

The Progress Report of CNDC to NRDC Meeting

Yu Hongwei China Nuclear Data Center China Institute of Atomic Energy

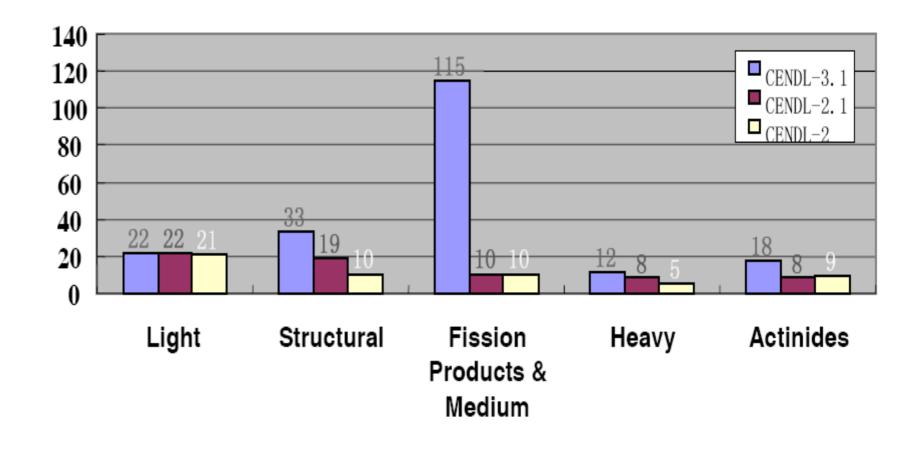
NRDC Meeting, 25 - 26 May 2009

General

- China Nuclear Data Center serves as the secretariat of Chinese Nuclear Data Committee.
- CNDC: 4 new staffs, 24 staffs four group:
 - Nuclear Data Evaluation Group
 - Nuclear Theory Group
 - Macroscopic Data Group
 - Data Library Group

Nuclear Data Evaluation

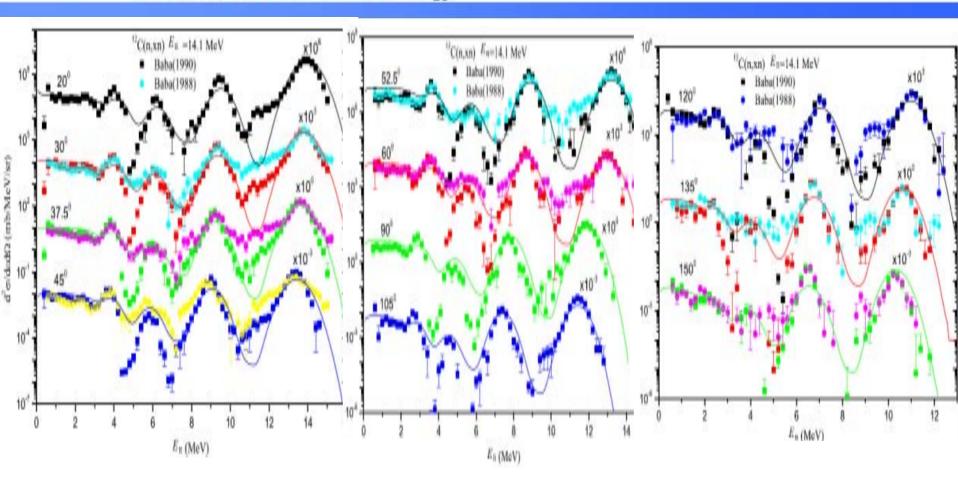
- CENDL-3.1
 - CENDL-3.1 includes comprehensive data evaluations for all neutron reactions in the energy range from 10⁻⁵eV to 20MeV for 200 nuclides. The ENDF-6 format is adopted, the files 1, 2, 3, 4, 6, 12~15 are included for major fissile nuclide, structure material and light nuclide, files 1, 2, 3, 4, 5 are given for minor fissile and fission production nuclides.



