving the variables, and/or deriva-
tives of functions with respect to these variables, will corre-
spond to mean values.

1. Product functions

Consider a collection of n uncorrelated random variables x;,
that form a vector . They constitute the primary variables of
an experiment, and their n X n covariance matrix V, is diago-
nal. Then, define a vector y consisting of m elements y, i.e.,
{yx}. They are derived from the primary variables « through a
collection of functional relationships f, i.e., {f;}, according to
Y = fi(x). The covariance matrix V; for y can be obtained
by applying the deterministic Law of Error Propagation, i.e.,
Eq. (42). In general, there are no conditions on the individual
functions f; other than requiring that they be smooth, differ-
entiable functions of all, or subsets, of the primary variable set
x. Now, we consider as models for an experiment the class of
those functions that have the general multiplicative form

w=fi@ =] |eut) (k=1,m). (76)
i=1

Only three options are considered for the individual functions
8rit 8ri(Xi) = ay; Xi, gri(Xi) = awi/Xi, Or gi(x;) = ax;, where ay;
is a constant. Also, a particular primary variable x; is assumed
to appear at most once in any one of the functions f;, and it
may not appear at all in some of them. The choice of g; is dic-
tated by the role that the variable x; is expected to play in the
function f;. Each derived variable y; is formed by multiply-
ing or dividing variables from x. If x; does not play a role in
determining y, gxi(x;) = 1 1is assumed. The primary variables
that actually appear in a function f; will usually be a subset
of the entire set of variables from the complete vector . If
a task in an experiment is to measure the yield of radiation
twice, there will be two independent counts of that radiation
using a calibrated detector. Each count is assigned its own pri-
mary random variable. The detector efficiency is common to
both, so it can be represented by a single primary random vari-
able. These three variables are mutually independent by their
definitions.

A simple example will illustrate the nature of Eq. (76). Sup-
pose = (xi, x2, X3, X4), then two values y; and y, might be
derived using the formulas y; = fj(x) = x; X (1) X x3 X (1/x4)
andy, = fo(x) = (1) X x5 X x3 X (1/x4), where the symbol “x”
represents scalar multiplication and all the a;; = 1. Variable x;
appears in fi but not in f5, while x, appears in f; but not in fj.
The multiplicative factors “(1)” serve as “place keepers”, for
clarity. Normally it is unnecessary to do this, as long as their
presence is clearly understood.

Since V, is diagonal, Eq. (42) yields

v = Y (Ofi/0x) % @foldx) (kO =1,m).  (TT)

i=1

From the definitions given above, the indicated partial deriva-
tives in Eq. (77) are as follows: (0fy/0x;)) = fi(x)/x;, if
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gui(xi) = apixi; (0fi/0x;) = —fil®)/xi, if gri(x;) = ari/x;; and
0fi/0x;) = 0, if gri(x;) = ai;. Thus, Eq. (77) can be rewritten
as

v = Y {E L@ /xS L@)/xl) - (0= 1,m).
i{k,0}
(78)

The notation “i{k, 8}’ in Eq. (78), signifies that the sum over
“” includes only those terms in which both of the partial
derivatives involved (i.e., for both Ji and fy) are non-zero. The
notation “+” signifies that either sign might appear in particu-
lar terms of the sum. The appropriate sign, “+” or “-”, in front
of individual terms depends on the relative locations (numer-
ator or denominator) of x; in gi; and ggy;. If x; appears either
in the numerator of both functions, or in the denominator of
both functions, then the “+” sign is used. If x; appears in the
numerator of one function, but in the denominator of the other
function, then the “-” sign is appropriate. The occurrence of
negative terms in Eq. (78) can happen only for off-diagonal el-
ements of the covariance matrix V. The diagonal elements of
V,, (@ = k) will generally have more terms in their sums than
the off-diagonal elements (@ # k). The reason is that each di-
agonal term vy includes a component in the sum for each
variable x; represented in the function f;, i.e., those where
(0fx/0x;) # 0, whereas for each off-diagonal element of the
covariance matrix, two conditions have to be satisfied simul-
taneously. Both of the partial derivatives appearing in Eq. (78)
must be non-zero. This occurs only if a specific primary vari-
able x; is common to both f; and fp. It happens that these are
just the primary variables that introduce correlations between
derived variables such as y; and ys.

If both sides of Eq. (78) are divided by the product y; X yg =
fi(x) X fo(x), and it is recalled that the fractional uncertainty
in x; is defined as fy; = (syi/x;), then

ryko = Vol Giye) = Y &5 (k0= 1,m). (79)

i{k,6}

The signs for the terms are governed by the same conditions
indicated for Eq. (78). Recall that 7y, according to Eq. (79),
is just an element of the relative covariance matrix R, as de-
fined in Eq. (31). The diagonal elements of R, correspond
to the squares of the fractional uncertainties for the derived
quantities y, i.e., Iy = f)zk (k = 1, m). The off-diagonal ele-
ments of R, can be written as: ryg = fix Cyro fyo- Here, cyg is
the corresponding off-diagonal element of the correlation ma-
trix C). These definitions, and Eq. (79), lead to the following
expression for the correlation coefficients:

eyt = {Z + 2] [(fach) (6= 1,m). (80)

i{k,0}

For the class of functions f; defined by Eq. (76), it is rela-
tively straightforward to calculate the derived variables and
their fractional uncertainties and correlations, given the frac-
tional uncertainties for the uncorrelated primary variables. All

one needs to know is which of the primary variables are in-
cluded in defining each of the derived variables, and which po-
sition (numerator or denominator) they occupy in the model,
as expressed by Eq. (76).

Although this formalism might appear to be rather restric-
tive, it actually finds many useful applications. In the analy-
sis of many experiments to determine cross sections, certain
measurable primary variables often appear as multiplying or
dividing factors (i.e., scale factors) in the formulas used to
determine cross sections. Examples of these are: detector
counts, detector efficiencies, sample atoms, branching factors,
etc. Furthermore, corrections to measured data to account for
radiation absorption, second-order geometric effects, neutron
scattering, etc., are often applied as multiplicative factors in
deriving the cross sections. Under such circumstances, this
mathematical formalism can provide a template, even if some-
times an approximate one, for analyzing experimental data
uncertainties. However, for some complicated experiments
this approach may be too crude. Better quality covariance
data could be obtained if these experiments were modeled in
greater detail, and the deterministic or stochastic methods de-
scribed earlier were applied to generate the covariances. The
simple “hand calculation” mentioned in Example 14 yielded
covariance data that agreed quite closely with the results of a
detailed Monte Carlo analysis involving 10,000 histories be-
cause the data analysis model used for this example is essen-
tially consistent with the template just described. In this exam-
ple there are three values yi, y,, and y3 that are derived from
twelve primary variables. Except for x7 and x;, which appear
only in the factor [1 — exp(—x7x11)]~', all the remaining pri-
mary variables correspond to scale parameters, thereby con-
forming to the experiment model embodied in Eq. (76). Since
x11 is specified to be a constant (no uncertainty), the factor
[1- exp(—xwm)]‘l can be equated to a single primary, scale
variable. This was effectively done in Example 14, by noting
that the uncertainty in this factor is ~ 0.4% if the uncertainty in
x71s 1%. So, the “hand calculation” provided in Example 14
actually corresponds to applying Eqgs. (79) and (80).

2. Cross-section standards

This paper recommends that experimenters report those re-
sults that they actually measure, i.e., either primary parameters
or quantities that can be derived directly from measured data
through formulas or data reduction algorithms that are suffi-
ciently well documented to enable users of the results to com-
pletely understand the essential features of the experiment.
While some experiments yield “absolute” cross sections, e.g.,
transmission measurements to determine neutron total cross
sections, most neutron reaction experiments involve the mea-
surement of ratios of “unknown” (or lesser known) cross sec-
tions to cross sections that are sufficiently well-known to be
treated as standards [37]. Doing this avoids the difficult task of
having to determine absolute neutron fluences. In these situa-
tions, experimenters should report measured ratios rather than
derived cross sections. They should also provide sufficient
details regarding how the standard reaction was used in the
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experiment to enable data users to compute the correspond-
ing “unknown” cross-section values from the given ratios us-
ing contemporary values for the standard cross sections. If
the experimenter does choose to report derived cross sections,
then the standard reaction used should be specified, and the
actual standard cross-section values employed in deriving the
reported “unknown” cross sections should be tabulated, along
with the assumed uncertainties in these values. A data user
will then be able to make adjustments to the derived cross-
section results to account for any changes in the standard val-
ues during the intervening time between when the measure-
ments were performed and when the data are used.

It could be argued that this should not be necessary if
the standard cross sections correspond to values from well-
established evaluated data libraries, e.g., from ENDF/B-
VII.1 [7], since it is assumed that these values will be available
from data centers for many years after their release. However,
experience has shown that these libraries are not always avail-
able indefinitely. For example, the three earliest versions of
the ENDF/B library are currently unavailable from the U.S.
Nuclear Data Center (NNDC) at Brookhaven National Lab-
oratory [52]. ENDF/B-II and -III have been located in the
data archives of Bettis Atomic Power Laboratory, and ad-
ministrative procedures have been initiated to authorize the
release of these two libraries to the NNDC for unrestricted
distribution [53]. Unfortunately, it is likely that ENDF/B-I is
lost forever unless, by chance, it happens to be discovered in
some yet-to-be-identified laboratory’s archives. This demon-
strated fragility of long-term access to evaluated data libraries
strongly supports the recommendation in this paper that ex-
perimenters document the actual values they use for standard
cross sections. Of course, if a reported data set is very large,
e.g., numbering several thousand values, it may not be practi-
cal to provide corresponding values for the standard cross sec-
tions when it is reasonable to anticipate that, in most instances,
they will be available electronically well into the future from
libraries maintained by data centers. So, it is ultimately left
to the judgment of an experimenter whether or not to tabulate
cross-section standard values for reported large data sets.

In the following discussion, it is assumed that ratio data, in-
cluding uncertainties, have been reported by the experimenter,
and one seeks to calculate cross sections and their uncertain-
ties for the unknown reaction, taking into account the uncer-
tainties in the standard values as well as in the experimentally
determined cross-section ratios. Let « represent a collection of
2n variables, and V signify its covariance matrix. The collec-
tion « is assumed to include the measured cross-section ratios
and the corresponding values for the standard cross sections
used in the experiment. Thus, x = (p, o), where p is the
collection of n measured ratios and o is the corresponding
collection of n standard cross sections. It is then assumed that
the collection of measured ratios p is completely independent
from the evaluated standard cross sections o;. In most realis-
tic situations this is a very reasonable assumption. This means
that the covariance matrix V, can be partitioned, as shown in

Eq. (32), leading to the expression

V;:[‘g’ ‘?] (81)

‘We then define o, to be the collection of # unknown cross sec-
tions generated by considering both the measured ratios p and
the corresponding standard cross sections o5. The covariance
matrix V,, for the unknown cross sections o, can be obtained
deterministically by applying the Law of Error Propagation,
i.e., Egs. (42) and (45). This yields the result

Vou x TV.T" = ’1'})Vpr+ + Ty Vo T (82)

The two terms are a consequence of the partitioning of V.
Finally, it is assumed that the experimenter has provided a co-
variance matrix V), for the experimentally determined ratios
p, and that the standard cross sections o and their covari-
ance matrix V. are available from an evaluated data library
(or from the literature). The “unknown” cross sections are re-
lated to the ratio and standard values by

oui = piosi ((=1,n). (83)
The dimensions of each of the collections of variables p, o,
and o, are identical and equal to n. Their covariance matrices
have the dimensions n X n. The measured ratios and standard
cross sections used to derive the “unknown” cross sections,
in accordance with Eq. (83), must be comparable. The two
values must correspond to the same experimental conditions,
e.g., the neutron energy. Achieving this is not a straightfor-
ward matter, as the following discussion shows.

