

2010/11 Status Report of China Nuclear Data Center

China Nuclear Data Center(CNDC) China Committee of Nuclear Data(CCND) China Institute of Atomic Energy(CIAE) P.O.Box 275-41,Beijing 102413, P.R.China E-Mail:gezg@ciae.ac.cn

1. General of China Nuclear Data Center

CNDC View

- China Nuclear Data Center (CNDC) was established in 1975 and joined the nuclear data activities of IAEA as the national nuclear data center of China since 1984.
- The main task of CNDC:
- The nuclear data evaluations, libraries and relevant technique researches.
- The exchange of nuclear data activities with IAEA, foreign nuclear data centers and agencies.
- The management of domestic nuclear data activities.
- The services for domestic and foreign nuclear data users.

1.2 Staff Information of CNDC

CNDC consists of the four units + an office:

Evaluation Unit Theory Unit Macroscopic Data Unit Data Library Unit Secretary Office

Head: Dr. Huang Xiaolong Head: Dr. Ge Zhigang Head: Dr. Liu Ping Head: Dr. Shu Nengchuan 5 official staff

3 official staff 8 official staff 5 official staff 2 official staff

Director of CNDC: Dr. Ge Zhigang

22 official staff and 5 technical support experts(senior) working at the CNDC and 4 graduate students and 3 Ph.D students are studying at CNDC.

2. Nuclear Data Evaluation and Benchmark Testing

2.1 Data Files Re-evaluation of CENDL-3.1

According to the back feed from the benchmark testing and users, some data files (MT) of CENDL-3.1 were re-evaluated in recently two years. These nuclei including the actinides ²⁴¹Am, ^{234,235}U, ²³⁷Np, ²³³Th and some structural materials ⁵⁴Fe, ⁹⁷Mo, ¹⁸⁶W(p,n), (p,2n) ^{208,207,206,204}Pb et al.

Fig. 3 Comparison of CENDL-31-REV, CENDL-31, ENDF/B-VII for ²³³U(n, f) Reaction

Data Benchmark Testing/Validation

Validation of Evaluated Data Library with CSEWG benchmarks

Several benchmarks from CSEWG were selected for validation of evaluated data files. These cases cover fast and thermal energy spectrum. The calculated results of effective multiplication factor $k_{\rm eff}$ were compared with the experimental results.

Assembly	CENDL-3.1	ENDF/B-VII.0	JENDL-3.3	JENDL-4.0	Experiment	Error
Godiva	0.99999	0.99994	1.00277	0.99746	1.0004	0.0024
BIG TEN	0.99555	0.99467	0.98495	0.98745	0.9948	0.0013
Flattop-25	1.002	1.00308	0.99837	0.99821	1	0.003
Jezebel	0.99913	0.9998	0.99746	0.99865	1	0.002
Jezebel-240	1.00018	0.99976	1.00148	0.99849	1	0.002
Flattop-Pu	0.99684	1.00105	0.99208	0.9991	1	0.003
THOR	1.00173	0.99824	1.00743	0.99792	1	6.00E-04
Jezebel-233	0.99885	0.99975	1.00415	0.99917	1	0.001
Flattop-23	0.99855	0.99918	0.99835	0.99819	1	0.0014

Table 2 Results of LANL sphere fast assemblies

Table 3 Results of ORNL series assemblies

Assembly	CENDL-3.1	ENDF/B-VII.0	JENDL-3.3	JENDL-4.0	Experiment	Error
ORNL-10	1.00047	0.99941	0.99928	0.99871	1.0015	0.0026
ORNL-1	1.00103	0.99878	0.99981	0.99889	1.0012	0.0026
ORNL-2	0.99981	0.9977	0.99881	0.99805	1.0007	0.0036
ORNL-3	0.99627	0.99399	0.99487	0.99435	1.0009	0.0036
ORNL-4	0.99799	0.99587	0.99666	0.99595	1.0003	0.0036

