



# Statistical Verification and Validation of the EXFOR Database (A61, A69)

### **O.Cabellos** NEA Data Bank oscar.cabellos@oecd.org







## 1. EXFOR checking ("post-SG30" activities)

The Data Bank works to maintain the highest level of quality in its databases.

Verification methods developed within "WPEC Subgroup 30" have been implemented at the Data Bank to further improve the quality of EXFOR:

#### 1.1 In-depth review of all threshold reaction cross-sections

"Statistical Verification and Validation of the EXFOR database: (n,n'), (n,2n), (n,p),  $(n,\alpha)$  and other neutron-induced threshold reaction cross-sections" by A.Koning, NEA/DB/DOC(2014)3

#### **1.2 Implementation of cross-checking with evaluated data**

"Cross-checking of Large Evaluated and Experimental Nuclear Reaction Databases", by O. Zeydina, A.J. Koning, N. Soppera, D. Raffanel, M. Bossant, E. Dupont, and B. Beauzamy, NDS 120 (2014) 277





## **1.1 In-depth review of all threshold reaction XSs**

An efficient review system and associated strategy were developed to systematically compare more than 10 000 cross-section data sets from EXFOR with the corresponding values in the main evaluated nuclear data libraries, including JEFF.

- The review initially covered all neutron-induced threshold and activation reactions such as (n,n'), (n,2n), (n,p) and (n,α) (NEA, 2014).
- The resulting statistical information showed various interesting trends in the data, including a list of suspicious data sets for which the cross-section values deviate greatly from the major evaluated nuclear data libraries and/or other measurements.
- The original publications associated with these data have also been systematically checked.

http://www.oecd-nea.org/databank/docs/2014/db-doc2014-3.pdf

Data Bank NEA/DB/DOC(2014)3 www.oecd-nea.org

> Tatistical Verification and Validation of the EXFOR database: (n,n'), (n,2n), (n,p), (n, $\alpha$ ) and other neutron-induced threshold reaction cross-sections









## **Scoring classes... the strongest deviations**

#### T3. Automatically compared with libraries: strong deviations

The subentry contains probably not the reaction and data measured by the author, and the associated publication has not (yet) been checked by the reviewer. The quantities have central values and uncertainties which are strongly deviating from other measurements, libraries and/or calculations.

#### **R3.** Paper reviewed: strong deviations

The subentry contains certainly the reaction and data measured by the author, since the associated publication has been checked by the reviewer. The quantities have central values and uncertainties which are strongly deviating from other measurements, libraries and/or calculations.

#### E3. Error: subentry contains other quantity or wrong values - strong deviations.

The subentry contains reaction and data that do not agree at all with other measurements, libraries and/or calculations. The associated publication has been checked by the reviewer, and often the values found are wrong. Sometimes, no origin of the value or alternative meaning for the value could be found. Action: further analysis, confirmation and correction by Data Centres.

See WP2013-19, "Proposal to introduce a Quality Score in EXFOR", E. Dupont, A.J. Koning, N. Otsuka





**Table.** Total number of neutron-induced *cross section* subentries available in XC4 format, compared in this work, and scoring in reviewing classes. EXFOR status: July 7 2014.

