Storage of numerical neutron source spectra (Action 25)

The averaged quantity data compiled in EXFOR have to be supplied by the numerical data of incident particle spectra.

Analysis of data, included in EXFOR, have shown that information about neutron spectra, is practically absent in EXFOR.

LEXFOR, Spectrum Average:

<u>Cross sections averaged</u> over a <u>broad incident-projectile energy spectrum</u> may be entered into EXFOR using the proper modifier to REACTION SF8.

<u>Old:</u>

The type of spectrum and its characteristic should be entered **<u>in free text</u>** under the informationidentifier keyword **<u>INC-SPECT</u>**.

New:

The type of spectrum and its characteristic should be entered <u>in numeric data type</u> (using <u>special ENTRIES</u> for neutron spectrum if the spectrum is commonly applied to measurements performed at the neutron source).

- 1. To start these ENTRIES from V0101 (concerning information from Naohiko V is free)
- 2. To use special form of **REACTION** to define the neutron source
- 3. To use DATA to enter neutron spectrum information
- 4. To link ENTRY(SubEntry) with averaged data and VENTRY(VSubEntry) with neutron spectrum

using **STATUS** (**COREL**, **VSubEntry**) or more specific STATUS code (e.g., NSPCT) in averaged data Entry (SubEntry).

Name of neutron source	In INC-SPECT	SF1-SF7 in REACTION in VEntry						
Alpha-Beryllium	A-BE	4-BE-9(A,N)6-C-12,,DE						
Spont.fission of Californium-252	CF252	98-CF-252(0,F) "NU/DE						
Spont.fission of Curium-244	CM244	96-CM-244(0,F),, NU/DE						
Spont.fission of Curium-246	CM246	96-CM-246(0,F),, NU/DE						
Spont.fission of Curium-248	CM248	96-CM-248(0,F),,NU/DE						
Deuteron-Beryllium	D-BE	4-BE-9(D,N)5-B-10,,DE						
Deuteron-Carbon 12	D-C12	6-C-12(D,N)7-N-13,,DE						
Deuteron-Carbon 14	D-C14	6-C-14(D,N)7-N-15,,DE						
Deuteron-Deuterium	D-D	1-H-2(D,N)2-HE-3,,DE						
Deuteron-Lithium	D-LI	3-LI-0(D,N)4-BE-0,,DE						
Deuteron-Lithium 7	D-LI7	3-LI-7(D,N)4-BE-8,,DE						
Deuteron-Nitrogen 14	D-N14	7-N-14(D,N)8-O-15,,DE						
Deuteron-Nitrogen 15	D-N15	7-N-15(D,N)8-O-16,,DE						

The special form of REACTION to define the neutron source

Deuteron-Tritium	D-T	1-H-3(D,N)2-HE-4,,DE
Evaporation neutrons	EVAP	13-Al-27(P,X)0-NN-1,,DE
-		74-W-0(P,X)0-NN-1,,DE
		82-Pb-0(P,X) 0-NN-1,,DE
		92-U-0(D,X) 0-NN-1,,DE
		•••
Nuclear explosive device	EXPLO	???
Proton-Beryllium	P-BE	4-BE-9(P,N)5-B-9,,DE
Proton-Deuterium	P-D	1-H-2(P,N+P)1-H-1,,DE,N
Photo-neutron	РНОТО	1-H-2(G,N) 1-H-1-,,DE
		13-Al-27(G,X)0-NN-1,,DE
		74-W-0(G,X)0-NN-1,,DE
		92-U-0(G,X)0-NN-1,,DE
Proton-Lithium 7	P-LI7	3-LI-7(P,N)4-BE-7,,DE
		Or
		3-LI-7(P,X)0-NN-1,,DE
Polarized neutron source	POLNS	???
Proton-Tritium	P-T	1-H-3(P,N)2-HE-3,,DE
Spont.fission of Plutonium-240	PU240	94-PU-240(0,F) ,, NU/DE
Spont.fission of Plutonium-242	PU242	94-PU-242(0,F) " NU/DE
Reactor (NEUT)	REAC	92-U-FUL ?(0,X) 0-NN-1,,DE
Thermal column (NEUT)	THCOL	???

