

International Atomic Energy Agency

Progress in n_TOF Data Compilation

Naohiko Otsuka

IAEA Nuclear Data Section in collaboration with Emmeric Dupont (CEA Saclay) Oscar Cabellos (NEA Data Bank)

n_TOF EXFOR Compilation - Background

- Archiving of energy dependent data sets for future resonance analysis (e.g., simultaneous fitting of transmission and capture yield) - WPEC SG36.
- Usually not tabulated in the final publications.
- Digitization is not suitable (~10000 points, input for least-square analysis)
- Submission of data by authors is essential, but very few contribution for capture measurements in the past.

Communication in n_TOF Meetings - History

- 2011 n_TOF Board Meeting (Otsuka+)
- 2013 n_TOF Board Meeting (Lederer+)
- 2015 n_TOF Data Analysis Meeting (Capote+)
- 2016 n_TOF Collaboration Meeting (Dupont)

N.Otsuka+ n_TOF Board Meeting (Nov. 2011)

International Atomic Energy Agency

n_TOF Data Compilation for EXFOR Library

Naohiko Otsuka

IAEA Nuclear Data Section in collaboration with Tim Ware (U. Manchester) Emmeric Dupont (NEA Data Bank)

Digitized Resonance and Raw Dat *n_TOF Board Meeting* (Nov. 2011)

Guerrero (2006): EXFOR 22970.002 digitized from PHYSOR 2006 Conf. Proc. Two ²³⁷Np(n,γ) resonances **Tagliente (2006):** EXFOR 22978.003 digitized from Nuclei in the Cosmos ⁹⁰Zr(n,γ) capture yield in arb. unit.

Who use these data sets?

N.Otsuka+ Index to n TOF Articles and EXF(n_TOF Board Meeting (Nov. 2011)

IAEA.org | NDS Mission | Abou

Data Services uclear Секция Ядерных Данных МАГАТЭ

International Atomic Energy Agency

Search

Databases » EXFOR ENDF CINDA IBANDL Medical PGAA NGAtlas RIPL FENDL IRDF-2002 IRDFF

A Databases

EXFOR

What is EXFOR?

EXFOR News

Feedback

Feedback (SG30)

- Articles in

compilation

EXFOR Citation

CINDA What Feed ENDF

NNDC

N.Otsuka

Last updated: 2012-11-28

"Exp #" is an ID to identify publications and EXFOR data sets for a reaction from one experimental work (measurement). Currently this ID (without "?") is given by IAEA-NDS only for publications assumed as final and data sets compiled from such publications.

Index to n TOF publications compiled in EXFOR entries

- What is CINDA?	Reaction	1st author	Reference	Quant	pts	Emin (eV)	Emax (eV)	Detector	Source	Remark	Exp #
- Feedback	²⁴ Mg(n,γ)	C. Massimi	J,PR/C,85,044615,2012			1.00E+00	7.00E+02	C6D6			12024G01
- What is ENDE2			0,EXFOR,23163.000								12024G01
- ENDF Citation	²⁵ Mg(n,γ)	C. Massimi	J,PR/C,85,044615,2012			1.00E+00	7.00E+02	C6D6			12025G01
			0,EXFOR,23163.000								12025G01
	²⁶ Mg(n,γ)	C. Massimi	J,PR/C,85,044615,2012			1.00E+00	7.00E+02	C6D6			12026G01
NNDC (USA)			0, <u>EXF</u> OR <u>,23</u> 16 <u>3.00</u> 0								12 <u>026</u> G01
NEADB (France)	⁹⁰ Zr(n,γ)	G.Tagliente	J,PR/C,77,035802,2008			1.00E+00	1.00E+06	C6D6			40090G01
NDS (Austria)			4,EXFOR,22978.010	RP	45	3.86E+03	6.86E+04		Tabulated		40090G01
CNDC (China)			4,EXFOR,22978.011	MACS	11	5.00E+03	1.00E+05		Tabulated		40090G01
ATOMKI (Hungary)			4,EXFOR,22978.012	SIGr	144	8.72E+03	1.25E+04		Digitized		40090G01
NDPCI (India)		C.Moreau	C,2004SANTA,,880,2004			1.00E+00	1.00E+06	C6D6			40090G01?
JAEA (Japan)		G.Tagliente	J,NP/A,758,573,2005			1.00E+00	1.00E+06	C6D6			40090G01?
JCPRG (Japan)			4,EXFOR,22978.003	RYL	426	1.05E+00	9.67E+05		Digitized		40090G01?
KNDC (Korea)		G.Tagliente	C,2007TOKYO,2,570,2007			1.00E+00	1.00E+06	C6D6			40090G01?
CDEE (Russia)		G.Tagliente	C,2006CERN,,227,2006			1.00E+00	1.00E+06	C6D6			40090G01?
CNPD (Russia)		G.Tagliente	C.2008MACKIN,,(086),2008			1.00E+00	1.00E+06	C6D6			40090G01?
UkrNDC (Ukraine)		G.Tagliente	C,2007NICE,2,1303,2007			1.00E+00	1.00E+06	C6D6			40090G01?
	91 Zr(n,y)	G. Tagliente	J.PR7C.78.045804.2008			1.00E+00	2.60E+03	C6D6		_	40091G01
			_								