Assembly	CENDL-3.1	ENDF/B-VII.0	JENDL-3.3	JENDL-4.0	Experiment	Error
PNL-1	1.01198	1.00569	1.00859	1.00749	1	0.0032
PNL-2	1.00612	1.0001	1.00376	1.00253	1	0.0065
PNL-3	1.00752	1.00562	1.00923	1.00641	1	0.0034
PNL-4	1.00527	1.00372	1.00547	1.00271	1	0.0031
PNL-5	1.00724	1.00081	1.0047	1.00334	0.9969	0.0038
PNL-6	1.00737	1.00156	1.00512	1.00314	1	0.0065
PNL-7	1.00925	1.00361	1.00689	1.005	1	0.0047
PNL-8	1.0108	1.00481	1.00821	1.00616	1	0.0032
PNL-12	1.00876	1.00368	1.00632	1.00529	1	0.0025

Table 4 Results of PNL solution assemblies

Table 5 Results of PNL MOX fuel assemblies

Assembly	CENDL-3.1	ENDF/B-VII.0	JENDL-3.3	JENDL-4.0	Experiment	Error
PNL-30	0.99699	1.00014	0.99613	0.99963	1.0024	0.006
PNL-31	1.00166	1.00051	1.00043	1.00292	1.0009	0.0047
PNL-32	1.00235	1.00088	1.00051	1.00217	1.0042	0.0031
PNL-33	1.00588	1.00708	1.00749	1.01016	1.0024	0.0024
PNL-34	1.00363	1.0032	1.00488	1.00412	1.0038	0.0025
PNL-35	1.00864	1.00761	1.00846	1.00785	1.0029	0.0027

Fast Criticality Benchmark Testing for ²³³U

The evaluations for ²³³U from CENDL-3.1, ENDF/B-VII.0,JENDL-3.3 and JENDL-4.0 were tested with six U233-Metal-Fast benchmarks from ICSBEP Handbook. Total 10 criticality cases with core spectra change from hard to soft one by one, including one bare highly enriched ²³³U core and 9 cores reflected with HEU、NU、Be and W separately. The criticality calculations were performed with Monte Carlo code MCNP4C. The ACE libraries used in the calculations were prepared with NJOY99.

	EALF							
Case ID	(MeV)	k _{eff} ,exp	uncertainty	ENDF/B- VII.0	CENDL-3.1	JENDL-3.3	JENDL-4.0	Reflector
UMF001_1	1.120	1.0000	0.0010	0.9998	0.9989	1.0034	0.9992	
UMF002_1	1.080	1.0000	0.0010	0.9997	0.9970	1.0026	0.9985	HEU
UMF002_2	1.050	1.0000	0.0011	0.9985	0.9981	1.0035	0.9998	HEU
UMF003_1	1.080	1.0000	0.0010	0.9998	0.9983	1.0038	0.9992	NU
UMF003_2	1.070	1.0000	0.0010	0.9992	0.9984	1.0044	0.9993	NU
UMF004_1	0.999	1.0000	0.0007	1.0053	0.9941	1.0019	0.9998	W
UMF004_2	0.916	1.0000	0.0008	1.0061	0.9902	0.9987	0.9975	W
UMF005_1	0.936	1.0000	0.0030	0.9975	0.9906	0.9971	0.9961	Be
UMF005_2	0.749	1.0000	0.0030	0.9961	0.9880	0.9958	0.9957	Be
UMF006_1	1.020	0.9992	0.0014	0.9931	0.9993	1.0043	0.9990	NU

Table 6 Comparison of C/E value of k_{eff}

-ICSBEP

Ref.C31

1.10

Cad

1.20

Presentation for Technical Meeting on the International Network of Nuclear Reaction Data Centres U233-Metal-Fast

23-24 May, 2011, Vienna, Austria

CENDL-3.1 Data Testing with LLNL Pulsed Sphere Benchmarks

Lawrence Livermore pulsed sphere experiments were modeled using Monte Carlo N-Particle Code (MCNP) for the purpose of benchmarking the new release of CENDL-3. This program consisted of 96 different experiments on 28 different spheres, including: ⁶Li,⁷Li, Be, C, N, O, Al, Mg, Ti, Fe, Cu, Ta, Au, W, Pb, Nb, Sn, ²³²Th, ²³⁵U, ²³⁸U, ²³⁹Pu, LiD, Air, H₂O, D₂O, polythene, teflon and concrete. The calculated results were compared to experimental results, the results obtained from CENDL-2.1, ENDF/B-VII, JENDL-3.3 and JEFF-3.1 (as shown in Fig.6).