| Reaction     | All  | Compared | F < 5 | T1   | T2  | T3  | N1  | N2  | N3 | R1  | R2  | R3 | E1 | E2 | E3 | Reviewed |
|--------------|------|----------|-------|------|-----|-----|-----|-----|----|-----|-----|----|----|----|----|----------|
| (n,tot)      | 4528 | 4421     | 4390  | 2187 | 963 | 0   | 816 | 450 | 0  | 0   | 0   | 0  | 0  | 0  | 0  |          |
| (n,el)       | 871  | 852      | 846   | 446  | 225 | 0   | 112 | 67  | 0  | 0   | 0   | 0  | 0  | 0  | 0  |          |
| (n,non)      | 375  | 365      | 364   | 213  | 100 | 0   | 32  | 20  | 0  | 0   | 0   | 0  | 0  | 0  | 0  |          |
| (n,n')       | 229  | 151      | 149   | 52   | 12  | 4   | 49  | 5   | 12 | 6   | 3   | 8  | 0  | 0  | 0  | у        |
| (n,n')m      | 255  | 248      | 242   | 57   | 30  | 1   | 92  | 18  | 9  | 16  | 6   | 19 | 0  | 0  | 0  | у        |
| (n,n')n      | 3    | 3        | 2     | 0    | 1   | 0   | 0   | 0   | 0  | 0   | 2   | 0  | 0  | 0  | 0  | У        |
| (n,2n)       | 1643 | 1600     | 1593  | 378  | 126 | 30  | 331 | 48  | 20 | 408 | 202 | 53 | 2  | 2  | 0  | у        |
| (n,2n)g      | 384  | 377      | 376   | 70   | 20  | 8   | 80  | 24  | 4  | 105 | 35  | 27 | 2  | 0  | 3  | У        |
| (n,2n)m      | 712  | 701      | 691   | 109  | 26  | 6   | 154 | 55  | 5  | 214 | 83  | 47 | 1  | 0  | 2  | у        |
| (n,2n)n      | 42   | 41       | 33    | 7    | 3   | 3   | 5   | 5   | 0  | 3   | 5   | 10 | 0  | 0  | 0  | У        |
| (n,3n)       | 94   | 83       | 78    | 17   | 9   | 0   | 34  | 11  | 0  | 6   | 4   | 2  | 0  | 0  | 0  | У        |
| (n,3n)g      | 8    | 6        | 4     | 3    | 0   | 0   | 0   | 3   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | У        |
| (n,3n)m      | 19   | 16       | 16    | 6    | 4   | 0   | 1   | 4   | 0  | 1   | 0   | 0  | 0  | 0  | 0  | У        |
| (n,f)        | 1229 | 1153     | 1127  | 515  | 131 | 112 | 267 | 68  | 56 | 0   | 0   | 0  | 0  | 0  | 0  |          |
| (n,na)       | 53   | 53       | 36    | 23   | 9   | 0   | 4   | 2   | 0  | 9   | 6   | 0  | 0  | 0  | 0  | у        |
| (n,na)g      | 1    | 1        | 1     | 1    | 0   | 0   | 0   | 0   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | у        |
| (n,na)m      | 15   | 14       | 12    | 3    | 1   | 0   | 1   | 2   | 0  | 7   | 0   | 0  | 0  | 0  | 0  | у        |
| (n,na)n      | 4    | 4        | 4     | 1    | 0   | 0   | 1   | 0   | 0  | 2   | 0   | 0  | 0  | 0  | 0  | у        |
| (n,2na)      | 20   | 5        | 5     | 2    | 3   | 0   | 0   | 0   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | У        |
| (n,np)       | 75   | 196      | 136   | 52   | 12  | 0   | 60  | 41  | 0  | 21  | 9   | 1  | 0  | 0  | 0  | у        |
| (n,np)g      | 5    | 16       | 11    | 3    | 1   | 0   | 7   | 2   | 0  | 2   | 1   | 0  | 0  | 0  | 0  | у        |
| (n,np)m      | 16   | 62       | 45    | 12   | 5   | 0   | 20  | 16  | 0  | 8   | 1   | 0  | 0  | 0  | 0  | y        |
| (n,n2a)      | 8    | 8        | 8     | 3    | 0   | 0   | 5   | 0   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | у        |
| (n,nd)       | 6    | 6        | 5     | 3    | 0   | 1   | 1   | 0   | 0  | 0   | 1   | 0  | 0  | 0  | 0  | y        |
| (n,nt)       | 28   | 1        | 0     | 0    | 1   | 0   | 0   | 0   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | y        |
| (n,4n)       | 34   | 32       | 32    | 8    | 4   | 0   | 10  | 7   | 0  | 3   | 0   | 0  | 0  | 0  | 0  | y        |
| (n,4n)g      | 3    | 3        | 3     | 1    | 0   | 0   | 2   | 0   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | у        |
| (n,2np)      | 4    | 0        | 0     | 0    | 0   | 0   | 0   | 0   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | у        |
| $(n,n'_1)$   | 726  | 337      | 317   | 170  | 24  | 1   | 112 | 9   | 7  | 6   | 1   | 6  | 0  | 0  | 1  | у        |
| $(n,n'_{2})$ | 0    | 105      | 96    | 51   | 14  | 2   | 28  | 6   | 2  | 0   | 2   | 0  | 0  | 0  | 0  | у        |
| $(n,n'_{3})$ | 0    | 44       | 31    | 14   | 8   | 1   | 12  | 8   | 1  | 0   | 0   | 0  | 0  | 0  | 0  | y        |
| $(n,n'_{4})$ | 0    | 25       | 17    | 9    | 10  | 0   | 2   | 4   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | y        |
| (n,n'5)      | 0    | 18       | 16    | 12   | 2   | 0   | 1   | 1   | 0  | 1   | 0   | 1  | 0  | 0  | 0  | y        |
| $(n,n'_6)$   | 0    | 17       | 15    | 5    | 6   | 0   | 3   | 3   | 0  | 0   | 0   | 0  | 0  | 0  | 0  | y        |
| (n,n'>6)     | 0    | 65       | 42    | 15   | 28  | 0   | 9   | 13  | 0  | 0   | 0   | 0  | 0  | 0  | 0  |          |