Quoted experimental energies are usually average neutron
energies E;. They are averages since measurements are rarely
performed with purely mono-energetic neutron sources. The
ratio data reported by an experimenter will consist of the col-
lection of pairs of values (Ey,p1), (E2,02), -+ , (Ei,pi), -+
(En, pn). The covariance matrix V,, for this experiment corre-
sponds to these same energies. It is assumed to be complete,
not simply a collection of standard deviations s,; with no cor-
relation information provided. To apply Eq. (83), an experi-
menter also needs a set of appropriate standard reaction cross-
section values, o1, 0y, * , O, *** , Oy, corresponding
precisely to the average energies E, Ep, --- , E;, --- , E, of
the experiment. If cross sections for the standard reaction are
available from an evaluated data library in ENDF-6 formats,
then the interpolation rule(s) specified in the evaluated file can
be used for this purpose [33]. It is not as straightforward to
obtain the appropriate covariance matrix V., for the standard
cross section. Cross-section covariance data in ENDF-6 for-
mats can be expressed using a variety of approaches [33]. Ex-
plicit covariance matrices, relative covariance matrices, or var-
ious component covariance sub-matrices corresponding to as-
sorted energy-grid structures, may be found in evaluated data
libraries. Point covariance data are not provided in ENDF-
6, but rather uncertainty and correlation data based on de-
fined energy-group structures are given [33]. That is, uncer-
tainty and correlation data corresponding to energy intervals
that are defined in specific covariance files are given. The
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experimenter must calculate standard deviations and correla-
tions corresponding to the appropriate experimental energy-
grid structure, based on data provided in the evaluated co-
variance data file for the standard, in order to generate V.
The experimenter will generally need to employ a computer
program to accomplish this task. There are options: actually
write one independently, perhaps find relevant free software
on-line, or even ask a colleague who happens to possess a li-
censed version of an appropriate program such as NJOY [54]
or PUFF [55] to help out. Regardless of the approach chosen,
the resulting matrix V5 could turn out to not be positive defi-
nite unless steps are taken to avoid this problem. For example,
this might occur in situations where two or more of the experi-
mental energies correspond to the same energy-group interval,
as specified in the ENDF-6 formatted covariance data file for
the evaluated standard reaction cross section. This will mani-
fest itself in occurrence of duplicate rows and columns in the
derived correlation matrix, resulting in the covariance matrix
being singular. The ENDF-6 Formats Manual suggests possi-
ble ways to remedy this problem [33].

The sensitivity parameter matrices that appear in Eq. (82)
can be evaluated by referring to Eq. (83). The elements of T,
and T, are given by

toij = (00,i/0p)) = 0ij 0 and tyg; = (00,;i/ 00 ;) = 6;; pi.

(84)

In this formula, §;; is the Kronecker Delta function that equals
1if i = jand is O otherwise. Elements of covariance matrix
V. can be derived from Egs. (82) and (84) as follows:

Vouij = OsiVpij Osj + Pivesijpj (@, j=1,n). (85)

Each element of V, is just the sum of two terms, one orig-
inating from the uncertainties in the measured ratios and the
other from the uncertainties in the standard cross sections.

3. External parameters

Many physical parameters that are not measured directly by
experimenters are used in reducing experimental data to the re-
ported results. These may include values of decay half-lives,
radioactive decay branching factors, sample material densi-
ties, isotopic abundances, and other physical quantities that
are tabulated in the literature or handbooks. Even detector cal-
ibrations may be acquired by experimenters from secondary
sources. For convenience these are referred to here as “ex-
ternal parameters”. Whether or not such external parameters
are treated separately from the analysis of uncertainties in an
experiment is a matter best left to the judgment of the experi-
menter. In many situations it will not be practical to separate
them. However, the accepted values for these parameters may
change over time, and this can create problems for users of
these data, e.g., evaluators. If a particular external parameter
is a scale factor, such as a decay branching ratio, then correc-
tions to cross sections for such changes are easy to apply. In
other situations, it may be more difficult to make the correc-
tions. An example would be the half-life of radioactive decay.

The sensitivity of derived cross sections to the decay half-life
will depend on the counting times. The data can still be cor-
rected for such changes in external parameter values and un-
certainties as long as the actual values and uncertainties used
by the experimenter, and the manner in which they were used,
are specified in documenting the experiment.

C. Well-designed Experiments

There are choices that can be made by investigators in de-
signing their experiments that will minimize some of the dif-
ficulties associated with the analysis of their measured data,
including the assessment of uncertainties. Attention to such
matters will not only simplify the job of analyzing the results
from these experiments, but it will also insure that the results
can be understood more easily by compilers for the prepara-
tion of EXFOR entries, and for more effective use in the eval-
uation of data for libraries such as ENDF/B.

It has been said that the ability to identify and understand
the varied issues and problems that one encounters in life is
a manifestation of good intelligence, while wisdom is the ca-
pacity to recognize which of these issues and problems one
can realistically hope to influence favorably by one’s own ac-
tions, and which of them are either beyond one’s power to
deal with, or represent situations where meddling could possi-
bly lead to unfavorable outcomes. The intent of this section is
to point out some considerations that an experimenter should
keep in mind in planning well-designed experiments. Certain
factors associated with the planning and execution of an ex-
periment can, if addressed thoughtfully, have a beneficial in-
fluence on reducing the associated uncertainties. This subject
is approached here from the perspective of data uncertainties,
but the consequences go far beyond this single issue. There
can be a favorable impact on reducing the cost of conduct-
ing an experiment, as well as on the quantity and quality of
results that it will produce. It is possible to only touch the sur-
face of this important topic. Each experiment is unique, or at
least involves some unique features, so this discussion must be
rather general in nature as well as incomplete. The approach
taken here is to stimulate investigators to think about how to
go about designing and conducting their experiments in an ef-
ficient manner, consistent with the intended objectives, rather
than to introduce a litany of detailed steps that should be fol-
lowed.

The exercise of intelligence and wisdom should begin as
early in the experimental process as possible, preferably in the
planning stage. Important factors that influence the conduct
and outcome of an experiment often have their origins in de-
cisions made before the measurements even begin. Once the
measurements have begun, it is often too late to make very
many significant changes in the way the experiment is con-
ducted. Of course, some alterations during the course of an
experiment, to deal with unforeseen circumstances, are in-
evitable. Wisdom entails flexibility, and a lack of flexibility
can lead to failure or, at the very least, to missed opportuni-
ties. So, a well-designed experiment is one that is thoughtfully
planned and executed from its conception to eventual docu-
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mentation of the results, but that permits sufficient flexibility
to contend with unforeseen problems, and to benefit from op-
portunities.

The following principles should guide the choice, design,
and conduct of a successful nuclear data experiment:

(a) Select a topic considered to be worthwhile.

(b) Establish realistic goals for the experiment.

(c) Make efficient use of the available resources.
(d) Make sensible choices about what to measure.
(e) Strive to balance quantity versus quality of data.
(f) Aim for simplicity wherever possible.

(g) Seek to minimize experimental uncertainties.

Items (a) and (b) are not addressed in this paper since they are
beyond its scope. Attention is focused on discussing items (c)
through (g) in the context of the nuclear data field.

Those aspects of an experiment that, for practical reasons,
lie beyond an investigator’s control are the fixed (unalterable)
features of the experiment, around which adjustments have to
be made to the variable factors in planning the experiment.
These fixed attributes cannot be altered when modeling an ex-
periment, (although their uncertainties must be considered).
Possible variations of those factors that can be adjusted should
be explored during the planning phase, with the intent of op-
timizing the experimental process so as to achieve good re-
sults, minimize uncertainties, etc. Computer simulations, us-
ing models of the experiment, are very useful for this purpose.

Several decades ago a seminar for physics graduate stu-
dents was presented by a Nobel laureate on the experiment
that earned the Prize. This lecturer showed a slide of the ap-
paratus used, and then offered the following apology: “If I
had known at the time that this experiment would win the No-
bel Prize, I would have attempted to make the apparatus look
more attractive so it would have photographed better.” No one
can claim that making an experimental setup visually attrac-
tive will guarantee that the experiment will be successful and
productive, or even win prizes, but a case can be made that
there is a positive correlation between the appearance of an
experimental setup and success of the experiment. If the ex-
perimental apparatus is visually presentable, it is more likely
than not that the experimenter is giving attention to items (c)
through (g) than might be the case if there is an appearance of
sloppiness in the apparatus and approach to the measurements.

Some important ingredients of well-designed experiments
are discussed in the following sections.

1. Efficient use of resources

In broadest terms, the principal “resources” of an experi-
ment are time, people, and materials (samples, facilities, appa-
ratus, efc.). By “efficient use” it is meant that these resources
are not wasted or under-utilized. Only the individual experi-
menters can make these judgments for their particular experi-
ments.

Let’s consider the resource of time. The date when the ex-
periment can begin and the total time available for a measure-
ment program are often beyond the experimenter’s control.
An experimenter will generally be permitted access for a cer-
tain time period to a measurement facility, and perhaps will
also have the use of specific sample materials, equipment, and
other requisite resources for a limited time. The time available
for subsequent analysis of measured data is generally more
flexible, but even then time constraints often enter. Younger
scientists need to complete their thesis or post-doctoral work
in a timely fashion in order to proceed with their careers. More
established scientists usually have additional professional re-
sponsibilities, e.g., teaching or administrative work, that limit
the time they can devote to analyzing experimental data and
documenting their work. A typical nuclear researcher proba-
bly cannot lay out in advance a precise time line that governs
all aspects of a particular experiment, unlike experiments per-
formed during manned spacecraft missions, where time is pre-
cisely budgeted, and many months of “dry run” training and
simulations are involved. Nevertheless, some careful planning
in advance of the experiment will usually provide the nuclear
investigator with a reasonable estimate of the time needed to
successfully carry out the various aspects of an experiment, in-
cluding the assessment of uncertainties. Planning can reduce
the likelihood that “panic situations” will emerge, where the
experimenter “runs out of time” before completing all the in-
tended tasks of the experiment. This often is a consequence of
devoting excessive time to certain tasks early in the measure-
ment process, perhaps even out of proportion to their relative
importance, simply because the eventual deadline is perceived
as some vague point in the future. The phenomenon of “run-
ning out of time”, and the inevitable sloppy shortcuts taken in
such circumstances, is probably one of the major factors lead-
ing to either failed experiments or those with suboptimal out-
comes. Also, the assessment of experimental data uncertain-
ties is likely to be left undone or at best treated inadequately.

A simple example is provided to illustrate the concept of
optimizing choices of measurements time in experiments.

Example 16 The experiment involves determining a particular re-
action yield (Y) by measuring the counts (N) recorded in a calibrated
detector with efficiency €. The mathematical model is: ¥ = N/e. It
is assumed that the detector efficiency is known to 5%. Event count-
ing uncertainty is governed by Poisson statistics, so it is assumed
that the uncertainty for N recorded counts is ~ N'/2. The count-
ing and calibration uncertainties are clearly uncorrelated. How many
counts should the experimenter acquire to achieve a desired accuracy
of ~6% for Y, and how much time ought to be spent achieving the
results sought? Table VI gives the counting uncertainties, calibration
uncertainty, and total uncertainties in percent to two significant fig-
ures for various possible experimental scenarios involving choices of
accumulated detector counts N. The counting times are given for an
anticipated count rate of 10 counts per second (cps).

Which counting option in Table VI constitutes the optimal choice
for a well-designed experiment? Barring other considerations, the
best choice would appear to be the one where N ~ 1,000. To re-
duce the total uncertainty to 5.0% would require between 10,000 and
50,000 counts. Then the counting statistical uncertainty would be
negligible compared to the calibration uncertainty. This would re-
quire between 20 m to 1 and 1/2 h of counting time, rather than ~
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TABLE VI. Total counts and counting times required to achieve var-
ious levels of accuracy for a simple experiment.

Counts Count Calib Total Time Time Time
(N) Unc Unc Unc (s) (m) (h)
100 10.0%  5.0% 11.2% 10 0.2 <0.1
500 4.5% 5.0% 6.7% 50 0.8 <0.1

1,000 3.2% 5.0% 5.9% 100 1.7 <0.1
5,000 1.4% 5.0% 5.2% 500 8.3 0.1

10,000 1.0% 5.0% 5.1% 1,000 16.7 0.3

50,000 0.4% 5.0% 5.0% 5,000 83.3 1.4

100,000 0.3% 5.0% 5.0% 10,000  166.7 2.8

200,000 0.2% 5.0% 5.0% 20,000  333.3 5.6

2 m. If limited measurement time is not a consideration, the exper-
imenter could choose to employ longer measurement times, just to
be “on the safe side”. However, experienced investigators know that
time limitations are always factors in experimental work. If the ex-
perimenter is striving for higher accuracy, it would be advisable to
explore other options, e.g., reducing the detector calibration uncer-
tainty to < 5% (if possible).