LLNL Plused Sphere, Mg, 0.7 mfp, Pilot B 1.6MeV bias, 765.2cm

Fig.6 Neutron spectrum for the LLNL Pulsed Sphere, Mg (0.7 mfp) benchmark

Method Studies

The Status of Covariance Evaluation at CNDC

A covariance evaluation system, COVAC, is being developed in CNDC to achieve the covariance files mainly for structure and fission nuclides in CENDL. In this system, experimental data including their errors were firstly pre-analyzed and handled via available tools. In this framework, the high fidelity covariance file can be obtained with combining the theoretical and experimental uncertainties and correlations.

Fig. 7 COVAC SYSTEM OF CNDC

Fig.8 The correlation coefficient matrix of the ⁴⁰Ca(n, a) fit cross sections

Semi-Empirical Study on the Yield Energy Dependence of the ²³⁵U + n Fission

A semi-empirical model based upon the basic idea of Multi-Modal Random Neck-Rupture Model was applied to study the yield energy dependance of ²³⁵U+n fission. The compound system energy was simplified including the macro energy and shell effects. The 11 parameters in the model were determined by fitting the evaluated experimental data. The fragment level density was determined by taking into account of the compound and fragment characters, which could improve the results. The shell effect weakened with temperature was illustrated. Prompt fission neutron and multichannel fissions were also taken into account.

Fig.10 Mass distributions of the ²³⁵U+n fission. 5 mass distribution curves from energies 0.5 MeV to 18 MeV are shown in addition to the thermal and 20 MeV curves. The arrows indicate the yields step-increased or -decreased with the energy.

Prompt Neutron Multiplicity Distribution for ²³⁵**U(n,f) at Incident Energies Up** to 20 MeV

The total excitation energy partitions between the complementary light and heavy fission fragments for the n+²³⁵U fission reaction are given at incident energies up to 20 MeV. The average neutron kinetic energy $\langle \varepsilon \rangle \langle A \rangle$ and the total average energies removed by γ rays $E_{\gamma}(A)$ as a function of fission fragment (FF) mass at different incident neutron energies are presented. The prompt neutron multiplicity distribution v(A) for n+²³⁵U fission at different incident neutron energies are calculated. The results are checked with the total average prompt neutron multiplicities and compared with the experimental and evaluated data.

Fig. 11 FF pair multiplicity of the ²³⁵U(n,f) reaction at thermal neutron energy (a) and higher neutron energies (b)

The Systematics of (n,2n) Reaction Excitation Function

Based on the constant temperature evaporation model taking the competition of (n,3n) reaction and the contribution of preequilibrium emission into account, the systematics formulae of (n,2n) reaction excitation function have been established. The systematics behaviours of (n,2n) reaction excitation function have been studied. There are two systematics parameters T and $\sigma_{n,M}$ can be adjusted in the formulae. For getting the two parameters, the new evaluated data of (n,2n) reactions were adopted and fitted by means of the nonlinear least squares method. The fitted results agree fairly well with the measured data at $45 \le A \le 210$ below 30 MeV. Based on a body of new measurements, the reliability to predict (n,2n) reaction excitation function is improved. Hence more accurate systematics prediction for unmeasured nucleus or energy range may be provided.

3. EXFOR Compilation Progress

In 2010, CNDC had 23 entry compilations (2 remain from 2009, 19 from IAEA and scanned by CNDC). Up to now 18 of them have finished and 5 is being compiling (Fig.15).

An EXFOR compilation management system has been constructed in CNDC, the compilers can obtain the all information and status about their task with the system (Fig.16). The Table 7 shows the all EXFOR entries information in CNDC during recent two years.