|          | 4.11  |          |       | TE 1 | TO   | TO   | 211  |      |     | D 1  | DA  | <b>D</b> 2 | <b>T</b> 1 | ΤQ  | TO | D : 1    |
|----------|-------|----------|-------|------|------|------|------|------|-----|------|-----|------------|------------|-----|----|----------|
| Reaction | All   | Compared | F < 5 | T1   | T2   | T3   | N1   | N2   | N3  | R1   | R2  | R3         | E1         | E2  | E3 | Reviewed |
| (n,abs)  | 156   | 25       | 17    | 6    | 7    | 7    | 1    | 3    | 1   | 0    | 0   | 0          | 0          | 0   | 0  | У        |
| (n,g)    | 5360  | 5282     | 4970  | 2590 | 426  | 734  | 984  | 195  | 333 | 0    | 0   | 0          | 0          | 0   | 0  |          |
| (n,g)g   | 339   | 325      | 298   | 150  | 27   | 26   | 70   | 25   | 23  | 0    | 0   | 0          | 0          | 0   | 0  |          |
| (n,g)m   | 549   | 543      | 461   | 248  | 78   | 27   | 116  | 54   | 15  | 0    | 0   | 0          | 0          | 0   | 0  |          |
| (n,g)n   | 28    | 22       | 16    | 2    | 6    | 1    | 4    | 9    | 0   | 0    | 0   | 0          | 0          | 0   | 0  |          |
| (n,p)    | 1835  | 1817     | 1771  | 469  | 144  | 22   | 296  | 91   | 11  | 483  | 288 | 9          | 1          | 2   | 1  | У        |
| (n,p)g   | 198   | 193      | 179   | 35   | 6    | 0    | 42   | 13   | 0   | 59   | 33  | 1          | 0          | 4   | 1  | У        |
| (n,p)m   | 438   | 434      | 410   | 81   | 20   | 0    | 68   | 44   | 0   | 146  | 71  | 0          | 1          | 4   | 0  | У        |
| (n,p)n   | 12    | 12       | 9     | 0    | 1    | 0    | 1    | 5    | 0   | 4    | 1   | 0          | 0          | 0   | 0  | У        |
| (n,d)    | 33    | 32       | 29    | 13   | 8    | 0    | 4    | 5    | 0   | 1    | 1   | 0          | 0          | 0   | 0  | У        |
| (n,d)g   | 1     | 1        | 1     | 0    | 1    | 0    | 0    | 0    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | У        |
| (n,d)m   | 3     | 3        | 2     | 0    | 0    | 0    | 0    | 3    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | У        |
| (n,t)    | 147   | 138      | 127   | 59   | 18   | 0    | 31   | 20   | 0   | 3    | 7   | 2          | 0          | 0   | 0  | У        |
| (n,t)g   | 21    | 7        | 3     | 1    | 5    | 0    | 0    | 1    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | У        |
| (n,t)m   | 26    | 19       | 14    | 0    | 15   | 0    | 1    | 3    | 0   | 0    | 0   | 1          | 0          | 0   | 0  | У        |
| (n,t)n   | 1     | 1        | 0     | 0    | 0    | 0    | 0    | 1    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | У        |
| (n,h)    | 60    | 15       | 5     | 4    | 1    | 0    | 4    | 4    | 0   | 2    | 0   | 5          | 0          | 0   | 0  | У        |
| (n,h)m   | 6     | 4        | 4     | 4    | 0    | 0    | 0    | 0    | 0   | 0    | 0   | 1          | 0          | 0   | 0  | у        |
| (n,a)    | 1119  | 1103     | 1035  | 346  | 118  | 12   | 181  | 64   | 3   | 223  | 149 | 6          | 2          | 0   | 1  | У        |
| (n,a)g   | 87    | 86       | 75    | 24   | 4    | 0    | 11   | 3    | 0   | 23   | 21  | 0          | 0          | 0   | 0  | У        |
| (n,a)m   | 209   | 208      | 189   | 41   | 15   | 0    | 40   | 10   | 0   | 61   | 41  | 0          | 0          | 0   | 0  | у        |
| (n,a)n   | 1     | 1        | 0     | 0    | 0    | 0    | 0    | 1    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | У        |
| (n,2a)   | 5     | 5        | 4     | 0    | 4    | 0    | 1    | 0    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | У        |
| (n,2p)   | 34    | 5        | 1     | 0    | 4    | 0    | 0    | 0    | 0   | 1    | 0   | 9          | 0          | 0   | 0  | y        |
| (n,2p)m  | 2     | 0        | 0     | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | y        |
| (n,pa)   | 6     | 5        | 5     | 1    | 0    | 0    | 1    | 2    | 0   | 1    | 0   | 0          | 0          | 0   | 0  | у        |
| (n,t2a)  | 2     | 2        | 1     | 0    | 0    | 0    | 1    | 1    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | у        |
| (n,xn)   | 17    | 12       | 10    | 2    | 2    | 0    | 2    | 1    | 0   | 3    | 0   | 2          | 0          | 0   | 0  | y        |
| (n,xg)   | 690   | 527      | 325   | 26   | 128  | 151  | 9    | 80   | 133 | 0    | 0   | 0          | 0          | 0   | 0  | y        |
| (n,xg)m  | 15    | 0        | 0     | 0    | 0    | 0    | 0    | 0    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | y        |
| (n,xp)   | 89    | 54       | 51    | 16   | 8    | 0    | 12   | 4    | 3   | 5    | 2   | 4          | 0          | 0   | 0  | y        |
| (n,xd)   | 23    | 7        | 5     | 1    | 2    | 0    | 4    | 0    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | y        |
| (n,xt)   | 37    | 22       | 20    | 10   | 6    | 1    | 4    | 0    | 0   | 0    | 0   | 1          | 0          | 0   | 0  | y        |
| (n,xh)   | 9     | 3        | 1     | 0    | 1    | 0    | 1    | 1    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | y        |
| (n,xa)   | 165   | 135      | 124   | 66   | 23   | 7    | 19   | 15   | 1   | 2    | 1   | 1          | 0          | 0   | 0  | y        |
| (n,x)    | 326   | 157      | 145   | 83   | 31   | 0    | 27   | 14   | 0   | 2    | 0   | 0          | 0          | 0   | 0  | y        |
| (n,x)g   | 24    | 9        | 9     | 4    | 4    | 0    | 1    | 0    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | y        |
| (n,x)m   | 96    | 25       | 22    | 13   | 8    | 1    | 0    | 1    | 2   | 0    | 0   | 0          | 0          | 0   | 0  | y        |
| (n,x)n   | 3     | 1        | 1     | 1    | 0    | 0    | 0    | 0    | 0   | 0    | 0   | 0          | 0          | 0   | 0  | y        |
| Total    | 23541 | 22271    | 21084 | 8744 | 2899 | 1158 | 4187 | 1567 | 641 | 1864 | 988 | 216        | 9          | 14  | 9  | <u>_</u> |
|          |       |          | -1001 | 0.11 |      | 1120 |      | 1007 | 011 | 1001 | 100 | -10        | · ·        | 1 1 | ~  |          |





## **1.1 In-depth review of all threshold reaction XSs**

This work has showed:

- Most of the experimental data were compiled correctly in the EXFOR database
- Few compilation mistakes (that have since been corrected)

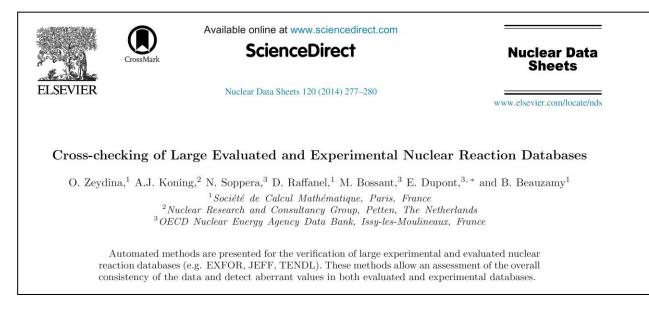
On going and future work:

- A second part of the review devoted to the (n, γ) cross-section.
   This part of the review is challenging because of the large fluctuations of data in the resonance region that make the comparison more difficult.
- Other non-threshold cross-sections such as (n,f), (n,tot) and (n,n).





## **1.2 Cross-checking with evaluated data**


Method developed to cross check evaluated and experimental data in databases in order to detect aberrant values.

Methodology

Based on distances/ranking of EXFOR-ENDF and ENDF-ENDF

#### Outliers

"There is no evidence, on the basis of numerical comparisons only, that **outliers** represent "bad" data"



#### Helping ND evaluators

"The fact that such data deviate significantly from other data of the same reaction may, however, be **helpful to nuclear data evaluators** who focus on one or a few isotopes and may wish to discard such data after a thorough analysis"





### **SCM: ENDF-EXFOR method**

- **ENDF-ENDF method**: "The absolute distance between the two libraries describing the same reaction is calculated as the integral of the difference between continuous functions. The relative one is deduced by dividing the absolute difference by the average of compared values. The final mean distance is the average of mutual distances.
- **ENDF-EXFOR method**: The absolute distance between a curve and a set of points is taken as the average of all differences of two cross-sections corresponding to the same abscissa (energy).
- **Classification of nuclear reactions**: in order to rate available nuclear reactions according to quality of their representation, a special indicator, combining the absolute and relative distances is implemented:

$$Ind = (log_{10} abs)^{norm} \times rel$$

• **Remark:** this indicator is able to rate the reactions only between themselves, that is to indicate the best and the worst representation among the considered ones.



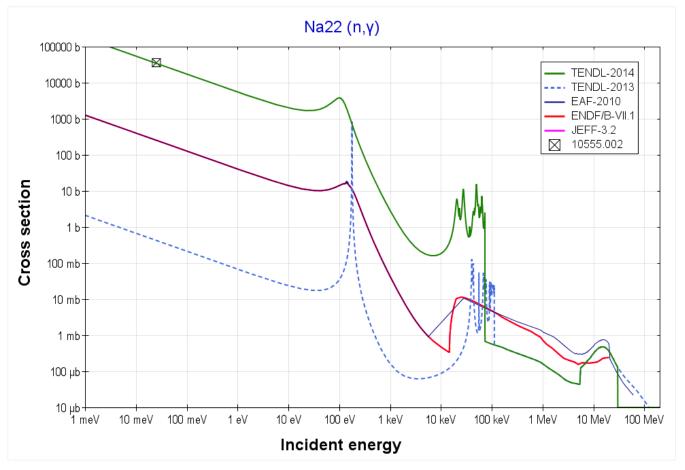


#### Table 1. Ranking analysis about data quality

| quantile | Reaction title                                        | Rank  | Evaluated data | Experimental data |
|----------|-------------------------------------------------------|-------|----------------|-------------------|
| q100     | <u>11-NA-22(N,G)11-NA-23,,SIG (1,5) E</u>             | 1,92  | TENDL-13       | (1 point)         |
| q100     | <u>91-PA-234(N,F),,SIG (1,2) E</u>                    | 1,77  |                | (1 point)         |
| q100     | <u>3-LI-6(N,G)3-LI-7,,SIG (2,7) E</u>                 | 1,68  |                |                   |
| q100     | <u>79-AU-198(N,TOT),,SIG (1,1) E</u>                  | 1,65  | (1 libr.)      | (1 point)         |
| q100     | <u>71-LU-177-M(N,G)71-LU-178-M,,SIG (1,3) E</u>       | 1,61  |                | (1 point)         |
| q100     | 45-RH-105(N,G)45-RH-106-M,,SIG,,,RECOM (1,1) E        | 1,59  | (1 libr.)      | (1 point)         |
| q100     | <u>99-ES-253(N,G)99-ES-254-G,,SIG,,,RECOM (1,6) E</u> | 1,48  |                | (1 point)         |
| q100     | <u>10-NE-21(N,A)8-O-18,,SIG (1,4) E</u>               | 1,47  |                | (1 point)         |
| q100     | <u>68-ER-170(N,G)68-ER-171,,SIG,,,CALC (1,6) E</u>    | 1,45  | (EAF-10)       | (1 point)         |
| q100     | <u>80-HG-200(N,G)80-HG-201,,SIG,,,RECOM (1,7) E</u>   | 1,40  | TENDL-13       | (1 point)         |
| q100     | <u>18-AR-39(N,A)16-S-36,,SIG,,,RECOM (1,4) E</u>      | 1,40  |                | (1 point)         |
| q100     | <u>47-AG-110-M(N,G)47-AG-111,,SIG,,,RECOM (1,1) E</u> | 1,38  | (1 libr.)      | (1 point)         |
| q100     | <u>95-AM-243(N,G)95-AM-244-G,,SIG,,,RECOM (1,7) E</u> | 1,36  |                | (1 point)         |
| q99      | <u>96-CM-248(N,G)96-CM-249,,SIG (1,6) E</u>           | 1,03  |                |                   |
| q99      | <u>48-CD-106(N,D)47-AG-105,,SIG (1,5) E</u>           | 1,02  |                | (1 point)         |
| q95      | <u>50-SN-0(N,G),,SIG,,,DERIV (8,2) E</u>              | 0,653 |                |                   |
| q95      | <u>52-TE-122(N,G)52-TE-123,,SIG (5,6) E</u>           | 0,653 |                | (1 point)         |
| q90      | <u>8-O-17(N,A)6-C-14,,SIG (2,5) E</u>                 | 0,46  |                |                   |