The fields **SF8**, **SF9** in **REACTION** may be used to indicate, if this spectrum is given in relative (**REL**) values, and if it was obtained by calculation (**CALC**).

Such form of record of the neutron source spectrum allows us to use the existing EXFOR rules. We need to make only small changes in rules for **SF9** in **REACTION** – to permit using of **CALC**.

In **COMMENT** or in the line with **REACTION** we can write the additional information about given spectrum: codes and libraries used in calculations, components of the used neutron filter, etc.

To introduce new special entries for neutron spectrum allows:

1) To refrain from repetition of neutron spectrum information in Entries with data, obtained with the same neutron source spectrum.

In addition, it is necessary to note that neutron spectrum may be given as calculated one using different ENDF & codes, and as experimental values, so this information may contain very large quantity of data.

2) To facilitate data search of neutron source spectrum.

It may be found using Entries with V through link with EXFOR Service. It is important for experimenters, evaluators, compilers.

To demonstrate an example of such V entries, let us consider subentry 32217003, where the filtered neutron spectrum was used in measurements of the averaged radiation cross section on Ta. There were two types of spectrum: calculated neutron spectrum and experimental one, obtained by differentiation of the instrumental proton recoil spectrum. We can use one entry V0102 for this filtered neutron spectrum. In subentry V0102001, as usual, we describe general information using keywords TITLE, AUTHOR, INSTITUTE,

WP2011-22

ENTRY	V0102	20110408				V0102	0	1
SUBENT	V0102001	20110408				V0102	1	1
BIB	7	10				V0102	1	2
TITLE	Measurement	s of neutro	n capture c	ross-section	n for	V0102	1	3
	tantalum at	the neutro	n filtered	beams		V0102	1	4
AUTHOR	(O.Gritzay,	V.Libman,A.	V.Chyzh,V.F	.Razbudey)		V0102	1	5
INSTITUTE	(4UKRIJD)					V0102	1	6
REFERENCE	(C,2008KYIV	,,548,2008)	Result on	59 keV was		V0102	1	7
	presented	at the NPAE	-Kyiv2008,I	D# 86-95.		V0102	1	8
FACILITY	(REAC, 4UKRI	JD) Reactor	WWR-M			V0102	1	9
INC-SOURCE	(REAC) Neut	ron filters	installed	in horizonta	al channel	V0102	1	10
	of the reac	tor.				V0102	1	11
HISTORY	(20110408)	UKRNDC				V0102	1	12
ENDBIB	10	0				V0102	1	13
NOCOMMON	0	0				V0102	1	14
ENDSUBENT	13	0				V0102	199	999

For calculated neutron spectrum we can use subentry V0102002, for experimental one it may be used the subentry V0102003. To note that this neutron spectrum was created from the reactor one at the reactor with U-235 fuels, I propose to write the fields SF1-SF7 in REACTION as (92-U-FUL?(0,X)0-NN-1,,DE,N.