People arguably constitute the most important of all re-
sources, and the one that it is almost always limited. At-
tention should be given to insuring that the time spent by,
and roles played by, people participating in an experimen-
tal team are wisely planned, with contingency options well
thought out in advance. It is important that everyone involved
in planning and conducting an experiment (including techni-
cal support personnel) have at least a rudimentary understand-
ing of the importance of estimating experimental uncertainties
and, wherever possible, taking steps to minimize them. They
should be commiitted to carefully documenting the details that
are needed for this purpose, throughout the course of the ex-
periment. They should be encouraged, through formal train-
ing and “hands-on” experience, to develop an intuitive under-
standing of various aspects of the experiment that contribute
to uncertainty, and to follow procedures aimed at minimizing
these uncertainties and avoiding blunders. It should be ap-
preciated that the consideration of uncertainties is an integral
part of the experimental process, not an afterthought to follow
completion of the measurements and data analysis.

The resource category “materials” refers to choosing sam-
ple properties, experimental apparatus, efc., so as to enhance,
to the extent allowed by constraints, the quantity and quality
of the data produced by the experiment, and to minimize un-
certainties. The following example, taken from the literature,
illustrates this point.

Example 17 Considerable attention is paid by researchers at Rens-
selaer Polytechnic Institute to selecting transmission sample thick-
nesses and measurement times (subject to practical constraints), in
order to minimize the statistical uncertainties in their white-source
measurements of neutron total cross sections. Details of their work,
including the derivation of formulas and related numerical proce-
dures they apply, have been published [56], so their approach is dis-
cussed here briefly in general terms. These investigators have de-

veloped approaches to determining optimal measurement conditions
for both reasonably constant cross sections (as would be encountered
with light nuclei) and strongly resonating cross sections (for heavier
nuclei). For the latter case, the emphasis is on finding the best condi-
tions for deducing resonance widths from the measured data. Their
approach involves two distinct steps. First, given a fixed total mea-
surement time, a determination is made of the optimal relative times
to be spent on sample-in, sample-out, and background measurements.
Optimal partitioning of the total available measurement time depends
on the background-to-signal ratio as well as on the “optical thickness”
of the sample (i.e., the total cross section multiplied times the areal
density of sample atoms). Once having determined these time allo-
cations, the optimal optical thickness of the sample to be employed
can be deduced from a numerical analysis. It has been determined
from this work that even in situations where the background dom-
inates the total numbers of counts, the sample transmission should
not exceed 0.37. On the other hand, when the background is low,
the sample transmission should not be lower than 0.08. Accord-
ing to these investigators, the optimal sample-out measurement time
fraction is relatively insensitive to the relative intensity of the back-
ground, and it should occupy about 20% of the total measurement
time. When the background is large, the time needed for background
measurement needs to increase at the expense of the time spent on the
sample-in measurement. As the background-to-signal ratio increases,
the optimal sample transmission should be larger, implying that thin-
ner samples should be used. In experiments to measure resonance
parameters, it has been determined that minimization of the statisti-
cal uncertainty in the measured area under the cross-section curve of
a resonance leads to reduced uncertainty in the deduced resonance
strength. Extensive experimental and simulation studies by these in-
vestigators have substantiated predictions of the analytical formulas
and numerical procedures to be used in determining optimal condi-
tions for their measurements of neutron total cross sections [56].

2. Deciding what to measure

A challenge every investigator faces is deciding specifically
what to measure to best achieve the experimental objectives,
within existing constraints. In the nuclear data field, the exper-
imenter is rarely exploring completely new territory, or seek-
ing to discover previously unknown physical phenomena. In-
stead, these experiments are usually motivated by quantitative
considerations. The experimenter intends to produce a data
set that will provide improved information on the magnitude
of certain physical parameters, usually cross sections, in a par-
ticular domain (e.g., a range of energies). The experimenter
should have in mind an accuracy goal, so that the results of
the work will have a significant impact in this field, and not
simply add more data points to a crowded body of pre-existing
results.

An important consideration in carrying out an experiment
is deciding how many data points to measure to adequately
define the parameters in question for the chosen physical pro-
cess. Experimenters know that this is governed by two fun-
damental factors. One is the inherent structure (i.e., energy
dependence) of the physical quantity (which generally is not
completely understood), and the other is limitations in the
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resolution (i.e., energy resolution) achievable in the experi-
ment. If the experiment is capable of high resolution, and it
is suspected that the cross section for the physical process has
considerable structure that might be of some practical conse-
quence for applications, then the experimenter should measure
as many data points as time and circumstances allow. Other-
wise, the decision may be to choose to measure fewer data
points with broader resolution, in order to obtain a better un-
derstanding of the average normalization of the cross section
in question.

Similar deliberations are involved in the allocation of re-
sources to various domains of the physical quantities to be
measured, the most common being defined by neutron energy.
For example, consider a threshold neutron reaction. Knowl-
edge of the shape of the cross section near threshold is very im-
portant for the use of these data in neutron dosimetry applica-
tions [12]. The experimenter may decide that it is worthwhile
focusing most of the available time (and other resources) to the
often difficult task of measuring the very small cross sections
encountered in the threshold region, especially if there are few
existing experimental data points available there. Then, it may
be decided to measure only a few data points at higher ener-
gies, with the remaining time and resources, to validate the
normalization of the experimental procedure, and to provide a
comparison with results previously reported in this region by
other experimenters.

3. Quality versus quantity

The decision to focus on quality as opposed to quantity, or
the converse, will be driven largely by the current status of the
database for a particular reaction process. If the experimenter
has developed a measurement capability, not previously avail-
able in the field, that will permit the exploration of a physical
process or domain where only theoretical results were avail-
able up to that time, it may be decided to focus on quantity
rather than quality, in order to “scope out” the region, and by
that means provide a test of the theoretical predictions. The
uncertainties associated with theoretically determined values
are generally rather large, so an extensive collection of experi-
mental data of modest quality could be valuable. On the other
hand, if the experimenter is aiming to resolve a long-standing
question concerning the magnitude of a physical quantity in
a particular domain, and abundant (and unfortunately often
discrepant) data are already available from the literature, the
choice may be to perform an experiment to generate a few
high-quality data points, i.e., reliable values with small uncer-
tainties, in an attempt to resolve the discrepancies.

4. Virtue of simplicity

Experiments should be designed to be as simple as possible.
Some reasons why this is beneficial are:

e It is easier to carry out the measurements and analyze
the data, without making mistakes (errors), when an ex-
periment is as simple as possible.

e Members of the research team will be more likely to
thoroughly understand and follow the experimental and
analytical procedures involved if they are simple.

e Simple experiments can be represented by simple math-
ematical models and data analysis procedures. Estimat-
ing experimental uncertainties can be arduous if the ex-
periment is unnecessarily complicated.

e Simpler experiments tend to lead to smaller data uncer-
tainties. When many variables are involved, the uncer-
tainties tend to accumulate, and their combined impact
on the final results can become significant.

Two examples are mentioned here to clarify these points. Con-
sider a neutron activation experiment where data are acquired
over an energy range where the cross section is anticipated to
be flat and fairly smooth. The data analysis procedure can be
simplified, and uncertainties reduced, by attempting to mea-
sure each data point in essentially the same way, e.g., us-
ing similar, steady beam intensities for the neutron producing
source reaction, similar exposure times, similar waiting (cool-
ing) times, similar radiation measurement times, efc. If this
can be achieved, then non-linear relationships in the model re-
lating the primary and derived variables will tend to exhibit
similar behavior for the various data points. This tactic will
simplify estimation of correlated uncertainties. While it might
not always be possible to do this, due to unforeseen circum-
stances, it is nevertheless worthwhile to strive toward this goal.
Likewise, considerable simplification in the analysis of mea-
sured data can be achieved if all data points are measured us-
ing like samples in similar geometries. Then, the application
of corrections for effects such as radiation scattering and ab-
sorption can be applied more consistently, and correlated un-
certainties can be estimated more readily.

Of course, a plausible opposing argument can be made for
avoiding reliance on excessive uniformity in the design and
conduct of an experiment. For example, it might be justified
to measure a particular parameter more than once, under sev-
eral rather different conditions, in order to expose any unfore-
seen systematic errors associated with a single experimental
technique. An experimental approach that embraces several
distinct methods might be inefficient, but that may be war-
ranted if the experiment involves new and not well validated
aspects, e.g., poorly characterized sample materials, untested
equipment, or recently developed data correction procedures.
However, under conventional circumstances, where the exper-
imental techniques are well tested, simplicity is probably the
best option.

5. Minimizing uncertainties

Regarding uncertainties, one author expressed the following
sentiment in a journal paper several years ago:

“... This work is dedicated to the memory of my
dear mother Alice Miiller-Schmid (1902-1978)
who, however, might have found it of little use
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as she always tried to adhere to the principle of
avoiding errors rather than estimating them ...”*

*Jorg Miiller [38].

While avoidance of errors in experiments is important, effort
should also be devoted to estimating uncertainties. Robert
Peelle expressed this idea as follows [3, 57]:

“What is the value of a collection of experimental
results if no attempt has been made to estimate
and document their uncertainties?”

In addition to estimating uncertainties, effort should be ex-
pended in attempting to minimize them. A general way to
minimize uncertainties is to focus the main effort in an exper-
iment on carefully measuring those quantities that will have
the greatest impact on the results to be derived from the ac-
quired data. Once the mathematical model to be used for data
analysis and uncertainty assessment has been developed, an
experimenter can use the methods of sensitivity analysis to
guide this process. Knowledge of the underlying theory of the
physical processes being investigated can also be beneficial in
this regard. The following example illustrates this point.

Example 18 Angular distributions for scattering and emission of
radiation in nuclear processes can be represented by Legendre poly-
nomial expansions. The number of terms required depends on the
angular momentum involved, based on quantum-mechanical consid-
erations. In the (n,n'y) reaction, gamma rays are emitted symmet-
rically with respect to 90° in the center-of-mass system (where 0°
defines the incident neutron beam direction). Also, this is normally
very nearly true in the laboratory frame of reference. Symmetry fol-
lows automatically from the fact that the appropriate Legendre ex-
pansions include only even-order terms. If the angular momentum
involved in the gamma transition is L, then the highest-order poly-
nomial to be included is of order 2L. E1 or M1 transitions can be
represented by Y(0) = Ag + A2P»(0), since Py(0) = 1 for all 6. An-
gular distributions are usually measured to determine these Legendre
coeflicients (e.g., Ap and A,). These parameters are extracted from
the data by least-squares fitting of the measured gamma-ray yields,
Y, at various angles 6. A well-designed experiment is one that in-
volves Y measurements at angles 6 specifically selected to provide
the greatest measurement sensitivity for determining individual Leg-
endre coefficients, with minimal interference from the remaining co-
efficients. Reduction of uncertainties in the measured yields will then
translate to reduction of uncertainties in the derived Legendre coeffi-
cients. The uncertainty in Y, in relation to the uncertainties in Ay and
A,, follows from considering the differential sensitivity expression
oY = 0Yy + 0Y, = (6Y/6A0)6A0 + (6Y/(9A2)6A2 = 0Ap + P2(9)6A2
Since P,(#) = 0 for 6 ~ 55° and 125°, a measurement should be made
at one or both of these angles to maximize the impact on determining
Ap. Then, A, will not influence the result. The impact of A, on the
measured yield will be greatest at 6 = 0° or 180°, but these two an-
gles are usually not conveniently accessible to measurement appara-
tus. A practical choice would be 6 ~ 30° or 150°. Clearly, the effect
of Ay can never be eliminated in determining A,. So, a set of four
gamma-ray yield measurements performed at 6 = 30°, 55°, 125°, and
150° should provide an adequate data set for use in a least squares
fit to determine A, and A,, with the added bonus of providing a test

for possible asymmetry of the experimental apparatus. An example
of carefully positioning gamma-ray detectors to optimize determina-
tion of Legendre coefficients can be found in the work of Deleanu
et al. [58]. They suggest placing detectors at 110° and 150°, since
these are nodes of the fourth-degree Legendre polynomial function.
They further quote Mihailescu et al. [59] to the effect that these var-
ious choices of detector positions can facilitate angle integration for
gamma transitions with multipolarities up to L = 3.

