Irradiation Time for Production Thick Target Yield

(N. Otsuka, 2013-04-19, CP-D/784)

The physical thick target yield α_{phys} is time independent, while the production thick target yield (*i.e.*, unsaturated thick target yield) a_{prod} depends on irradiation time *t*:

 $a_{\text{prod}}(t) = \alpha_{\text{phys}} (1 - e^{-\lambda t}) / \lambda$,

where λ is the decay constant of the reaction product. Addition of irradiation time in free text was proposed in Memo CP-D/631. Following discussion with Otto Schwerer on coding of thick target yields from BNL [1] (EXFOR C1954 transmitted in TRANS.C123), however, we concluded that irradiation time must be treated as coded information when we compile $a_{\text{prod.}}$ It is an essential variable for this quantity, and I would like to propose the following new heading code to implement this idea:

Dictionary 24 (Data Headings)

TIME-IRRD Irradiation time

Reference

[1] D.G. Medvedev et al, Radiochim. Acta 99 (2011) 755 (EXFOR C1954).

Appendix: Determination of quantity code for EXFOR C1954

Articles reporting thick target yield (activity) often do not provide enough information for determination of EXFOR quantity code as discussed in Memo CP-D/696. It would be worthwhile to share my experience in determination of the quantity code for the ⁸⁶Y ($T_{1/2}$ =15 hrs) yield compiled in EXFOR C1954 from Tables 2 and 3 of [1].

Energy, MeV	SrCl ₂ mass, g	Target dimensions, $d \times \Delta x$, inch (cm)	Beam current through the pellet, μA	Irradiation time, h
$45.5 \rightarrow 37.2$	6.61	1.250 × 0.131 (3.18 × 0.33)	35.1	1
$66.4 \rightarrow 44.6$	74.49	$2.375 \times 0.466(6.03 \times 1.18)$	39.5	0.5
$45.1 \rightarrow 38.9^{a}$	5.02	1.250 × 0.120 (3.18 × 0.30)	24.5	0.5

anote at antion conditions and target parameters	Table 2.	Irradiation	conditions	and	target	parameters
--	----------	-------------	------------	-----	--------	------------

a: 88SrCl₂ target.

Table 3. Production yield of $^{86}\mathrm{Y}$ and its isotopic impurity at EOB in % of $^{86}\mathrm{Y}.$

Energy, MeV	⁸⁷ mY	⁸⁷ Y	^{86m} Y	⁸⁶ Υ yield, mCi/μA h (MBq/μA h)
$\begin{array}{c} 45.5 \rightarrow 37.2 \\ 66.4 \rightarrow 44.6 \\ 45.1 \rightarrow 38.9^{a} \end{array}$	34.8	4.3	403.7	13.9 (514.3)
	35.7	7.3	901.9	10.2 (377.4)
	56.0	5.1	489.0	11.0 (407.0)

a: 88SrCl₂ target.

Among three thick target yields (activity) defined in EXFOR – (1) physical, (2) production (= unsaturated) and (3) saturated thick target yield, only physical one can be given in MBq/ μ Ah (others must be in MBq/ μ A etc.). But the physical yield is time independent, and I was confused by "at EOB" (at the end of bombardment) in the caption of Table 3 of the article. Fortunately the corresponding author kindly explained me that the activity at EOB was divided by the accumulated charge to obtain the yield. The total activity after irradiation time *t* with current *I* can be expressed as $I \times a_{prod}(t)$ while the total accumulated charge is expressed by $I \times t$. Therefore the yield derived by the authors can be expressed as:

 $[I \times a_{\text{prod}}(t)] / (I \times t) = a_{\text{prod}}(t) / t = \alpha_{\text{phys}} (1 - e^{-\lambda t}) / \lambda t \sim \alpha_{\text{phys}}.$

The last approximation (~) is the "short irradiation approximation" (*i.e.*, $\lambda t \ll 1$). The longer irradiation time in Table 2 (1 hr) and the half-life of ⁸⁶Y (15 hrs) give

 $\lambda t = \ln 2 / T_{1/2} / t \sim 0.04.$

Therefore the irradiation condition given in Table 2 probably satisfies the short irradiation approximation condition. But this logic is not described in the article, and I proposed Otto Schwerer to apply

, TTY, , (PHY) Thick target yield, uncertain if it is physical yield

to be on the safe side.

For this specific article case, fortunately I could receive key information from the corresponding author. But I would believe that the experimentalists should provide more clear derivation and definition of their thick target yields in general. A short article describing our problem is under preparation for submission to Radiochimica Acta.