101.(0,	(x)U=1111= 1 ,9 1	JL ¹ 91 1 .						
SUBENT	V0102002	20110408				V0102	2	1
BIB	2	8				V0102	2	2
REACTION	(92-0-235(0	,X)O-NN-1,,	DE,N,REL,CA	LC) Using J	ENDL-3.3	V0102	2	3
				and	CENDL-2	V0102	2	4
COMMENT	Calculation	was done b	y FILTER.5	using JENDL	-3.3 for	V0102	2	5
	Ni-58(83.15	g/cm2),V(2	4.44 g/cm2)	,Al(5.4 g/c	m2),	V0102	2	6
	B-10(0.5 g/	cm2), and u	sing CENDL-	2 for S(147	.78 g/cm2)	V0102	2	7
	Calculated	energy line	is 58.9 ke	V, purity s	bout 99%.	V0102	2	8
	The limits	of 95% resp	onse functi	on for the	59 keV	V0102	2	9
	filter spec	trum were d	efined as 5	2.2 to 60.1	keV.	V0102	2	10
ENDBIB	8	0				V0102	2	11
NOCOMMON	0	0				V0102	2	12
DATA	2	1543				V0102	2	13
E	DATA					V0102	2	14
EV	ARB-UNITS					V0102	2	15
50000.15	7.05730E-11					V0102	2	16
50019.84	7.85371E-11					V0102	2	17
50039.52	8.42285E-11					V0102	2	18
50040.20	9.14716E-11					V0102	2	19
50059.21	9.89061E-11					V0102	2	20
63945.89	6.82944E-26					V0102	2	1557
64018.24	7.01394E-26					V0102	2	1558
ENDDATA	1545	0				V0102	2	1559
ENDSUBENT	1558	0				V0102	29	99999
SUBENT	V0102003	20110408				V0102	3	1
BIB	2	6				V0102	3	2
REACTION	(92-0-235(0	,X)O-NN-1,,	DE,N,REL,EX	P)		V0102	З	3
COMMENT	Ni-58(83.15	g/cm2),V(2	4.44 g/cm2)	,Al(5.4 g/c	m2),	V0102	3	4
	B−10(0.5 g/	cm2), and	S(147.78 g/	cm2) were u	sed as	V0102	3	5
	filter comp	onents.				V0102	З	6
	Experimenta	l shape was	obtained b	y different	iation of	V0102	З	7
	the instrum	ental proto	n recoil sp	ectrum LND-	281.	V0102	3	8
ENDBIB	6	0				V0102	З	9
NOCOMMON	0	0				V0102	3	10
DATA	3	431				V0102	З	11
E	DATA	DATA-ERR				V0102	3	12
EV	ARB-UNITS	ARB-UNITS				V0102	3	13
48755.56	0.000	0.000				V0102	З	14
48793.33	0.487	0.008				V0102	З	15
48831.11	0.698	0.013				V0102	3	16
48868.89	0.720	0.013				V0102	3	17

WP2011-22

63945.89	6.82944E-26					V0102	2	1557
64018.24	7.01394E-26					V0102	2	1558
ENDDATA	1545	0				V0102	2	1559
ENDSUBENT	1558	0				V0102	29	99999
SUBENT	V0102003	20110408				V0102	3	1
BIB	2	6				V0102	3	2
REACTION	(92-0-235(0	,X)O-NN-1,,	DE,N,REL,EX	(P)		V0102	3	3
COMMENT	Ni-58(83.15	g/cm2),V(2	4.44 g/cm2)	,Al(5.4 g/	cm2),	V0102	3	4
	B-10(0.5 g/	cm2), and	S(147.78 g/	cm2) were	used as	V0102	3	5
	filter comp	onents.				V0102	3	6
	Experimenta	l shape was	obtained k	y differen	tiation of	V0102	З	7
	the instrum	ental proto	n recoil sp	ectrum LND	-281.	V0102	З	8
ENDBIB	6	0				V0102	З	9
NOCOMMON	0	0				V0102	З	10
DATA	3	431				V0102	З	11
E	DATA	DATA-ERR				V0102	3	12
EV	ARB-UNITS	ARB-UNITS				V0102	3	13
48755.56	0.000	0.000				V0102	3	14
48793.33	0.487	0.008				V0102	З	15
48831.11	0.698	0.013				V0102	З	16
48868.89	0.720	0.013				V0102	3	17
64924.44	0.014	0.003				V0102	3	442
64962.22	0.002	0.000				V0102	3	443
65000.00	0.001	0.000				V0102	3	444
ENDDATA	433	0				V0102	3	445
ENDSUBENT	444	. 0				V0102	39	99999
ENDENTRY	3	0				V01029	999	99999

...

In COMMENT or in the line with REACTION we can write the additional information about given spectrum: libraries used in calculations, components of the used neutron filter, etc.

To give information about the used neutron spectrum in the subentry 32217003 with the measured average cross section data we can use the keyword **STATUS** with (**COREL**,V0102002) and (**COREL**,V0102003).

SUBENT	32217003	20110318	20110323	20110323	31483	2217	3	1
BIB	5	25			3	2217	3	2
REACTION	(73-TA-181(N,G)73-TA-1	82,,SIG,,AV)	3	2217	3	3
DECAY-DATA	(73-TA-182,	114.74D)			3	2217	3	4
STATUS	(COREL, VO10	2002) Calcu	lated neutr	on spectrum	3	2217	3	5
	(COREL, VO10	2003) Exper	imental neu	tron spectr	um 3	2217	3	6