Nuclear data experiments are often conducted to benchmark
nuclear models. Nuclear models are characterized by theoret-
ical functional relationships and variable parameters. Conse-
quently, experimental data are used to determine reasonable
values and uncertainties for these nuclear-model parameters.
The concept of sensitivity can be applied to select specific
measurements that provide the greatest impact in determining
values for these model parameters, with minimal uncertainties.
Suppose that {0} represents a collection of cross sections to
be calculated using a nuclear model, and {py} is a set of vari-
able parameters of this model. Dimensionless sensitivity pa-
rameters, defined by S = (60i/0:)/(Opk/pr), can be useful
in deciding the best measurements to perform [60]. This ap-
proach was investigated by Fessler and Smith [61] and put to
use by Plompen et al. [62].

6. Additional comments

Young scientists should learn to approach experimental
work in a disciplined way, and to appreciate the importance
of uncertainties. They should understand that the considera-
tion of uncertainties should be an essential and integral aspect
of experimental investigations if the results are to play useful
roles in contemporary applications.

It is important for investigators to understand that the ba-
sic assumptions about what an experiment is intended to ac-
complish inevitably drive the procedures used to acquire and
analyze the data. If these assumptions eventually prove to be
flawed, the derived results may fail to fulfill expectations, or
they may be misleading. For example, if the investigator is
erroneously convinced that a particular gamma-ray transition
should be L = 1 (when it actually it is L = 2) he may fail to
make measurements at sufficient angles to unequivocally es-
tablish the correct transition multipolarity. If actual measured
data (values of primary variables) are discarded along the way,
and only the derived results are retained, it will be impossible
to resurrect the primary information and subject it to an alter-
native data analysis scheme (i.e., a revised model of the exper-
iment). Therefore, it behooves all experimenters to retain as
much content as possible from the collection of original mea-
sured values, along with estimates of their uncertainties. In
earlier times, when data storage options were limited (print-
out, punched cards, efc.), this was often impractical. Since
several terabytes of information can be stored these days at
very low cost, there is no longer any reason, in most nuclear
data experiments, to discard original measured values. Mea-
sured data are precious, because of the resources required to
produce them. Experimenters should keep this point in mind
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and not discard their raw data indiscriminately, while retaining
only the analyzed results.

IV. SOURCES OF UNCERTAINTY

In this section we examine a few of the more common
sources of uncertainty encountered in experiments, and dis-
cuss how uncertainty correlations are introduced by the anal-
ysis of measured data to produce the derived results.

A. Event Counting Uncertainties

A single detector count that influences only one derived
physical quantity among several will introduce no correlations
within the collection of derived results. However, correlations
are introduced if this value influences several derived quanti-
ties, as the following example shows.

Example 19 Suppose that the counting of radiation decay events is
affected by background. Background counts must be subtracted to
obtain the desired results. Two measurements are made using the
same detector and measurement conditions (time, geometry, efc.).
Let N; be the raw counts from the first measurement and N, the raw
counts from the second measurement. A single, separate measure-
ment is made of the background using the same detector and con-
ditions, leading to the value Np. This value is used to correct both
raw detector counts. Let Y, and Y, represent these corrected counts.
The model for this experiment is Y; = Ny — Np and Y, = N, — Np.
Detector counts are governed by Poisson statistics, so the standard
deviations for ¥; and Y, are: s, = (N, + Np)'/? and s, = (N, + Np)'/%.
The uncertainties in Y; and Y, are correlated due to the presence of
the common background, and the fact that a single measurement of
that background was used in deriving both Y; and Y. The correlated
uncertainty component is N5/, so the covariance matrix Vy for the
derived values Y = (Y, Y,) is given by Eq. (86). It is evident that the
correlation coefficient is: c¢yz; = cy12 = Np/[(N1+Ng)>(No+Ng)'/?].
Therefore,

Ny + N
v, =V +Np  Np . (86)
Np N, + Np

Background-to-foreground ratios cannot be reduced by counting
samples for longer time periods. To reduce the background and asso-
ciated uncertainties in this experiment requires that the experimental
conditions be altered. This might be done by using better shielding,
larger samples (enhancing the useful radioactivity yield), or various
other means. The experimenter must be careful to avoid introducing
additional problems while attempting to solve an existing one. For
example, when larger samples are used, the corrections for radiation
scattering and absorption are larger. This introduces larger uncertain-
ties for these effects.

B. Detector-related Uncertainties

Calibration is usually the principal source of uncertainty in
experiments that employ radiation detectors. If a detector is
calibrated for a particular condition, and the calibration factor

is applied to an entire set of derived experimental results, the
corresponding uncertainty is fully correlated between these
data. It is then relatively straightforward to include this uncer-
tainty information in determining a covariance matrix for the
experiment. It is more difficult to determine the correlations if
each derived quantity involves a different detector calibration
value (even if the same detector is used), and the correlations
are partial rather than 100%. The following formalism can be
applied in a relatively common category of calibration scenar-
i0s.

Let y = {y;} (i = 1,n) be a collection of physical quan-
tities derived from an experiment. For convenience, it is as-
sumed that y; = F;&;, where F; represents the numerical factor
corresponding to all other aspects of the experiment that en-
ter into determining y;, and g; is the corresponding detector
efficiency. The derived results are directly proportional to the
detector efficiencies, so efficiency is a scale factor. This is
a common scenario in most experiments. It is then assumed
that V is the covariance matrix for the factors F;, and V is
the covariance matrix for the calibration values &;. Our objec-
tive is to determine the covariance matrix V;, for the set of de-
rived quantities y. This situation resembles that of normaliz-
ing measured ratio data to an evaluated cross-section standard
to obtain absolute cross sections. The formalism represented
in Eq. (85) is applicable. Thus, the elements of V, are given
by

Vyij = EiVFijE€j + F; Veij F_/ (l,] = l,I’L) (87)
It is assumed that the factors F; and covariance matrix Vi are
obtained from procedures already discussed. At issue here
is how experimenters might determine the collection of effi-
ciency values {g;} and their covariance matrix V. There is
no unique way to approach this task. The details depend on
characteristics of the detector and the calibration procedures
involved.

Detector calibrations, and estimates of corresponding un-
certainties, can sometimes be obtained by using standard ra-
dioactive sources that provide measured values at specific
points within a range of interest. It is then assumed that the
actual calibration curve throughout this range varies smoothly
as a function of the measurement parameters. An empirical
curve (e.g., a polynomial function) is fitted to the actual mea-
sured points using the least-squares method [4, 24, 63]. This
approach yields calculated efficiency values and a correspond-
ing covariance matrix, with uncertainties that reflect the scatter
of the measured calibration points relative to corresponding
calculated points on the curve. However, whenever detector
efficiencies at various energies are represented by polynomi-
als with few parameters, strong correlations are introduced.

A more sophisticated calibration approach involves the use
of deterministic or Monte Carlo detector simulation algo-
rithms, e.g., GEANT [64], that consider detector geometry, as
well as properties of radiation interaction with matter, to calcu-
late efficiencies, instead of relying on fitted empirical curves.
These calculations can also be validated by measurements us-
ing calibrated sources wherever possible. While simulation
codes can be effective in calculating detector efficiencies &;,
estimation of the associated uncertainties and their correla-
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tions, needed to generate the covariance matrix V, is more
challenging. Reasonable estimates of the uncertainties can be
obtained by comparing calculated efficiencies with the mea-
sured values obtained using standard sources. This can be
done at only a few points, so uncertainty estimates elsewhere
on the calibration curve must be generated by interpolation.
Plausible estimates of the correlations can be provided using
approximation techniques discussed earlier.

C. Geometric and Materials Uncertainties

One would tend to assume that primary parameters, such
as geometrical dimensions of the experimental apparatus and
sample material properties, are so well characterized that their
uncertainties are negligible compared with most other sources
of uncertainty. Often this is not the case, especially when the
geometries and compositions for small samples of rare mate-
rials are not well established. Nevertheless, an experimenter
will usually be able to provide reasonable estimates of the un-
certainties in such primary parameters. If they enter into deter-
mining the derived results as scale factors, it is easy to propa-
gate their uncertainties using the approach described earlier. If
the relationships between certain primary parameters and the
derived results are more involved, and complicated algorithms
are required to model the experiment, then either deterministic
sensitivity or Monte Carlo techniques must be used to prop-
agate these particular uncertainties. Therefore, investigators
should identify which primary parameters of the experiment
model are scale factors and which enter into the model in more
complicated ways. A hybrid approach can be pursued to gen-
erate the experimental data covariance matrix. Deterministic
or Monte Carlo calculations can be employed to construct that
portion of the covariance matrix involving those parameters
implicated in complicated functional relationships, while the
simpler approach mentioned earlier can be applied in propa-
gating the uncertainties for scale parameters.

D. Uncertainties from Data Corrections

Factors C, with values close to unity are often applied in
multiplicative fashion to correct preliminary results that are
derived using a simplified experimental data analysis model.
These corrections account for various relatively small, unre-
lated experimental effects that are not considered in the ex-
periment model. Typical corrections of this type are those
for neutron multiple scattering, for secondary neutrons pro-
duced by sources with spectra distinct from the primary neu-
tron spectrum, from radiation absorption, from second-order
geometric effects, efc. In a well-designed experiment, these
corrections should be either unnecessary, or kept as small as
possible. However, most experiments require modest correc-
tions of this nature to be applied in order to produce accu-
rate results. The relationships between preliminary and fi-
nal values can be expressed as (Final Result); = (Preliminary
Result); x II,C,. Additional contributions to the total un-
certainties that accrue from applications of these correction

factors can be included in the covariance matrix for the final
results in the manner discussed earlier. It might be thought
that the uncertainties in these correction factors could be es-
timated by applying the Monte Carlo method, where all pri-
mary parameters included in calculations of these corrections
(i.e., geometric parameters, cross sections, angular distribu-
tions, efc.) are randomly varied in the same manner used to
generate uncertainty information for the preliminary results.
However, this approach is often impractical, since the num-
bers of primary parameters involved in determining most of
these corrections are too large, the uncertainties (and possi-
bly their correlations) involved in dealing with these primary
parameters are frequently rather poorly known, and the com-
putational algorithms employed are usually quite complicated.
The corrections, even though they may depart by only a few
percent from unity, are usually calculated using sophisticated
simulation codes that are not amenable to investigating the ef-
fects of perturbations of their input values. These values usu-
ally are evaluated, and processed cross-sections are taken from
nuclear data libraries. Experimenters therefore resort to mak-
ing plausible estimates of the uncertainties in the corrections,
and even cruder estimates of the correlations. The following
example demonstrates how this might be done in a specific
situation.