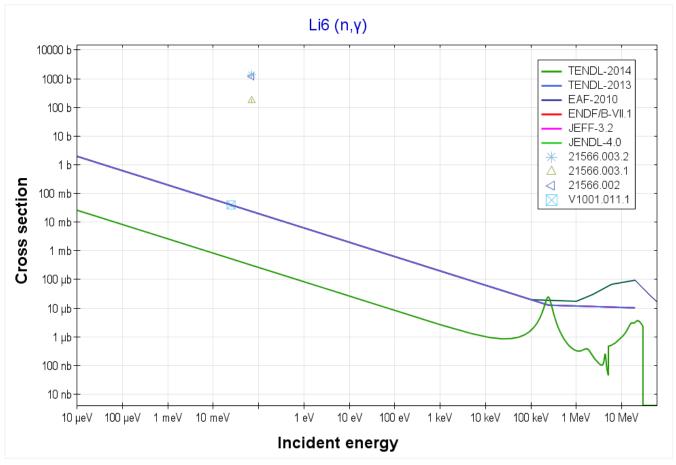

## **Reactions (n,gamma)**

- Figure. Na22(n,g) rank value=1.92
- Figure. Li6(n,g) rank value=1.68
- Figure. Lu177-M(n,g)Lu178-M rank value=1.61
- Figure. Rh105(n,g)Rh106-M rank value=1.59
- Figure. Es253(n,g)Es-254G rank value=1.48
- Figure. Es253(n,g)Es-254G rank value=1.48
- Figure. Sn-nat(n,g) rank value=0.653
- Figure. Ba130(n,g)