The Nuclides of CENDL-3.1

Nucl.	Content
Light Elements	^{1,2,3} H, ^{3,4} He, ^{6,7} Li, ⁹ Be, ^{10,11} B, ¹² C, ¹⁴ N, ¹⁶ O, ¹⁹ F, ²³ Na, ^{nat} Mg, ²⁷ Al, ^{nat} Si, ³¹ P, ^{nat} S, ^{nat} Cl, ^{nat} K, ^{nat} Ca
Structural Materials	$\label{eq:continuity} \begin{array}{l} {}^{nat}Ti, {}^{nat}V, {}^{50,52\sim54, nat}Cr, {}^{55}Mn, {}^{54,56\sim58, nat}Fe, {}^{59}Co, {}^{58,60\sim62,64, nat}Ni, {}^{63,65, nat}Cu \\ , {}^{nat}Zn \end{array}$
Fission Products & Medium Elements	$^{69,71,\mathrm{nat}}Ga, ^{83,84\sim86}Kr, ^{85,87,\mathrm{nat}}Rb, ^{88\sim90}Sr, ^{89,91}Y, ^{90\sim96,\mathrm{nat}}Zr, ^{93,95}Nb, ^{95,97,98,10}\\ ^{0,\mathrm{nat}}Mo, ^{99}Tc, ^{99\sim105}Ru, ^{103}Rh, ^{105,108}Pd, ^{107,109,\mathrm{nat}}Ag, ^{113,\mathrm{nat}}Cd, ^{115,\mathrm{nat}}In, \\ ^{\mathrm{nat}}Sn, ^{121,123,\mathrm{nat}}Sb, ^{130}Te, ^{127}I, ^{124,129,131,132,134\sim136}Xe, ^{133\sim135,137}Cs, ^{130,1}\\ ^{32,134\sim138,\mathrm{nat}}Ba, ^{139}La, ^{140\sim142,144}Ce, ^{141}Pr, ^{142\sim148,150,\mathrm{nat}}Nd, ^{147,148,149}P\\ ^{144,147\sim152,154,\mathrm{nat}}Sm, ^{151,153\sim155,\mathrm{nat}}Eu, ^{152,154\sim158,160,\mathrm{nat}}Gd, ^{164}Dy$
Heavy Elements	natLu, natHf, 181Ta, natW, 197Au, natHg, natTi, 204, 206, 207, 207, natPb,
Actinides	^{233,234,235,236,238,239} U, ²³⁷ Np, ^{238,239,240,241,242} Pu, ^{241,242} Am, ²⁴⁹ Bk, ²⁴⁹ Cf

CONTENT OF CENDL- 3.1



New evaluations

- ¹²C, ¹⁴N, ¹⁶O, ²³Na, Mg, AI, ^{46,47,48,49,50,nat}Ti, ^{58,60,61,62,64}Ni, ⁶³Cu, ⁸⁵Y, ⁹⁵Zr, ⁹⁹Mo, ^{129,131,132,134}Xe, ¹⁶⁹Tm, ¹⁸¹Ta, ²⁴⁰Pu
- Experimental data evaluated: analyzed in physics, corrected for the standard used, adjusted for the error.
- The UNF code for nuclear data model calculations with the unified Hauser-Feshbach and exciton model are implemented in the evaluations. The APMN code was used for automatically searching a set of optimal optical potential parameter.

Double-differential cross sections of n+12C

Nuclear data for ADS

- -This work is a part of the project of ADS system of China, and is supported by China Ministry of science and technology.
- The theoretical models code MEND has been improved
- -Calculated and evaluated n+^{54,56,57,58}Fe, n+^{54,56,57,58}Fe up to 250MeV n+^{233,234,235,236,238}U below 20 MeV

Structure and Decay Data

- CNDC have taken permanent responsibility for evaluating and updating NSDD for A=51, 52 and 195-198.
- About 40 new decay data evaluations finished in recent 2 years. The range of nuclides from³⁷Ar to ¹⁵³Gd. These evaluations included the half-life, –ray intensity, branch ratio and decay schemes et.al. Two evaluation methods ENSDF and DDEP were used in our new evaluations.

Fission yield

- The systematics on mass distribution of fission product nuclides
- The systematics on independent yield
- Cumulative yield data from ²³⁵U and ²³⁸U fission were evaluated for each about 50 fission product nuclides as a base of updating CENDL/FY and for some practical applications.

Nuclear reaction model code

- The code system LUNF series used for light nuclei model calculations were developed. This code system can be used for the model calculation for neutron introduced reaction with targets ^{6,7}Li ⁹Be, ¹⁰B, ¹²C, ¹⁴N and ¹⁶O. LUNF system can also provide the energyangular spectra (MF6 in ENDF format) model calculations.
- The theoretical model code MEND of nucleon-induced reaction has been improved. In the new version of MEND code, the gamma-production cross sections and ENDF format are included.

International Co-operation

The scientists of CNDC participate in two IAEA Coordinated Research Projects:

- -Minor Actinide Neutron Reaction Data
- -Updated Decay Data Library for Actinides.

Foreign Scientists have visited CNDC/CIAE:

- A.J. Koning, NRG, Oct. 2008.
- S. G. Yavshits, S.V.Khlebnikov and O. T. Grudzevich, Khlopin Radium Institute and Obninsk State University, Oct. 2008.
- T.V. Golashvili, V.P. Chechev and S. Badikov, ATOMINFORM and Khlopin Radium Institute, Oct. 2008.

Meeting and Symposium

- The symposium on Nuclear Data Future needed, 16 Dec. 2008, Beijing
- The Technical Meeting of fission yield, May 15-18, 2009, Guilin
- The Meetings of China Nuclear Data Committee, 14 May. 2009, Beijing