Example 20 Suppose that corrections are required for the effects
of scattered neutrons when measuring a neutron activation cross sec-
tion relative to 23U neutron fission. Assume this activation reac-
tion has an energy threshold of 0.5 MeV, and that cross-section ratios
R.s = (0,/0f) are measured at several energies in the range ~ 1 to
10 MeV. The cross-section ratio at each energy is proportional to the
ratio of the true counts n, and ny in the detectors used to measure
decay activity and fission events, i.e., R, = F(n,/ns). These counts
are attributable only to primary source neutrons that are unperturbed
by scattering effects. F is an energy-dependent proportionality fac-
tor. The counts actually measured in the two detectors are given by
N, = {un, and Ny = {yny, where {, and {; are correction factors
to account for counting events produced by scattered neutrons. Neu-
tron scattering adds to the activation and fission measured counts, so
L2 1and {y > 1. Clearly, R,y = F X [(Nogr)/(NyL,)]. Scale factors
to apply these corrections are normally defined by expressions of the
form (Raf)cm'recled = CaCf(Raf)uncon'ecIed~ Thus, C, = (1/4,) < 1 and
Cy = {s > 1. Itis assumed that these correction factors are calculated
using a Monte Carlo code that models the experimental geometry and
primary neutron spectrum, as well as the scattered neutron environ-
ment, and that these procedures utilize cross sections from evaluated
nuclear data libraries. For example, suppose that these calculations
yield values of the correction factor Cy ranging from about 1.1 at the
lower energies to about 1.3 at the higher energies. The corresponding
correction factor C, ranges from 1.0 near threshold (i.e., no correc-
tion) to about 0.9 at the highest energies. The challenge is to provide
plausible estimates of the uncertainties in the correction factors Cy
and C,. The scattering of neutrons in an experimental environment
is largely governed by neutron elastic and inelastic scattering, along
with neutron absorption. For instance, assume that an overall un-
certainty in characterizing the secondary neutron spectra associated
with these processes is *10%. One might then expect uncertainties
in the differences from unity of the computed correction factors to
be roughly of this same order. For the hypothetical situation stated
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above, the anticipated uncertainties in the correction factor C; should
be in the range 1 - 3% and those for the correction factor C, to be in
the range 0 - 1%. There is some cancellation of the scattered-neutron
corrections to the derived cross-sections, since the fission and activa-
tion counts appear as ratios in the cross-section derivation formulas.
But, that cancellation is incomplete owing to the different magni-
tudes of these corrections. Regarding correlations, the correction fac-
tor uncertainties for data points closely spaced in primary energy are
likely to be strongly correlated, while those widely separated in en-
ergy should be more weakly correlated. Approximate expressions for
the energy dependence of these correlations, such as those provided
by the prescriptions discussed earlier, could be applied for this pur-
pose. The uncertainties in { and £, should be positively correlated to
each other since these corrections arise from the same source of scat-
tered neutrons, and there is an increase in both fission and activation
events due to the presence of these scattered neutrons. What should
the magnitude of the correlations be? One can surmise roughly that
they will be substantial, but not necessarily 100%. A plausible choice
might be ~ 0.75 (a strong correlation). The uncertainties in C, and
C; will be negatively correlated by this amount, by virtue of their
definition. The net effect of the corrections C, and C on the derived
cross-section ratios tends to be relatively small, since their effects
partially cancel owing to this negative correlation. This treatment of
correlations does not consider that scattering-correction uncertainties
are energy dependent, so these correlations are likely to be variable.

Obviously, it is desirable to keep such correction factors as
small as possible, so their uncertainty contributions will also
be small. There are various ways to accomplish this through
careful design of an experiment. For example, the small-
est possible activation samples could be used, consistent with
other experimental considerations. Extraneous material in the
environment could be minimized wherever possible, e.g., by
using a low-mass target assembly for the accelerator-produced
neutron source. Room-return background could be reduced by
irradiating the samples as far from laboratory walls, vacuum
pump assemblies, etc., as possible. When such measures are
not feasible, an experimenter must do as good a job as possi-
ble in calculating the required corrections and estimating their
uncertainties. It may be necessary to accept larger uncertain-
ties in the experimental results, as a consequence of requiring
these corrections, in order to compensate for unavoidably less
than optimal experimental conditions.

E. ‘Psychological” Errors

Experienced experimenters no doubt will have encountered
the following scenario at least once, and perhaps several times,
during their research careers: An experiment is completed.
The measured data have been analyzed, and the results from
the investigation have been determined. The experimenter will
undoubtedly proceed to compare these results with previously
reported values. If the results happen to disagree by a “no-
ticeable” amount from other reported, comparable data, the
investigator will face the uncomfortable situation of having
to decide what to do next. The anxiety experienced will be
even more severe if the new data appear to be inconsistent with
more than just one other data set. The temptation will be great

for the experimenter to pursue one or both of the following
steps: i) seek additional corrections to apply to the new data,
or enhance existing corrections, often with shaky justification,
so as to achieve better agreement with the other results; or, ii)
arbitrarily enhance the uncertainties for the new data to reduce
the discrepancy. Both steps are usually ill-advised. This is not
an issue of “uncertainty”, but rather one of “error”. Poenitz
referred to this as committing a “psychological error” [3, 65].

This section suggests a more reasonable (and certainly more
ethical) approach to dealing with this situation. It is neces-
sary to establish what is meant here by “discrepancy”. Ta-
ble I provides some guidance, since it is generally reasonable
to assume that comparable measured data should be normally
distributed. The likelihood that any single value should differ
from the ensemble of comparable results by more than three
combined standard deviations (i.e., considering the total un-
certainties of the alleged discrepant point as well as those to
which it is being compared) is less than 1%. Since three-sigma
occurrences are rather unlikely for a normal distribution, one
must suspect that something could be wrong if a deviation of
this magnitude is observed. As mentioned earlier, this statis-
tical outcome does not automatically prove that the new data
are flawed. Nevertheless, the burden is on the present exper-
imenter to do something; the situation clearly cannot be ig-
nored. Reviewers will likely not let the matter pass unresolved
when the reported results are submitted for publication. The
experimenter should review the measurement and data analy-
sis procedures used in the experiment, as objectively as possi-
ble, to determine if something significant has been overlooked,
or if some mistake has been made. This is difficult to do un-
der the circumstances, but it is an important responsibility in
experimental work (although certainly not a pleasant one). It
is worthwhile to have an impartial colleague, whose experi-
ence and professional judgment the experimenter values, take
a fresh look at the situation. If this process does not resolve
the problem, or if it yields only a modest reduction in the dis-
crepancy, the investigator should examine details of the re-
sults reported by the other experimenters, wherever possible.
This could be done by studying the available documentation or
discussing the issue with the authors directly. It is especially
important to acquire a thorough understanding of the similari-
ties and differences of the various experimental methods, e.g.,
the apparatus employed, the calibration standards used, the
sample properties, efc. For example, this might uncover the
fact that different decay half-life and/or branching-ratio values
were used in analyzing the various data. If none of these steps
uncover the source of the problem, then the wisest course of
action for the investigator is probably to go ahead and report
his results as originally obtained, without arbitrarily applying
dubious corrections or enhanced uncertainties. However, it is
essential that the experimenter make an effort to carefully doc-
ument the details of this work, in order to guide future attempts
to resolve the discrepancy. Such discrepancies eventually do
become resolved, and valuable insight is gained along the way
to guide future work in the field.

A situation of some interest in the present context was re-
ported in the May 2011 issue of Nuclear News. The following
sentences are taken from an article in this magazine:
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“FermiLab’s Tevatron, in its final few months
before closure, has produced something that
does not conform to the consensus understand-
ing of the fundamental nature of the universe.”

“The study of collisions that produced W bosons
(associated with weak nuclear force) and jets of
smaller particles showed the later production of
electrons and muons well in excess of what would
have come from the decay of the W bosons, and
also from Z bosons (the collisions produce what
are referred to as ‘diboson’ events). Inferred from
the electrons and muons is a particle with mass
and other characteristics that are not predicted
by the standard model.”

“A key to this report is the extent to which error
and uncertainty can be determined. If an anomaly
can be shown to be at least five-sigma confidence
level, it is counted as a discovery. If it is one-
sigma, it is probably an artifact of experimen-
tal error. The CFD researchers have found that
what they have observed is three-sigma. If the
collisions in the Tevatron turn out to be ideal for
creating diboson events that give rise to this pre-
sumed new particle, the accelerator’s closure in
four months® could leave this phenomenon in a
[frustrating three-sigma limbo, neither confirmed
nor refuted”.”

* Nuclear News, American Nuclear Society, May
2011, p. 69.

T Note: Fermilab’s Tevatron was shut down on
September 30, 2011.

The distinction between “error’” and “uncertainty” is not made
clear in this article. The Fermilab research team apparently
obtained an experimental result which differed by three stan-
dard deviations from what would have been expected from the
standard model, based on their estimated experimental “uncer-
tainties” (not “errors”). In “Big Science” (research on impor-
tant fundamental physical questions at large, expensive facil-
ities), the criterion for being able to claim an unexpected dis-
covery is very strict. It requires that a measured result differ
by at least five standard deviations, based on estimated uncer-
tainties, from what would normally be expected, in order to
be considered a true “discovery”. Furthermore, the possibility
that this result could be the consequence of a random outcome
(a fluke) should be ruled out to a comparably high degree of
certainty. Research on fundamental physics issues of this na-
ture is a “high stakes” activity that is usually associated with
large budgets, professional career reputations, big egos, and
many technical support jobs being “on the line”. Therefore, it
is not surprising that a five-sigma requirement of confidence
is needed to convince the physics community that a discovery
that could win the Nobel Prize is actually real. For practical
reasons, it is reasonable to abide by the three-sigma test for
identifying discrepancies in the nuclear data field, rather than
the more severe five-sigma criterion just mentioned.

V. DOCUMENTING UNCERTAINTIES

Experimental results in the nuclear field are typically doc-
umented in reports, conference proceedings, journal articles,
and electronic communications and compilations. Each of
these (and experimenters will often resort to using more than
one for reporting their data) offers both opportunities and lim-
itations. For convenience the various possibilities for docu-
menting experimental results are grouped into two categories:
“publications” and “data compilations.” In the first category,
the material usually appears as printed hardcopy (although
these days electronic versions will normally also be available).
Included here are journal articles, conference proceedings, and
reports. The second category is almost always electronic (al-
though a few printed handbooks provide extensive tabulated
nuclear data information, e.g., [66]). It also includes formal
data compilations as well as informal communications, e.g.,
those privately distributed or posted on the Internet.

These two categories are distinguished in part by limitations
in the volume of information that can be presented. Covari-
ance data can be quite voluminous, since as many as n (n+1)/2
numerical values may be required to specify the uncertainties
for n reported experimental parameters. The volume of ma-
terial that can be provided in the category “publications” is
quite limited for practical reasons, whereas in principle there
are essentially no such limitations in the category “data com-
pilations”.

Another distinction between these categories pertains to
data accessibility. Convenient access to mean-value and co-
variance data in electronic form is important for nuclear data
evaluators, since they usually employ computer algorithms de-
signed to manipulate large volumes of numerical data. Data
that are available in printed form, but not electronically, are
much less useful for such applications, since it is difficult to
transcribe numerical information reliably from printed pages
to computer files. However, plots of these data (including 2-D
correlation plots) do tend to enlighten evaluators regarding the
quality of the data, and to reveal peculiarities.

Another important issue, and one over which experimenters
generally have little control, has to do with how long reported
data will be available to users. Experienced experimenters are
aware that many older printed reports are very difficult, if not
impossible, to obtain. As for journal articles, the major ones
are generally available from libraries, or on-line, for indefi-
nite periods, and they can be obtained without too much diffi-
culty. That is often not the case for lesser known journals. As
for electronic sources, on-line data must reside on a server at
some location. Whether or not they will continue to be avail-
able far into the future is unclear. It will depend on how well
the databases are maintained on these servers. Fortunately,
progress is being made in formally compiling and archiving
experimental data, and making it available on-line from data
centers, e.g., the EXFOR system [6].

It is important to indicate the essential information experi-
menters should be responsible for reporting, so that the results
of their work can be of potential value to data evaluators and
data users in the future. These include:
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o A sufficiently detailed description of the measurement
and data analysis procedures to enable data evaluators
and users to interpret and properly utilize the data.

e A clear specification of the standard reaction(s) used,
where applicable, and actual numerical values for these
standards. It is useful for experimenters to also provide
the derived cross sections based on the standard em-
ployed, as a supplement to the mandated reporting of
cross-section ratios (if that is what is determined in the
experiment). That way, adjustments for future revisions
in the standards may be applied easily, and the effects
of these changes can be ascertained. Also of great value
to data compilers and evaluators is specification of ex-
ternal parameters, such as decay branching ratios, half-
lives, efc., that may be applicable to the interpretation
and utilization of reported experimental results. Adjust-
ments to the data for changes in these parameters can
be made if the experiment documentation is sufficiently
detailed and clear.

o A description of the distinct sources of uncertainty.

o Tables of the partial and total uncertainties (most con-
veniently expressed in percent).

e Either a complete correlation matrix, or information on
the nature of any micro-correlations involved for the
various partial uncertainties, so that anyone who is in-
terested can construct a covariance matrix using the for-
mulas and procedures presented in this paper.