#### **Figure.** Na22(n,g) rank value=1.92

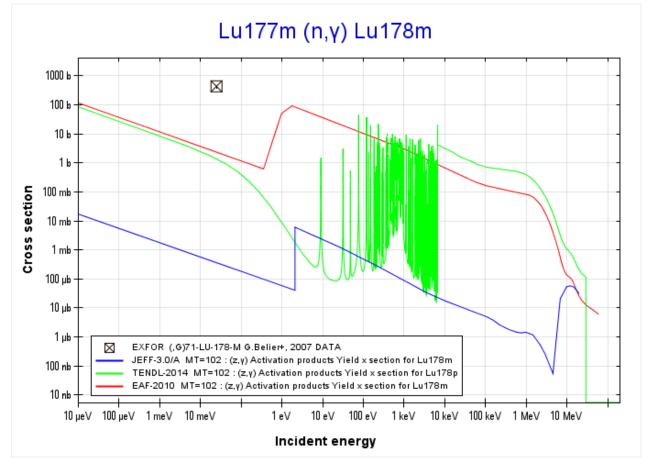



### New evaluations (e.g.TENDL-2014)





#### **Figure.** Li6(n,g) rank value=1.68

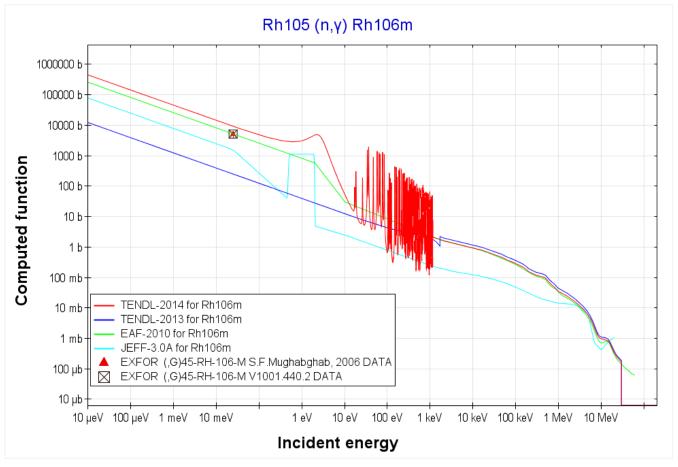



### Large disagreement in EXFOR data





#### Figure. Lu177-M(n,g)Lu178-M rank value=1.61

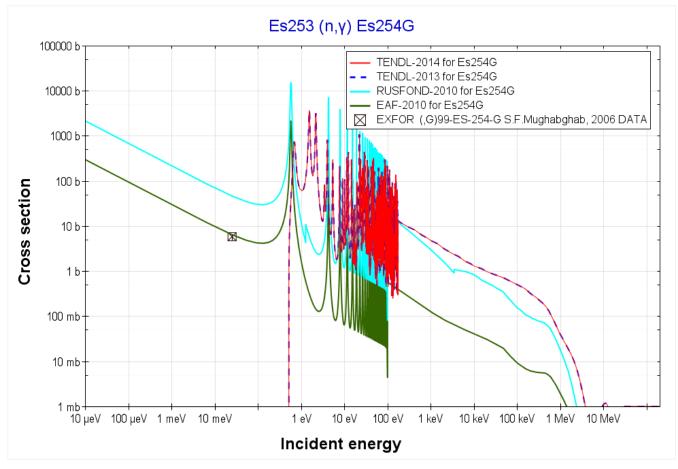



### EXFOR data for isomeric isotopes





#### Figure. Rh105(n,g)Rh106-M rank value=1.59

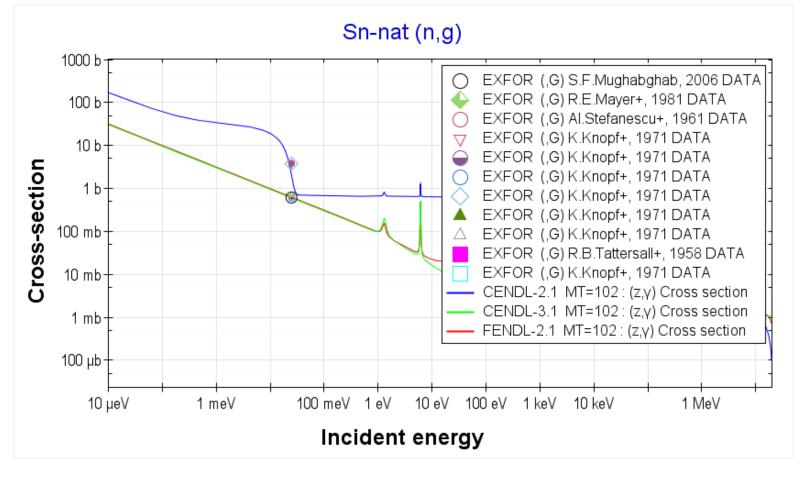



### EXFOR data for isomeric reactions





#### **Figure.** Es253(n,g)Es-254G rank value=1.48

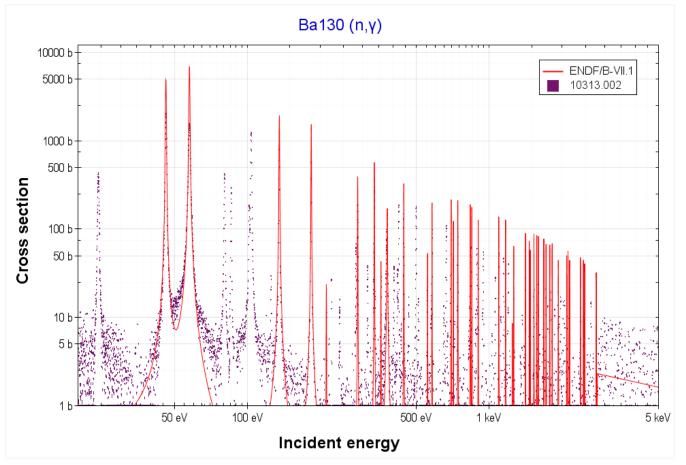



### > EXFOR data for isomeric reactions (Ground-Meta)





#### Figure. Sn-nat(n,g) rank value=0.653




#### EXFOR for natural elements





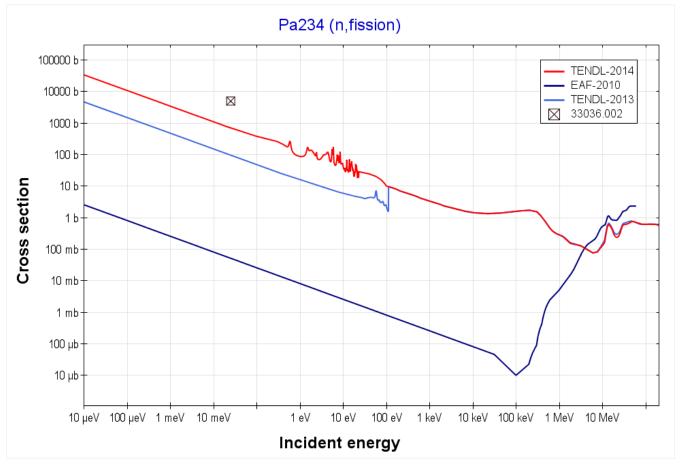
#### Figure. Ba130(n,g)



### EXFOR data for improving RRR evaluation






## **Reactions (n, fission)**

• Figure. Pa234(n,fission) rank value=1.77





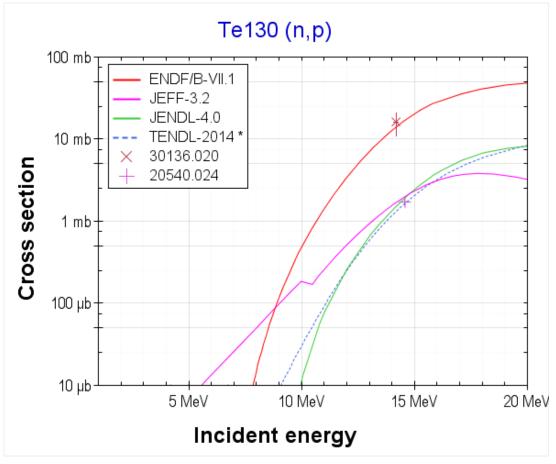
#### Figure. Pa234(n,fission) rank value=1.77