首页 查询 我的任务 字典 备忘录 欢迎guest! 退出

	No.	Ref.	Title	Vol.	Issue	Page	Lab	Publish date	Author	Status	Action	Delay date(m)	Compiler	Entry	Sub.
<u>详情</u>	1	S, JAEA-C-	Preliminary Measurement of Neutron Emission Spectra for Beryllium at 21.65 MeV	JAEA- Conf- 2009- 004	2009- 004	169	3CPRAEP	200910	Changlin LAN	Allocated	Compiled	10	Guochang CHEN	<u>32682</u>	n
<u>详情</u>	2	S, ISINN-	Cross section measurements for the 143Nd(n, α)140Ce reaction at 4.0, 5.0 and 6.0 MeV	17	1	323	3CPRBJG	201007	Yu. M. Gledenov	Allocated	Compiled	1	Guochang CHEN	<u>32681</u>	n
<u>详情</u>	3	S, ISINN-	Cross section measurements for the 143Nd(n, α)140Ce reaction at 4.0, 5.0 and 6.0 MeV	17	1	323	3CPRBJG	201007	Yu. M. Gledenov	Allocated	Compiled	1	Guochang CHEN	32681	n
<u>详情</u>	4	J, RCA	Cross section measurements of (n, 2n), (n, p) and (n, α) reactions on gadolinium isotopes in the neutron energy range of 13.5 to 14.8 MeV $\dot{\chi}$	98	3	127	3CPRNPC	201003	Junhua Luo	Allocated	Compiled	6	Guochang CHEN	32680	n
详情	5	J, PR/C	$\frac{Cross=section\ measurement\ and\ analysis\ for\ the\ 149\ Sm(n,\alpha)}{146\ Nd\ reaction\ at\ 6.0\ MeV}$	82	1	14601	3CPRBJG	201007	Yu. M. Gledenov	Allocated	Compiled	1	Jimin WANG	<u>32679</u>	n
<u>详情</u>	6	J, NP/A	Lithium induced nuclear reactions of astrophysical interest	834	1-4	651 c	3CPRAEP	201003	W. P. Liu	Allocated		7	Xi TAO	S0070	ср
<u>详情</u>	7	J, NP/A	Competition between fusion-fission and guasi fission processes in 32S+184W reaction	834	1-4	201 c	3CPRAEP	201003	C. L. Zhang	Allocated		7		S0069	cp
洋情	8	J, NP/A	Elastic resonance scattering of 13N+p and 17F+p	834	1-4	100c	3CPRAEP	201003	Y.B. Wang	Allocated		7	Xi TAO	S0068	cp
<u>详情</u>	9	J, NIM/B	Development of laboratory standards for AMS measurement of $\underline{237 \mathrm{Np}}$	268	11-12	1949	3CPRAEP	201006	Xianggao Wang	Allocated	Compiled	3	Youxiang ZHUANG	<u>32683</u>	n
<u>详情</u>	10	J, NIM/B	Measurements of the 89Y(n,y)90mY cross-section in the neutron energy range of 13.5-14.6 MeV	268	9	1367	3CPRLNZ	201005	Fengqun Zhou	Allocated	Compiled	4	Youxiang ZHUANG	<u>32678</u>	n