These requirements are consistent with those stated in a report
by Mannhart [4]. The relevant passage is:

“A complete description of the uncertainties of
an experiment can only be realized by a detailed
list of all the uncertainty components, their value
and a specification of existing correlations be-
tween the data. Based on such information the co-
variance matrix can be generated, which is nec-
essary for any further proceeding with the ex-
perimental data. It is not necessary, and (is)
not recommended, that an experimenter evaluates
this covariance matrix. The reason for this is
that an incorrectly evaluated final covariance ma-
trix can never be corrected if the details are not
given. (Such obviously wrong covariance matri-
ces have recently occasionally been found in the
literature). Hence quotation of a covariance ma-
trix is an additional step which should not oc-
cur without quoting a detailed list of the various
uncertainty components and their correlations as
well. It must be hoped that editors of journals will
understand these necessary requirements.”

As mentioned above, the extent to which these requirements
can be fulfilled through the various available conduits for doc-
umenting experimental results depends strongly on the volume
of information involved. This issue is discussed in more detail
in the following section.

A. Publications

Most scientists these days work in a “publish or perish” cul-
tural environment. There is a hierarchy of prestige associated
with the various documentation options. Journal publication
is at the top, conference papers in the middle, and laboratory
reports below that. Even in the category “journal publication”,
there exists a hierarchy of prestige that is well understood by
workers in the field. Contemporary perceptions of the rela-
tive worth of these documentation options in furthering a re-
searcher’s career stem from long standing traditions, as well as
from the perceived benefits to science of the peer review pro-
cess. All journal articles and many conference contributions
are peer-reviewed, whereas informal reports rarely are.

Unfortunately, the opportunities for reporting extensive un-
certainty information are rather limited for journal articles,
and they are especially limited for most conference papers.
If an experimenter wishes to gain the credit for reported work
that is afforded by publication in a refereed journal or confer-
ence proceedings, and insufficient space is available for doc-
umenting the experimental details and numerical data, then a
supplementary report can be prepared to document this infor-
mation for the benefit of interested users, including data com-
pilers. The space limitations are not as severe for reports, since
there is greater flexibility permitted in the manner of presenta-
tion. If space limitation happens to be a problem for a printed
report, then the results can be made available electronically
on the Internet using a readily accessible format. An example
of this would be the archived reports prepared by the IAEA
Nuclear Data Section (http://www-nds.iaea.org/publications/).
References to detailed documentation can be provided in a
journal article, conference paper, or widely distributed sum-
mary report.

If the number of data points produced by an experiment is
< 20, the reporting requirements specified above can gener-
ally be satisfied in a journal article (or perhaps even a confer-
ence paper). If the number of data points is < 100, it may
still be possible to document the necessary information in a
journal article, provided that techniques discussed in this pa-
per are used to minimize the number of uncertainty correlation
parameters required to define a covariance matrix. An exam-
ple is the work of Smith, Meadows, and Kanno (Example 15
of this paper) [50, 51]. In conference papers, experimenters
will normally have to resort to plots in order to present the
data generated by their work. Since this is of little practical
value to data users, it is imperative that the authors also make
their results available in more detail in a journal article, labo-
ratory report, or on the Internet. Accessibility is a key factor
in determining the potential usefulness of supplemental docu-
ments, i.e., those that are not formally published. Laboratory
reports that are available only in printed form, with limited
numbers of copies, or reports or Internet contributions where
access is impeded by administrative restrictions, tend to be
of limited value. The reporting of numerical values for data
sets exceeding ~ 1,000 data points is likely to be prohibitive
for all printed documents and most electronic versions. Even
for a few hundred to 1,000 data points, steps must be taken
to minimize the quantity of numbers required to specify the
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uncertainty correlations.

B. Numerical Data Compilations

There is no alternative to electronic documentation for ex-
periments involving more than ~ 1,000 data points. These
data can be distributed to users through local networks or
the Internet. Access to retrieval of this material can range
from open to tightly-restricted. Informal data sets are distin-
guished from formal data compilations in that they have not
been archived by experienced data compilers using standard
formats. As long as these numerical data are available as tables
of energies, cross sections, and various uncertainty compo-
nents (including correlations), using ASCII coding, users may
find the information to be useful for plotting and other applica-
tions. Informal data collections also provide a convenient way
for experimenters to back up the results of their experiments
in private files, to share their results with selected colleagues
prior to formal release, or to transmit the data to compilers at
data centers. However, informal data collections will gener-
ally not be very highly valued by data evaluators for two rea-
sons. First, they may not be easy to find, either locally or from
the Internet, except through private communication with the
authors. Second, evaluators generally prefer to work with data
that have been vetted by experienced data compilers, and that
have been archived in libraries using standard formats so they
can be retrieved and handled with well-established computer
routines. Experimenters should understand that their results
will be of value in contemporary applications only if they are
“packaged” in a way that enables data users to readily access
and manipulate them. Data users need to have confidence that
the data they use are of decent quality. For this reason, they
turn to formal data compilations, e.g., EXFOR [6], in order to
be assured that the data they use have been subjected to some
degree of quality control applied by experienced data compil-
ers.

C. An Overview of EXFOR

A widely-available and unrestricted compilation of ex-
perimental nuclear reaction data is the EXFOR (EXchange
FORmat) library. This library was developed to provide
stewardship for the database of experimental nuclear-reaction
cross sections [6]. It is maintained and updated as a coop-
erative endeavor involving several nuclear data centers, i.e.,
the International Network of Nuclear Reaction Data Cen-
tres (NRDC) [67]. The world is divided into geographical
regions, with different data centers assigned responsibility
for providing nuclear data services to users in their respec-
tive regions, and also for compiling experimental data gener-
ated in these regions for inclusion in EXFOR. These centers
constitute the aforementioned NRDC (e.g., see http://www-
nds.iaea.org/nrdc/) [67]. Producers of experimental data
should contact the appropriate data center for their region
when submitting new data to be compiled. Anyone seeking
nuclear data can easily access a wide range of information, and

benefit from other provided nuclear data services, at those data
centers that offer open access to their data and other services
via the Internet. By mutual agreement, members of the NRDC
maintain up-to-date mirror images of the EXFOR data library
content at their Internet sites. The EXFOR library continues
to grow in content, and improve in quality, as new data are
measured, reported, and compiled, as errors in archived data
are discovered and corrected, and as new options for compil-
ing and disseminating these data are developed and approved
by the NRDC network. Some features of the EXFOR data
library, especially those pertaining to experimental nuclear re-
action data uncertainties (covariances), are discussed in the
following three sections.

Some experimenters may not be familiar with how the flow
of information from data producers to eventual data users oc-
curs, within the contemporary environment where the EXFOR
library plays a role. Fig. 6 is a flow chart of the process that is
discussed in more detail below.

2
Expt'l Data Producer —>

J1 3 4

Expt'l Data Compilers €

v5 :
EXFOR Library (x4) | _»|  ExptlData Users
(casual inspection, etc.)
16

Computational Formats | 9
(C4, C5, etc.)

l8

Nuclear Data Evaluators

}10

Evaluated Data Libraries
(ENDF, JEFF, JENDL, etc.)

J12

Processed Evaluated Data
Libraries (NJOY, PUFF, etc.)

Publication (Journal, etc.)

Expt'l Data Users (plots,
limited data applications)

—_
—_

Evaluated Data Users
(limited data applications)

-
w

Evaluated Data Users
(advanced applications)

FIG. 6. The flow of data from experiment to users. Green: Ex-
perimental data are produced from measurements. Blue/Grey: Ex-
perimental data are archived as provided. White: Data are compiled
and/or evaluated. Yellow: Original data are manipulated, evaluated,
and processed. Orange/Brown: Data are available to potential users.

When an experiment is completed, an experimenter has var-
ious options for disseminating the generated information. It
could be included in a formal data compilation. Fig. 6 im-
plies that this would be the EXFOR library [6]. The data
could be transmitted directly to the appropriate regional nu-
clear data center [67] where it would be compiled (Path 1)
and archived in the EXFOR library (Path 5). Here, the term
EXFOR is used to refer to both the library and the format sys-
tem used to compile data in this library. Sometimes “X4” is
used as a shorthand symbol to signify EXFOR. The EXFOR
formats are described in the EXFOR Formats Manual [6]. In-
terested users can access EXFOR data on-line directly from
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data centers (Path 7). It is also likely that these data will be
published by the experimenter, either in a report, conference
paper, journal article, or possibly in more than one such out-
let (Path 2). If these data are not transmitted directly from the
experimenter to a data center, then compilers at these centers
can - and normally will - extract the data from publications
and compile them in EXFOR (Path 3). Surveying the liter-
ature for new data is an on-going task for data center com-
pilers. Users can also acquire data directly from publications
if they choose to do so (Path 4). Within the EXFOR system
there exist utility codes that can process data from the EX-
FOR format to produce the Computational formats, either C4
formatted files [68, 69] or, more recently, files in the newer C5
format [70]. C4 includes values of parameters and their to-
tal uncertainties (if available). C5 includes the same informa-
tion as C4, but there are two additional columns, where total
statistical and total correlated (systematic) uncertainties can
be provided (if available). An approximate covariance matrix
can be constructed from C5 data entries by making the sim-
plified assumption that the total systematic uncertainties are
fully (100%) correlated. Experimental data in the C4 and C5
formats are more convenient for automated operations such as
plotting, evaluation, efc., than data in the EXFOR format (Path
6) [69]. Much of the text information recorded in EXFOR is
stripped out in converting data from the basic EXFOR compi-
lation format to C4 or CS5, leaving only the essential numbers
and descriptions (e.g., experimenters, reaction types, energies,
cross sections, and uncertainty information) needed for plot-
ting, evaluations, and other applications. Users can also obtain
files of processed data from the data centers (in either the C4
or C5 formats) in the same manner as for EXFOR format-
ted data (Path 9). Nuclear reaction data evaluators consider
both experimental data and nuclear-model-calculated data in
performing evaluations, i.e., in generating recommended val-
ues. Acquisition and manipulation of experimental data from
the data centers (in either C4 or C5 formats) is often han-
dled automatically by the software used in the evaluation pro-
cess (Path 8). The results from these evaluation efforts will
eventually appear in libraries of evaluated nuclear data, e.g.,
ENDEF/B [7], JEFF [8], or JENDL [9] (Path 10). These evalu-
ated data are benchmarked for quality assurance purposes by
comparisons of calculated (C) and experimental (E) integral
quantities (C/E ratios) for well-known and carefully charac-
terized integral nuclear systems (data validation). Information
from these evaluated libraries can also be acquired by users
directly from the data centers. For example, evaluated data
files can be downloaded from the Internet, or these data can be
examined through on-line utilities (Path 11). Most advanced
nuclear data users (e.g., reactor physicists) require evaluated
data that have been further processed (i.e., manipulated into
specialized group or point data formats) so that they can be
employed by the computer codes which are employed to sim-
ulate complex nuclear systems. Examples of such nuclear sys-
tems would be nuclear power reactors or zero-power integral
nuclear assemblies. Data processing codes such as NJOY [54]
or PUFF [55] perform the task of producing these processed
evaluated-data libraries. These processed libraries are derived
from evaluated nuclear data obtained from the nuclear data

centers (Path 12). Processed data libraries are usually included
with software (e.g., MCNP [71]), acquired from code centers
such as RSICC [72] (Path 13).

Clearly, the paths from measured data to advanced applica-
tions of these data can be quite complicated, involving con-
siderable data manipulation and assessment by compilers and
evaluators along the way. The point made earlier in this paper
that experimental results are rarely used directly in contem-
porary applications is substantiated by the process outlined in
Fig. 6.

D. EXFOR Covariance Formats

The current EXFOR formats applicable to experimental nu-
clear data correlations were initially designed by the NRDC
as an outcome of discussions held during the 1980’s [73-75],
following the Workshop on Evaluation Methods and Proce-
dures held at Brookhaven National Laboratory during Septem-
ber 1980. The approved formats and procedures that evolved
from this work are defined in the EXFOR Formats Manual
and EXFOR Compiler’s Manual (LEXFOR) [32]. These doc-
uments are readily available on-line from the JAEA Nuclear
Data Center, and they are updated periodically as required.
The reader can examine these documents, in conjunction with
reading this section of the present paper, to gain a broader view
of the data compilation capabilities available within the frame-
work of this system. This paper focuses mainly on format is-
sues associated with the compilation of nuclear reaction data
uncertainties. They are illustrated using entries taken from the
EXFOR library.