#### EXFOR data to be used...





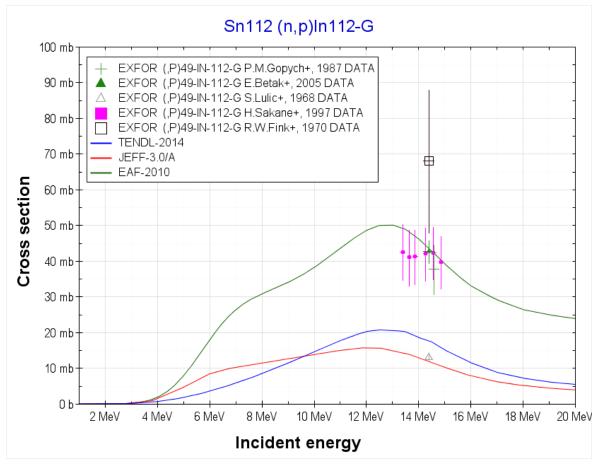

## Reactions (n,p)

- Figure. Te130 (n,p)
- Figure. Sn112 (n,p) In112-G










### EXFOR data for activation at 14 MeV





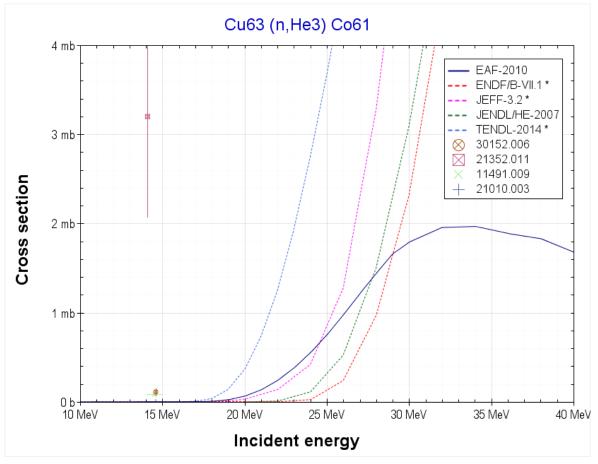
#### Figure. Sn112 (n,p) In112-G



### EXFOR data for activation at 14 MeV





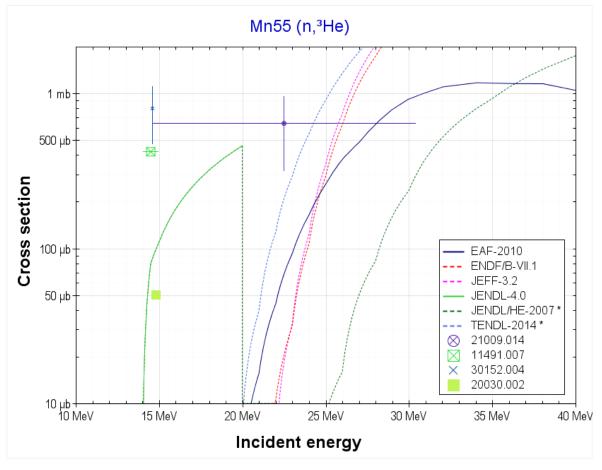

## **Reactions (n,He3)**

- Figure. Cu63 (n,He3)
- Figure. Mn55 (n,He3)





#### Figure. Cu63 (n,He3)




### EXFOR data, threshold reactions





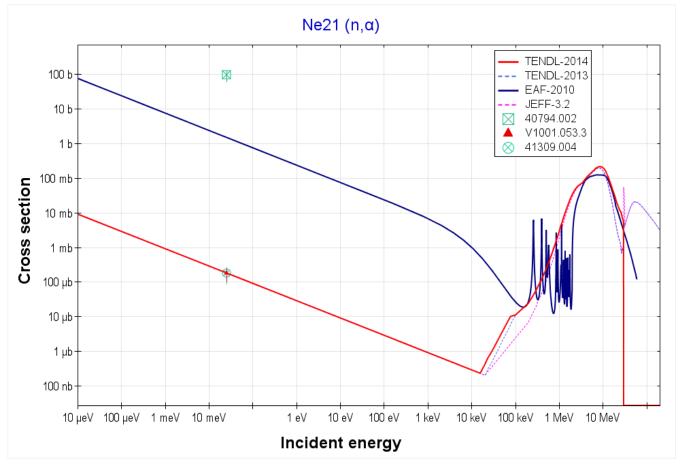
#### Figure. Mn55 (n,He3)



#### EXFOR data, threshold reactions





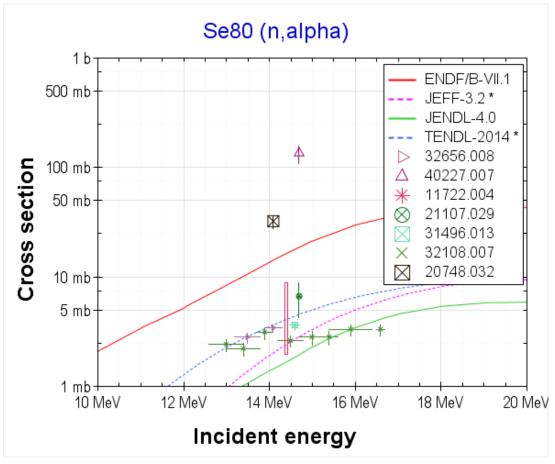

## **Reactions (n,alpha)**

- Figure. Ne21(n,alpha) O18 rank value=1.47
- Figure. Se80 (n,alpha)
- Figure. Sc45 (n,alpha)
- Figure. Ge74 (n,alpha) Zn71-G





