Excitation Energy for Inclusive Reaction (SF3=X)

(N. Otsuka, O. Schwerer, CP-D/813 Rev.2, 2014-03-04 and updated)

Introduction – E2135.002

In some EXFOR double-differential cross section (DDX) data sets, the excitation energy is defined for an inclusive reaction, for example,

```
E2135002
                         20130309
SUBENT
REACTION
          (28-NI-58(P,X)0-NN-1,,DA/DE)
EN-SEC
           ANG-CM is polar angle (c.m.) between beam and neutron
           (E-EXC, 29-CU-58)
EN
          EN-RSL
                     ANG-CM
MEV
          MEV
                     ADEG
198.
           0.3
                      0.
....
E-EXC
          DATA-CM
MEV
          MB/SR/MEV
 -3.02210 0.00077
```

The incident proton energy ($E_p=198 \text{ MeV}$) is enough higher than the (p,2n) reaction threshold ($E_p=22 \text{ MeV}$), and therefore the data set must be treated as ${}^{58}\text{Ni}(p,n+x)$ rather than ${}^{58}\text{Ni}(p,n){}^{58}\text{Cu}$ in general. But the energy spectrum is given as a function of the excitation energy of ${}^{58}\text{Cu}$ calculated by the two body kinematics, and the heading E-EXC is related with ${}^{58}\text{Cu}$ (see EN-SEC) even though this nuclide is not always produced by the reaction process expressed by the REACTION code.

It should be noted that

- without the EN-SEC entry, E-EXC would refer to 0-NN-1 in SF4 (!);
- even with the EN-SEC entry, this way of coding introduces an inconsistency, as the coding (P, X)0-NN-1 implies that there is no single heavy reaction product defined, and therefore the data should not depend on a parameter of ⁵⁸Cu.

A similar data set has been sometimes coded in a different way. For example, Dr. K. Miki (EXFOR E2382 [1]) informed JCPRG that his $(t, {}^{3}He+x)$ DDX data sets (E_t=300 MeV/A, θ ~0) must be related with the two body $(t, {}^{3}He)$ reaction because he regards that the direct process is dominant. This opinion is taken into account in this EXFOR entry, for example,

(40-ZR-90(T,HE3)39-Y-90,,DA/DE) instead of

(40-ZR-90(T,X)2-HE-3,,DA/DE).

It could be difficult for EXFOR compilers to make a right decision (especially when the authors are not available). For example, EXFOR F1183 [2] gives angular distributions (25 deg $<\theta_{cm}<165$ deg) of DDX for $^{65}Cu(\alpha,p+x)$ at $E_{\alpha}=24.4$ MeV and a constant excitation energy of 68 Zn derived by the two body kinematics. The threshold energy of the (α ,2p) reaction is about 13 MeV.

Proposal

A possible solution could be use of a new branch code (say, ICL), for example

(28-NI-58(P,N)29-CU-58,ICL,DA/DE,N/RSD). For E2135.002. The new branch code expresses that the data are not corrected for other channels emitting the same outgoing particle considered. When necessary, one may also propose a similar code

(ICL): uncertain if the data sets are corrected for the many body final states.

Dictionary 31 (Branch codes)

ICL Not corrected for other channels emitting the same particle

Dictionary 236 (Quantities)

ICL, DA/DE, */RSD Double diff. cross section d2/dA(*)/dE(residual nucleus) not corrected for other channels emitting the same particle

Quantity	Reaction Type	Dimension	Subentry
ICL,DA/DE,*/RSD	DAE	DAE	E2135.002-008 F1183.002-005,010-011 O0223.002-009

Addition to LEXFOR "Production and Emission Cross sections"

Production Cross Section defined with Excitation Energy

Sometimes the production cross section is given as a function of the excitation energy of the reaction product from a specific process (*e.g.*, two body reaction). This may happen when the contribution of the direct process is expected to be dominant (*e.g.*, data at forwarded angle). In this case the production cross section may be coded with the specific process considered by the author under REACTION with a branch code ICL.

Example:

(28-NI-58(P,N)29-CU-58, ICL, DA/DE, N/RSD)Double differential cross section $d\sigma/d\Omega_n dE_x({}^{58}Cu)$ for ${}^{58}Ni(p,n+x)$ reaction.

Problematic entries

In this occasion, I went through EXFOR entries where

- REACTION SF3=x and SF6=*DE* and the secondary energy is coded under E-EXC
- REACTION SF3=x and the secondary energy is coded under Q-VAL.

Problematic entries are summarized at the end of this memo with proposed corrections.

References

K. Miki et al., Phys. Rev. Lett. **108** (2012) 262503 (EXFOR E2382).
 A.V. Smirnov et al., Izv. Akadem. Nauk. USSR, Ser. Fiz. **49** (1985) 138 (EXFOR F2135).

Many data sets listed in Memo CP-D/813 have been already corrected, and deleted in this working paper (2014-04-29)

		REACTION	Proposed correction	
C0728	002	(2-HE-3(P,X))O-NN-1,,DA/DE)	$E-EXC \rightarrow E-RL;$	
	003	(2-HE-3(P,X))O-NN-1,,POL/DA/DE,,ANA)	add (E-RL, P+P+P) under EN-SEC.	
			(Excitation energy measured from 3 proton mass energy)	
J1601	002	(6-C-12(PIP,X)1-KP-0,,IPA/DE)	? The current Z-S-A formalism does not support hyper nuclei (e.g., ${}^{12}_{\Lambda}$ C)	

Error list 1: REACTION SF3=x and SF6=*DE* and the secondary energy is coded under E-EXC

Error list 2: REACTION SF3=x and the secondary energy is coded under Q-VAL.

		REACTION	Proposed correction
22077	014	(29-CU-0(N,X)0-NN-1,PAR,DA)	Use (29-CU-0(N, INL)29-CU-0, PAR, DA)??
	029	(22-TI-0(N,X)0-NN-1,PAR,DA)	Use (22-TI-0(N, INL)22-TI-0, PAR, DA)??
	044	(40-ZR-0(N,X)0-NN-1, PAR, DA)	Use (40-ZR-0(N, INL)40-ZR-0, PAR, DA)??