The earlier format options (i.e., those in force prior to 2012)
enabled experimental data-point values (cross sections, ra-
tios, efc.) to be compiled along with corresponding constant
or variable “statistical” uncertainties (under the data heading
ERR-S) as well as several “systematic’’ uncertainty components
(under the data headings ERR-1, ERR-2, ...). Furthermore, it has
been possible to record constant micro-correlation coefficients
Cygko, defined in Eq. (46), under the keyword ERR-ANALYS. If
a variable macro-correlation coefficient was provided, it was
recorded under the keyword COVARIANCE in the same EXFOR
entry, or in a separate covariance file.

However, as seen in Example 15, information on uncertain-
ties for individual data sets compiled in the EXFOR library
have not always been complete. Some problems encountered
by compilers are:

e Values of “total uncertainty” have often been supplied
by experimenters to compilers without providing partial
uncertainties.

e Lists of the ranges of partial uncertainties (e.g., as in
Table V) have often been submitted by the original ex-
perimenters without providing partial uncertainty val-
ues for each of the data points. Consequently, some
compilers have coded the upper and lower boundaries of
these given uncertainty ranges as just two constant par-
tial uncertainties. This is wrong and very misleading. It
demonstrates how the original intent of experimenters
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can be perverted in compiling the data due to faulty or
nonexistent communication between data producers and
data compilers.

Only one data heading (ERR-S) was available earlier in
the EXFOR format options for “statistical uncertainty”.
Of course, there can be two or more distinct sources of
statistical uncertainty for most experiments, e.g., count-
ing statistics for the reaction sample as well as for the
monitor sample. This is not a fatal limitation of EX-
FOR, since statistical uncertainties from various exper-
imental sources can be combined into one value for a
single data point without creating any problems in con-
structing a full covariance matrix. However, data center
compilers are not permitted - according to agreed-upon
policy - to combine several uncorrelated uncertainties
for individual data points into overall uncorrelated un-
certainties without obtaining explicit permission from
the experimenters.

Only constant values for micro-correlation coefficients
could be stored in a computer-readable form in the
earlier EXFOR formats. This option has been ex-
ploited for the compilation of only two experimental
works [76, 77], where 0.5 (moderate correlation) was
assigned for some sources of uncertainty correlation, ac-
cording to the “Occam’s Razor” principle [41]. This is
further evidence of the fact that very few experimenters
appear to be generating detailed uncertainty correlation
information for their data sets.

If a particular correlation coeflicient is specified by an
experimenter to vary across a given data set, knowl-
edge of this fact can be recorded under the keyword
COVARIANCE as free text. However, this information is not
amenable to automatic access from the EXFOR library
by computer programs.

Variations in the usage and interpretation of uncertainty
terminology often create difficulties for compilers in de-
ciding how to handle uncertainty data provided by ex-
perimenters. The earlier EXFOR formats defined two
types of uncertainty sources: “statistical” and “system-
atic”. However, a variety of terms relating to uncer-
tainties appear in actual publications, e.g., “random”,
“relative”, “absolute”, “shape”, etc. Compilers are then
faced with judging whether a given uncertainty value is
“statistical” or “systematic” for the purpose of data en-
try into the EXFOR library. Also, usage of the term
depends on the individual experimenters. For exam-
ple, some experimenters use “relative uncertainty” in
the context of the fractional uncertainty, but this is not so
for other investigators. These ambiguities led to adop-
tion of the generic data headings DATA-ERR, DATA-ERRI,
DATA-ERR2, efc., with the consequence that the given in-
formation in EXFOR is generally not sufficiently infor-
mative for detailed uncertainty analyses, i.e., construc-
tion of the full data covariance matrices.

CLIT3
il

The first two problems could be addressed - consistent

with the constraints of the earlier EXFOR formats - if experi-
menters simply provided actual values for all the partial uncer-
tainties associated with each data point. Resolution of the third
and fifth problems mentioned above required that some modi-
fications be made to the EXFOR formats. Also, the C5 format
was introduced to augment the C4 option. These changes were
approved by the NRDC network and adopted in 2012.

However, the final problem cited above can only be ad-
dressed (even considering the recent enhancements to the EX-
FOR formats) by direct contact between individual experi-
menters and data center compilers. It is clear, from the mate-
rial presented in this paper, that the detailed characteristics of
specific micro-correlations generated by experimenters should
be specified and communicated to compilers in order to enable
construction of proper full covariance matrices. Otherwise,
EXFOR compilers are forced to make assumptions about these
correlations. Furthermore, the EXFOR formats must allow
recording of this provided information as coded data (i.e., not
simply as free descriptive text). Those modifications to the
EXFOR formats that have been adopted in 2012, although they
do not address every possible situation that might be encoun-
tered, do significantly enhance the capabilities of the EXFOR
system to compile experimental data uncertainty information.
Also, they have been designed so that they do not jeopardize
the ability to handle data already compiled under the earlier
EXFOR formats. In other words, the changes made provide
enhancements but they do not introduce incompatibilities with
the existing options (i.e., they are “backward compatible”).
The main changes that have been made are:

e The designations “statistical” and “systematic” should
be avoided in future compilations. Instead, various un-
certainty sources for an experiment are to be character-
ized by their correlation properties, as mentioned above.
All partial uncertainties ey in Eq. (46) will be coded in
EXFOR under the data headings ERR-1, ERR-2, efc., un-
less more specific data headings are defined in the dic-
tionary (e.g., MONIT-ERR for the uncertainty in the stan-
dard cross section, ERR-D for uncertainty due to digitiza-
tion by the compiler, efc.).

However, to retain compatibility with the existing EX-
FOR coded entries (prior to 2012), the ERR-S and ERR-SYS
options are retained. In the revised EXFOR formats
they mean “total statistical” uncertainty or “total sys-
tematic” uncertainty, without additional details being
provided about their origins. Similar steps have been
taken to insure compatibility between the C5 formatted
files and the C4 formatted files.

Correlation properties in the updated EXFOR formats
are indicated under the fourth field of the keyword
ERR-ANALYS by the following correlation property flag op-
tions: F (“Fully correlated), P ("Partially correlated”),
C (“Correlated”, but its strength is unknown), or U
(“Uncorrelated”). Note that the three flag options, F,
P, and U, correspond to cygg = 0, 0 < cyu9 < 1, and
cygko = 1 in Eq. (46). The first and third flags were
coded as constant micro-correlation factors in the ear-
lier EXFOR formats.
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e The indicated correlation properties described in these
formats are valid within one particular data set (typi-
cally, a data table in one subentry). That is, two data
tables compiled by two different REACTION identification
codes, and/or two different subentries, will be treated as
independent.

When a partial uncertainty is defined with the correlation
property flag p, the energy-dependent micro-correlation coef-
ficients (or partial covariance matrix) cyz s are required to con-
struct macro-correlation coefficients properly, and they can be
coded under cOvARIANCE. Note that flags U and F signify that
all micro-correlation coefficients are 0 and 1, respectively,
so it is not necessary to record these numerical coefficient
values explicitly. In addition to the micro-correlation coeffi-
cients, macro-correlation coefficients can also be coded un-
der covarIANCE. This is especially useful when the authors give
only macro-correlation coefficients, without information on
micro-correlations. Finally, when the data set contains n data
points, the size of each matrix coded under COVARIANCE is al-
ways n’. However, only lower triangle elements are coded in
EXFOR, since covariance matrices are always symmetric.

If uncertainty values e, are defined with the flag F, p, or
U, and ¢y is explicitly given for the all sources defined with
p, EXFOR users may construct the full covariance matrix ac-
cording to Eq. (46).

It should be stressed that it is not a requirement for indi-
vidual experimenters to submit their results to the data cen-
ters in EXFOR format. The regional centers normally receive
the numerical data files from experimenters, and the compil-
ers then prepare EXFOR entries. There are no specific format
requirements for submission of these data other than for them
to be easily readable by compilers, preferably electronically.
However, an on-line template is available at the IAEA Nuclear
Data Section website to facilitate uploading the data directly
by experimenters who are served by this particular center [70].
Although compilation of data for the EXFOR library is the
explicit responsibility of data center compilers, some exper-
imenters may wish to code their data using EXFOR formats
(guided by the EXFOR Formats Manual [32]) prior to submis-
sion to their respective data center, so as to minimize potential
misunderstandings. This, of course, is not discouraged, but ex-
perimenters should be aware of the fact that their submissions,
regardless of the approach chosen, will be examined by EX-
FOR compilers at the center to which they submit their data.
Furthermore, all EXFOR coded files are screened by checking
codes for format and physics errors (e.g., conservation laws,
consistent dimensions, efc.) for all components of the submit-
ted data, not just uncertainty information, before inclusion in
the EXFOR library.

Further enhancements to the EXFOR and C5 formats are
currently being discussed by the data compiler community and
the software developers, but these have not been adopted by
the publication time of this paper [78].

E. Samples from EXFOR

Five coding samples are presented in this section to illus-
trate the features and general appearance of typical EXFOR
entries generated using the new EXFOR formats [32]. In all
of the following samples, the line number designations that ap-
pear in files downloaded from EXFOR have been eliminated
so that a larger font could be used to enhance readability of
the essential information. The reader should also be aware
that the sample entries appearing below are often incomplete
in the interest of saving space.

Sample 1: Ratio of >'V(n,p)°>' Ti-to->3U(n, f) cross sections
for fast neutrons [50, 51]

This EXFOR coding sample involves > V(n,p)>! Ti activation
cross sections measured relative to the 2>U(n, f) standard at
45 incident neutron energies (18 points using the "Li(p,n)’Be
neutron source and 27 points using the >H(d,n)*He neutron
source). This experiment is discussed in more detail in Exam-
ple 15 of this paper. These data are compiled with the total
uncertainty given, as well as 17 partial uncertainties, of which
seven sources are treated as uncorrelated, eight sources are
treated as fully correlated, and two sources are treated as par-
tially correlated. For the last two sources, micro-correlation
coefficients are expressed as functions of the magnitude of the
energy difference between two data points (AE), as specified
by the experimenters, under the keyword covarRIANCE. Evalua-
tors can therefore construct the full covariance matrix based
on this clearly stated assumption.

SUBENT 12898002 20120710

BIB 4 32

REACTION  ((23-V-51(N,P)22-TI-51,,SIG)/(92-U-238(N,F),,SIG))
FLAG (1.) 7Li(p,n)7Be source

(2.) 2H(d,n)3He source
ERR-ANALYS Uncertainty due to orientation of sample for counting
was treated as negligible.

(ERR-T) Total uncertainty

(ERR-S) Total random uncertainty in ratio
(ERR-SYS) Total systematic uncertainty

(ERR-1,,,U) Exposure, waiting and counting times(0.2%)
(ERR-2,,,U) 0.320-MeV gamma ray yield (0.3-47.8%)
(ERR-3,,,U) Fission yield (0.7-1.5%)
(ERR-4,,,U) Extrapolation correction (1-2%)

(ERR-5,,,U) Background fission correction (<3%)

(ERR-6,,,U) Background activation (0.2-1.2%)
(ERR-7,,,U) Geometric corrections (1.5%)
(ERR-8,,,F) 51Ti decay half life (0.1%)

(ERR-9,,,F) 238U content of monitor deposit (2%)
(ERR-10,,,F) 51V content of samples (0.2%)
(ERR-11,,,F) Uranium deposit thickness correction(®.8%)
(ERR-12,,,F) Gamma-ray counting efficiency (2.4%)
(ERR-13,,,F) 51Ti gamma-ray decay branch factor (1%)
(ERR-14,,,P) Neutron source properties (2%)
(ERR-15,,,P) Neutron scattering corrections (1.4-2.1%)

(ERR-16,,,F) Geometric corrections (1.5%)
(ERR-17,,,F) Average neutron energy (0.5-19.5%)
COVARIANCE ERR-14:
No correlation between p+7Li and and d+D points.
Otherwise correlation coefficient=100-10 dE
(dE: energy difference in MeV)
ERR-15:
Correlation coefficient=100-10 dE
(dE: energy difference in MeV)
ENDBIB 32 0
COMMON 10 6
ERR-1 ERR-7 ERR-8 ERR-9 ERR-10 ERR-11
ERR-12 ERR-13 ERR-14 ERR-16
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is coded as a fully correlated partial uncertainty under the
heading ERR-1. The macro-correlation coefficient between the
highest and lowest neutron energy data points can be calcu-
lated as (2.11)2/(4.26)/(3.15) = 0.332 as discussed earlier in
this report. Note that only uncertainties utilized to generate
the covariance matrix are treated as coded information (i.e.,
computer-readable), and other values (e.g., uncertainty in the
monitor cross section) are treated as free text information. The
authors treat all off-diagonal elements of the 2¥U(x, f) monitor
cross section relative covariance matrix as negligible, and the
uncertainty (1.5%) is treated as an uncorrelated uncertainty.
Namely, the covariance matrix of the primary cross-section
ratios is obtained by subtracting the 1.5% uncertainty com-
ponent from the diagonal elements of the relative covariance
matrix of the absolute cross section.