#### Figure. Ne21(n,alpha) O18 rank value=1.47

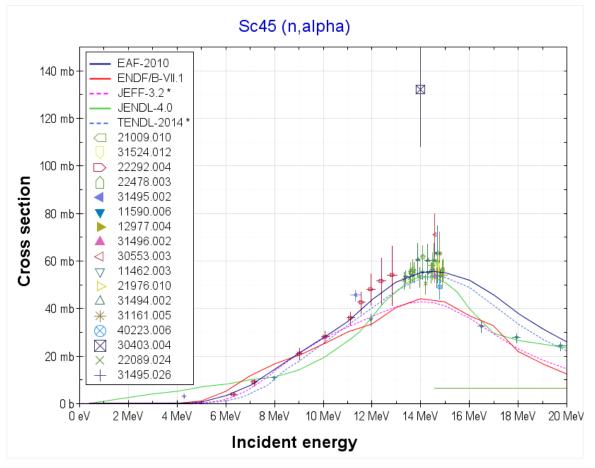



#### EXFOR data to be discharged?





#### Figure. Se80 (n,alpha)

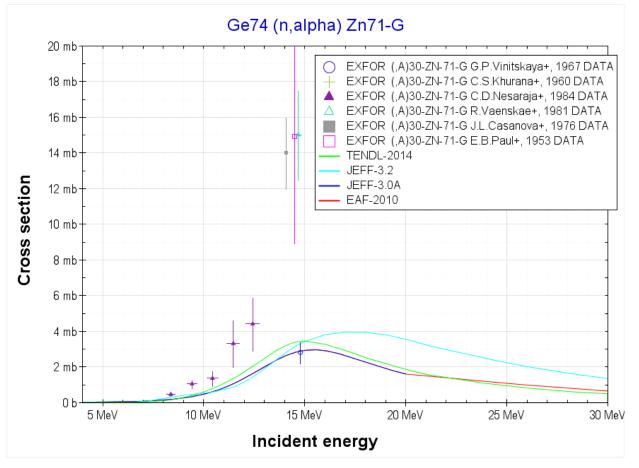



#### EXFOR data to be checked





#### Figure. Sc45 (n,alpha)




### EXFOR data to be checked and/or discharged by evaluators





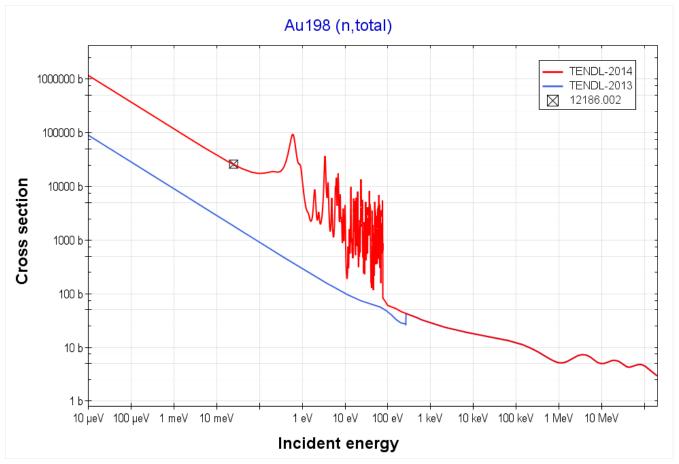
#### Figure. Ge74 (n,alpha) Zn71G



### EXFOR data to be checked for isomeric reactions!





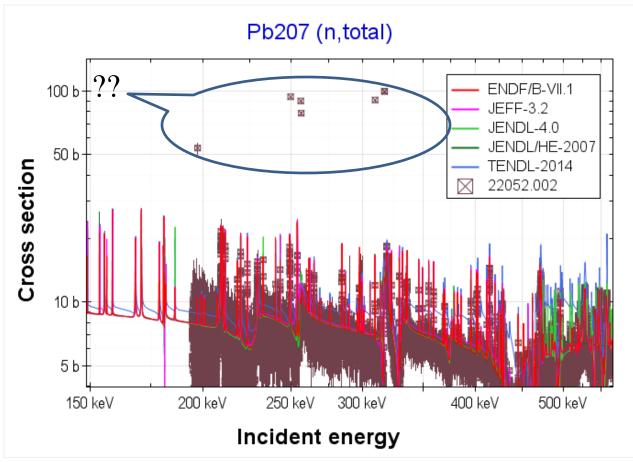

## **Reactions (n,tot)**

- **Figure.** Au198(n,tot) rank value=1.65
- Figure. Pb207(n,tot)





#### Figure. Au198(n,tot) rank value=1.65




### New evaluations (e.g.TENDL-2014)





#### Figure. Pb207(n,tot)



### > EXFOR outliers in the same large ENTRY?





### Thank you for your attention





### References

- NEA (2011), "Statistical methods for the verification of databases", NEA News, Volume 29, No. 1, OECD, Paris.
- NEA (2012), "NEA contributions to the worldwide collection, compilation and dissemination of nuclear reaction data", *NEA News*, Volume 30, No. 2, OECD, Paris.
- Société de Calcul Mathématique (SCM) (2014), "Cross checking of large evaluated and experimental nuclear reaction databases", International Conference on Nuclear Data for Science and Technology, *Nuclear Data Sheets*, Volume 120, pp. 277-280, Elsevier.
- NEA (2014), "Statistical verification and validation of the EXFOR database", NEA Data Bank Report, NEA/DB/ DOC(2014)3, OECD, Paris.
- NEA (2014), "EXFOR: Improving the quality of international databases", NEA News, Volume 32, No. 1, OECD, Paris. (E. Dupont). - This presentation is mainly based on this work.