Fig. 16 The EXFOR compilation management system in CNDC

±	<u>Ref.</u>	Title	<u>Vol.</u>	Lab	Publish Date	Author	Action	Delay date(m)	<u>Compiler</u>	<u>Entry</u>	<u>Sub.</u>
1	J,EPJ/A	Cross-section measurement for the 67Zn(n,a)64Ni reaction at 6.0 MeV	A43	3CPRBJG	201001	Guohui Zhang	Compiled		Zhendong WU	<u>32672</u>	n
2	J,PR/C	Investigation of discrete gamma radiation in interactions of 14.9-MeV neutrons with natural silicon by a total gamma-radiation measurement technique	82	3CPRBNU	201010	Hongyu Zhou		7	Xi TAO	32688	n
3	J,HFH	95Zr,140Ba, and 147Nd Yields from 0.57, 1.0, and 1.5 MeV Neutrons Induced Fission of 235U	32	3CPRAEP	201012	Feng Jing	Compiled	3	Guochang CHEN	<u>32687</u>	n
4	J,CST	Measurement of 176Hf(n,2n)175Hf Cross Section	44	3CPRNPC	201009	Zhu Chuanxin		8	Youxiang ZHUANG	<u>32686</u>	n
5	J,CPL	Fragmentation Cross Sections of 12C on Different Targets at Beam Energies from 50 to 100MeV/Nucleon	25	3CPRBNU	200802	BIAN Bao-An (卞宝安)		39			cp
6	J,CPL	Measurement of Angular Distribution for the 8Li(p,d)7Li Reaction	25	3CPRAEP	200802	LI Yun-Ju		39	Jimin WANG	S0072	ср
7	J,IPC	Cross-section measurements for 141Pr isotope at neutron energies from 13.5 to 14.8 MeV	79	3CPRHXU	201009	Junhua Luo	Compiled		Jimin WANG	<u>32685</u>	n
8	J,PR/C	Differential cross section for neutron scattering from 209Bi at 37 MeV	82	3CPRAEP	201008	Zuying Zhou	Compiled	7	Guochang CHEN	<u>32684</u>	n
9	J,NIM/B	Measurements of the elastic scattering cross sections for proton on T,4He	268	3CPRFUD	201008	T.Cai	Finalized		Guochang CHEN	<u>80071</u>	cp
10	S,JAEA-C-	Preliminary Measurement of Neutron Emission Spectra for Beryllium at 21.65 MeV	JAEA- Conf-2009- 004	3CPRAEP	200910	Changlin LAN	Compiled	10	Guochang CHEN	<u>32682</u>	n
11	S,ISINN-	Cross section measurements for the 143Nd(n,α)140Ce reaction at 4.0, 5.0 and 6.0 MeV	17	3CPRBJG	201007	Yu.M.Gledenov	Finalized	1	Guochang CHEN	<u>32681</u>	n
12	J,RCA	Cross section measurements of (n, 2n), (n, p) and (n, α) reactions on gadolinium isotopes in the neutron energy range of 13.5 to 14.8 MeV	98	3CPRNPC	201003	Junhua Luo	Finalized	6	Guochang CHEN	<u>32680</u>	n
13	J,PR/C	Cross-section measurement and analysis for the 149 $Sm(n,\alpha)$ 146 Nd reaction at 6.0 MeV	82	3CPRBJG	201007	Yu.M.Gledenov	Finalized	1	Jimin WANG	<u>32679</u>	n
14	J,CPL	Astrophysical Reaction Rates of the 8Li(p,\gamma)9Beg.s. Direct Capture Reaction	23	3CPRAEP	200601	SU Jun		64	Xi TAO	S0070	cp
15	J,NP/A	Competition between fusion-fission and quasi fission processes in 32S+184W reaction	834	3CPRAEP	201003	C.L.Zhang	Compiled	6	Xi TAO	<u>80069</u>	cp
16	J,NP/A	Elastic resonance scattering of 13N+p and 17F+p	834	3CPRAEP	201003	Y.B.Wang		14	Xi TAO	<u>D0477</u>	cp
17	J,NIM/B	Development of laboratory standards for AMS measurement of 237Np	268	3CPRAEP	201006	Xianggao Wang	Finalized	3	Youxiang ZHUANG	32683	n
18	J,NIM/B	Measurements of the $89Y(n,\gamma)90mY$ cross-section in the neutron energy range of 13.5–14.6 MeV	268	3CPRLNZ	201005	Fengqun Zhou	Finalized	4	Youxiang ZHUANG	<u>32678</u>	n
19	J,NIM/A	Accurate determination of cross-sections for 238U (n, 2n) 237U induced by neutrons around 14 MeV	621	3CPRAEP	201009	Xianggao Wang	Finalized	3	Youxiang ZHUANG	32677	n
20	J,JRN	Measurement of neutron-induced activation cross sections of lanthanum at 14.8 MeV	283	3CPRHXU	201002	Junhua Luo	Finalized	6	Jimin WANG	32675	n

4. Other Activities Relevant Nuclear Data

- ✓ A national key laboratory of nuclear data measurement and evaluation technology was established, which contained the nuclear data measurement laboratory in CIAE and CNDC. There are 60 official staff working the laboratory.
- ✓ A TM on the nuclear data benchmark and validation was hold in Guilin, Guangxi Province last 15-21, Nov. 2010.
- ✓ The 2010 standing committee meeting of China Committee of Nuclear Data was hold in Beijing on 29, December 2010.
- ✓ The mirror site of IAEA/NDS is under construction in CNDC, the hardware and software are already, and the server of the mirror site is already access to Internet through CIAE. We are contacting with the IAEA/NDS to finished future task.
- The second Asian Nuclear Reaction Database Development Workshop is preparing and will be organized in Beijing this September.

Thank you for your attention ! Comments and suggestion welcome !