SUBENT 22976002 20120710
BIB 3 14
REACTION  (12-MG-24(N,P)11-NA-24,,SIG)

ERR-ANALYS (EN-ERR) Error of the energy scale (20 keV)
(ERR-T,,,P) Total uncertainty

- 238U(n,f) monitor cross section (1.5%)
- 238U deposit mass (0.6%)
- Photon detector calibration (1.5%)
- 24Mg isotopic content (0.04%)
- 25Mg isotopic content (0.01%)
- Half-life (0.0012 hr)

(ERR-1,,,F) Fully correlated uncertainty (2.11%)

COVARIANCE The fully correlated portion of the uncertainty is
given as ERR-1 and enables, in combination with the
ERR-T values, the generation of the complete
covariance matrix

ENDBIB 14 0

COMMON 2 3

EN-ERR ERR-1

KEV PER-CENT
20. 2.11

ENDCOMMON 3 0

DATA 4 26

EN EN-RSL-FW DATA ERR-T

MEV MEV MB PER-CENT
14.740 0.091 166.3 4.26
14.147 0.093 197.6 4.17
13.609 0.096 210.5 4.03
13.425 0.097 213.5 3.93
13.187 0.099 182.7 3.79
12.976 0.099 194.2 3.78
12.703 0.100 188.7 3.67
12.446 0.101 196.7 3.63
12.273 0.101 171.4 3.56
12.116 0.101 164.5 3.58
11.839 0.104 168.4 3.43
11.654 0.106 190.6 3.47
11.399 0.109 168.7 3.41
11.223 0.110 164.6 3.42
10.998 0.112 153.8 3.29
10.751 0.113 159.0 3.26
10.551 0.115 152.9 3.22
10.264 0.120 155.2 3.23
10.069 0.123 147.4 3.28
9.837 0.126 132.9 3.29
9.547 0.131 134.8 3.20
9.265 0.136 117.0 3.22
9.111 0.139 127.6 3.24
8.907 0.144 121.0 3.19
8.556 0.150 113.6 3.21
8.334 0.155 118.1 3.15

ENDDATA 28 0

ENDSUBENT 51 0

Sample 3: 21 Am(n,2n)**°Am cross sections for fast
neutrons [79, 80]

This EXFOR coding sample pertains to 2*' Am(n,2n)*** Am
activation cross sections measured at nine incident neutron en-
ergies, with the total uncertainty as well as nine partial uncer-
tainties provided. Four sources are treated as uncorrelated,
three sources are treated as fully correlated, and two sources
are treated as partially correlated. For the last two sources
(MONIT-ERR and ERR-5), matrix elements of micro-correlation
coeflicients are explicitly given under the keyword COVARIANCE.
Therefore, EXFOR users can derive the full covariance ma-
trix. In addition to micro-correlation coefficients, the macro-
correlation coefficients are also coded explicitly. Derivation of
macro-correlation coefficients from micro-correlation data are
described in Appendix B of Ref. [80].

SUBENT 23114002 20120710
BIB 3 43
REACTION (95-AM-241(N, 2N)95-AM-240, ,SIG)

ERR-ANALYS (ERR-T,,,P) Total uncertainty
(MONIT-ERR,,,P) 27Al(n,a) standard x-section (1.6-5.4%)

(ERR-1,,,U) Counting of 240Am activity (1.4-6.3%)
(ERR-2,,,U) Counting of 24Na activity (0.7-2.0%)
(ERR-3,,,F) Intensity of 240Am gamma line (1.2%)
(ERR-4,,,U) Number of 27Al1 in sample (0.1%)
(ERR-5,,,P) Number of 241Am in sample (0.3%)
(ERR-6,,,F) 24Na/240Am efficiency ratio (3.0%)

(ERR-7,,,F) Correction for decay of 240Am (0.4-0.9%)
(ERR-8,,,U) Correction for second. neutron (<1.4%)
COVARIANCE (XY,9,EN,MEV) incident neutron energy
8.34 9.15 13.33 16.1 17.16 17.9 19.36 19.95 20.61
(Z,45,COR:ERR-T,PER-CENT) macro-correlation
100

30 34 44 45 58 59 51 100
20 22 29 30 40 42 39 65 100
(Z,45,COR:MONIT-ERR,PER-CENT) micro-corr. (standard)
100
43 100
0 100
6 100
9 12 160
12 100 100
11 11 40 40 160
11 11 40 40 100 100

=]
= ]
=
=

0 11 11 40 40 100 100 100
(Z,45,COR:ERR-5,PER-CENT) micro-corr. (sample mass)
100

0 100

0 100 100

0 100 100 100
0 0 0 0 100

100 0 0 0 0 100
0 0 0 0 100 0 100
0 0 0 0 0 0 0 100
100 0 0 0 0 100 0 0 100
ENDBIB 43 0
COMMON 4 3
ERR-3 ERR-4 ERR-5 ERR-6
PER-CENT  PER-CENT  PER-CENT  PER-CENT
1.2 0.1 0.3 3.0
ENDCOMMON 3 0
DATA 6 9
EN DATA ERR-T MONIT-ERR ERR-1 ERR-2
MEV MB PER-CENT  PER-CENT  PER-CENT  PER-CENT
8.34 96.8 6.5 1.9 5.0 1.0
9.15 162.9 5.7 1.9 4.0 1.0
13.33 241.8 4.6 1.6 2.5 1.0
16.1 152.4 4.6 2. 2.1 1.0
17.16 116.1 4.4 2. 1.5 1.0
17.9 105.7 4.4 2.2 1.3 0.7
19.36 89.5 8.2 3.1 6.3 2.0
19.95 102.1 5.8 4.1 1.4 1.0
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20.61 77.9 8.8 5.4 5.7 1.6 SUBENT 23077002 20110128

ENDDATA 11 ) BIB 4 11

ENDSUBENT 63 0 REACTION  (48-CD-O(N,TOT),,TRN)

Sample 4: Ratio of **Th(n, f)-to->>Ul(n, f) cross sections for
fast neutrons [81]

This EXFOR coding sample expresses data for 23>Th(n,f)
cross sections relative to the 28U(n,f) standard at four inci-
dent neutron energies, with the total uncertainty and four par-
tial uncertainties provided for each point. Correlation prop-
erties are not given by the experimenters, and only the up-
per boundaries of uncertainties are stated for two sources.
Macro-correlation coefficients are coded under the keyword
COVARIANCE.

SUBENT 22282002 20120723
BIB 3 14
REACTION  ((90-TH-232(N,F),,SIG)/(92-U-235(N,F),,SIG))

ERR-ANALYS (ERR-T,,,P)
(MONIT-ERR)

Total uncertainty
235U(nf) monitor cross section (4%)

(ERR-1) Number of U-235 atoms (1.47%)
(ERR-2) Number of Th-232 atoms (1.64%)
(ERR-3,,0.887) Fission rate ration (<0.887%)
(ERR-4,,0.276) Correction factor (<0.276%)

COVARIANCE (XY,4,EN,MEV)
13.47 14.00 14.46 14.89
(Z,10,COR:ERR-T,PER-CENT) Macro-corr. coefficients

100
87 100
86 87 100
87 87 87 100
ENDBIB 14 0
COMMON 3 3
MONIT-ERR ERR-1 ERR-2
PER-CENT  PER-CENT  PER-CENT
4. 1.47 1.64
ENDCOMMON 3 0
DATA 4 4
EN EN-ERR DATA ERR-T
MEV MEV NO-DIM PER-CENT
13.47 0.18 0.150 2.41
14.00 0.06 0.158 2.38
14.46 0.16 0.166 2.37
14.89 0.29 0.181 2.38
ENDDATA 6 0
ENDSUBENT 29 0

Sample 5: " Cd+n transmission data in the resonance
region [82]

This EXFOR coding sample gives "Cd+n high-resolution
transmission data in the resonance region, with the total un-
certainty as well as five partial “uncertainties” provided, of
which one source is treated as uncorrelated, while five sources
are treated as fully correlated. Five energy-dependent “uncer-
tainties” are AGS code vectors [83]. It is possible to construct
the full covariance matrix considering one source (ERR-2) as
uncorrelated and the other five partial uncertainty sources as
fully correlated. This can be accomplished utilizing the pre-
scriptions described in Ref. [83]. More detailed explanations
about the time-of-flight spectra and their covariances in the
EXFOR library are seen in Ref. [84-86].

MISC-COL (MISC1) Width of time-of-flight bin

(MISC2) Uncorrelated uncertainty squared

ERR-ANALYS (ERR-T,,,P) Total uncertainty
(ERR-1,,,F) Normalization uncertainty (0.5%)
(ERR-2,,,U) Uncorrelated uncertainty
(ERR-3,,,F) Correlation dead time correction (sample)
(ERR-4,,,F) Correlation background correction (sample)
(ERR-5,,,F) Correlation dead time correct. (open beam)
(ERR-6,,,F) Correlation background correct.(open beam)

COVARIANCE Compiled in ERR-2 to ERR-6 in the AGS format

ENDBIB 11 0

COMMON 1 3

ERR-1

PER-CENT
0.5

ENDCOMMON 3 0

DATA 12 3

EN TOF-MIN TOF-MAX MISC1 DATA ERR-T

ERR-2 MISC2 ERR-3 ERR-4 ERR-5 ERR-6

EV NSEC NSEC NSEC NO-DIM NO-DIM

NO-DIM NO-DIM NO-DIM NO-DIM NO-DIM NO-DIM
4.79930E+0  873301.2  873429.2 128.0 1.14780E+0 6.65562E-2
6.65376E-2 4.42725E-3 1.33447E-5-9.12646E-4-1.37145E-5 1.28552E-3
4.79790E+0  873429.2  873557.2 128.0 9.70250E-1 5.63176E-2
5.63021E-2 3.16993E-3 1.09942E-5-8.47529E-4-1.16680E-5 1.00913E-3
4.79649E+0  873557.2  873685.2 128.0 1.04716E+0 6.01241E-2
6.01078E-2 3.61295E-3 1.19256E-5-8.59307E-4-1.26779E-5 1.10425E-3

ENDDATA 10 0

ENDSUBENT 30 0

VI. SUMMARY

This paper discusses the basic principles of uncertainty
analysis, as applied to measured nuclear reaction data. Prop-
erties of underlying probability distributions that influence
the measurement of primary physical parameters are consid-
ered. Two approaches to propagating uncertainties from mea-
sured variables to derived results are described: deterministic
and stochastic (Monte Carlo). Various schemes and approx-
imations that can be used to deal with uncertainty data are
mentioned. The application of these techniques to estimat-
ing and specifying uncertainties in experimental results is dis-
cussed and illustrated by simple examples. The importance of
documenting experiments is stressed. Issues associated with
documentation are addressed, including a discussion of fea-
tures of various information dissemination options. Processes
whereby experimental data are compiled, evaluated, and ulti-
mately utilized in contemporary nuclear applications, are out-
lined. Special attention is given to the EXFOR library, since it
is a widely used vehicle for documenting experimental nuclear
reaction data. Samples are given of covariance data recorded
in EXFOR.
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