
115

WP2000-16

RELATIONAL DATABASE AND JAVA TECHNOLOGIES FOR NUCLEAR DATA –
Preliminary Report

R. Arcilla, D. Winchell, Y. Sanborn

National Nuclear Data Center
Brookhaven National Laboratory

Upton, New York 11973-5000

August 4, 2000

Introduction

The National Nuclear Data Center (NNDC), in cooperation with Clark University, has been
investigating the use of relational database and Java technologies for the administration and
dissemination of nuclear data.

Commercial relational database management systems (RDBMS) using the Structured Query
Language (SQL) are widely used in the business world. As a result, the technology is mature and
well supported, and a wide variety of auxiliary tools are available. Because of this, an RDBMS
approach to nuclear databases might afford several advantages over the software used presently.
Furthermore, the automatic replication and synchronization capabilities of these systems promise
to improve the efficiency and reliability of data exchange among the cooperating data centers.

This report presents the preliminary results of the evaluation of SQL-compliant relational
database management systems and the Java platform. Criteria considered include speed, ease of
use, cross-platform capability, support, and cost. The ability to re-use legacy programs was also
investigated. Both commonly used database programs such as Microsoft Access and pure Java-
based database systems were tested. The report concludes with a recommendation on the best
migration strategy for existing nuclear databases. A final, detailed report will be completed in
July 2000.

116

Methods of Evaluation

Database systems

An initial investigation of RDBMS technology was made by porting the entire Nuclear
Science References (NSR) database to the Microsoft SQL-Server RDBMS. A web interface to
this instance of NSR was developed and is publicly available via the NNDC homepage. Other
databases, notably the NNDC Adlist database, were also ported to RDBMS systems for testing
purposes.

In order to evaluate several database products using the same underlying data, a subset of
NSR was used. In particular, three complete tables from the database were used. Details are
given in the “Results” section and the appendices.

The following RDBMS packages were tested:
• Microsoft SQL-Server V7.0
• Sybase Adaptive Server Anywhere V7.0
• Microsoft Access 2000
• PointBase V3.1GA
• Cloudscape V3.0

The last two of these are based on the Java programming language and are platform-
independent; the first three were run under the Windows NT operating system. A set of identical
queries in SQL format was performed on each of the databases.

Java Optimizing Compilers

Computer industry studies show that a Java application compiled into native code will run 10
to 50 times faster than the interpreted Java byte code. At present, Compaq is developing an
optimizing compiler for Java that should run under OpenVMS. This compiler will not be
available until after July 2000. In order to test the concept, the compiler TowerJ from Tower
Technology Corporation was used to compile parts of the Cloudscape database program on
Windows NT.

Legacy Codes

There is a large body of legacy software associated with the databases maintained at the
NNDC, and duplicating all of the functionality of these codes by writing new software would
make the cost of migration prohibitive. However, it should be possible to re-use most legacy
code, replacing only database calls. To test this, software routines were written to replace Fortran
database access subroutines with calls to external Java programs. These Java programs can then
access remote databases using a Java Database Connectivity (JDBC) package. The concept was
tested by converting the NSR retrieval program NSRRET, running on OpenVMS, to access a
remote RDBMS version of NSR running on a Windows machine. A figure illustrating this
process is shown in Appendix A.

117

Results

Database systems

Details of the benchmark tests and results are given in Appendix B. In summary, the non-
Java databases were found to be comparable in speed and size, while the Java-native software
was much slower. In and of itself this result is not surprising, as Java is known to sacrifice some
speed and power in order to be platform-independent. However, the degree to which the Java
software is slower makes it unusable for our purposes, as it stands.

Java Optimizing Compilers

At the time of this writing, only about two-thirds of the required Java classes had been
compiled using TowerJ. Because key classes were still interpreted and dynamically loaded at run
time, the results for the “semi-compiled” database were no better than for the pure interpreted
Java.

Legacy Codes

The converted program NSRRET was found to run somewhat more slowly than the original
version, but not excessively so. Several bugs remain in the converted program, but it has been
demonstrated that the underlying technology is a viable method for converting legacy software.

Conclusion and Recommendations (preliminary)

Before the completion of the final report in July, we will continue to test evaluation copies of
the database software, in preparation for making a final purchasing recommendation. We will
test the replication and synchronization technology in one or more of the database programs.
Compilation of the Cloudscape database will be completed, and tested against an interpreted
version on the same machine.

RDBMS and Java technologies can help the nuclear data community in both the efficiency of
database administration and the flexibility of dissemination. Our preliminary recommendation is
to adopt one of the commercial database products as a standard and begin converting the nuclear
databases and legacy programs. The databases will reside on Windows NT or Linux machines,
and will be accessed from legacy programs on OpenVMS via JDBC. We also recommend
continued investigation of Java-native database software used in conjunction with optimizing
compilers, in order to take advantage of Java’s platform independence.

118

Appendix A

119

Appendix B

Software OS host db size (MB) log size (MB) load time (approx) Qry1 (sec) Qry2(sec) Qry3(sec) Qry4(sec)
Pointbase Linux ndcnt2 144 550 3 days 32 26 176 N/A (c)
Pointbase OpenVMS bnlnd2 144 420 36 hours 21 17 126 N/A (c)
Cloudscape - interpreted OpenVMS bnlnd2 180 N/A (a) 4 hours 6 3 5 285
Cloudscape - semicompiled Win NT ndcnt4 180 N/A (a) N/A (b) 7 2 6 356
MS SQL Server Win NT ndcnt3 74 354 5 minutes 1 3 1 15
MS Access Win NT ndcnt3 90 N/A (a) 10 minutes 1 2 1 8
Sybase ASA Win NT ndcnt4 89 84 10 minutes 1 1 1 5

notes:
three tables from NSR: (same indices defined in each database) hosts: ndcnt2 200 MHz pentium

ref_tbl 157533 lines bnlnd2 533 MHz Alpha
auth_tbl 603235 lines ndcnt3 450 MHz pentium
auth_dic 56652 lines ndcnt4 dual 600 MHz pentium

Qry1: SELECT keyno,type,info
FROM ref_tbl
WHERE pubyear=1998 and coden=’JPGPE’; (116 lines out)

Qry2: SELECT auth_tbl.keyno,auth_tbl.ord
FROM auth_tbl JOIN auth_dic ON auth_tbl.akey=auth_dic.akey
WHERE auth_dic.aname=’SMITH’ and auth_dic.ainit=’A’; (306 lines out)

Qry3: SELECT ref_tbl.keyno
FROM ref_tbl JOIN auth_tbl ON ref_tbl.keyno=auth_tbl.keyno
WHERE auth_tbl.akey=44916 and ref_tbl.pubyear=1997; (12 lines out)

Qry4: SELECT ref_tbl.keyno,ref_tbl.type,ref_tbl.coden,ref_tbl.info
FROM ref_tbl JOIN (auth_dic JOIN auth_tbl ON auth_dic.akey=auth_tbl.akey) ON ref_tbl.keyno=auth_tbl.keyno
WHERE auth_dic.aname=’SMITH’ and ref_tbl.pubyear=1992; (37 lines out)

(a) no log file
(b) copied directly from VMS
(c) unable to perform query