One experimental work (assumed by IAEA NDS)

http://www-nds.iaea.org/nrdc/n_tof/ (still some bugs in the system)

6

Toward Further Improvem n_TOF Board Meeting (Nov. 2011)

- T. Ware (n_TOF, U. Manchester), E. Dupont (NEA DB), NO (IAEA NDS) started discussion for further possible improvement of n_TOF EXFOR entries:
- Completeness for final data (Make all final data available.)
- Corrections to existing EXFOR entries (e.g., "kill" preliminary data)
- Creation of new EXFOR entries by n_TOF group
- Tim has already started real works for EXFOR.

NUCLEAR DATA EVALUATION R.Capote+ Impact of n_TOF measurements on nucle n_TOF Analysis Meeting (Feb. 2015)

Roberto Capote and Naohiko Otsuka Nuclear Data Section International Atomic Energy Agency

What n_TOF collaboratio n_TOF Analysis Meeting (Feb. 2015)

Here you are ... It is all described in my article in the Phys.Rev. C !

Or even worse ... Please use my Resonance Parameters Impossible to evaluate data in the RR !!!

n_TOF data-analysis workshop CERN, Geneva, 25-27 February 2015

9

Roberto Capote, IAEA Nuclear Data Section r.capotenoy@iaea.org www-nds.iaea.org

★ n_TOF provided excellent data on UUT/UUT
★ n_TOF provided excellent data on UUT/UUT
★ to the IAEA STD group ③
Ratios of other STD cross sections needed - e.g. Au(n,g)/U8(n,g)

- n_TOF impact on (n,g) evaluations low (02/15)
 Only ²³²Th(n,g) capture yield used in IAEA evaluation so far (adopted by..) !!!
 Situation is improving (2 new sets) but huge backlog needs to be sorted out
- Job is not finished till ALL data are submitted recommendation- submit the yield to the IAEA with the paper to the journal Both for capture and fission experiments:
 - Capture/Fission yields (= input for SAMMY)
 - Cross sections (preferably what is measured = ratio to STD)
 Only exception: (n,f) or (ng) data above the Resonance Range (in this case only cross sections are needed)

E.Dupont n_TOF Collaboration Meeting (May 2016)

DE LA RECHERCHE À L'INDUSTRIE

Status of n_TOF Data Dissemination May 2016

Emmeric DUPONT CEA, Saclay, Irfu/SPhN

emmeric.dupont@cea.fr

www.cea.fr

Why should we send data to EXFOR?

Beyond the publication of results of interest for various fields, another major contribution are the data themselves.

- Data should be <u>usable</u> and actually <u>used</u> in nuclear astrophysics and nuclear technology simulations.
- In particular, <u>pointwise data</u> should be made available.
- Experimental data are unique and <u>must be preserved</u> on long term.

EXFOR is the appropriate place for an efficient <u>dissemination</u> and <u>preservation</u> of data.

- This is the "Mother of all libraries" (for particle transport, activation, dosimetry, standards, etc.)
 - This is a long standing standard (unlike many local databases).

Dissemination of data is also important to secure funding.

STATUS OF DATA DISSEMINATIO

E.Dupont n_TOF Collaboration Meeting (May 2016)

What are EXFOR and users expecting from us?

One should satisfy two types of data reporting requests.

1.Mandatory data to fill in the EXFOR database

<u>Reduced or final experimental quantities</u> (*e.g.*, pointwise yields, cross sections, ratio of cross sections) <u>and associated uncertainty</u> <u>vs. energy</u> (mandatory) and <u>vs. time-of-flight</u>

2.Additional data required for expert users (evaluators, experimentalists)

Detailed information on the facility, detectors, samples, uncertainties and correlations, resolution function, etc.

In the following slides and on the TWiki page *"EXFOR Status = OK"* means that mandatory data are available, but additional data are strongly recommended.

E.Dupont n_TOF Collaboration Meeting (May 2016)

Progress in n_TOF data dissemination

IAEA review of the availability of n_TOF data in EXFOR (Feb. 2015)
 n_TOF monitoring of the dissemination status since June 2015
 <u>https://twiki.cern.ch/twiki/bin/view/NTOF/Dissemination</u>

Current Statistics (prepared by Emmeric)

Table 1 - Overview of the dissemination status in EXFOR for n_TOF datasets associated with a final publication

n_TOF Phase	Reaction	Data Status = Final (datasets with a final publication)	EXFOR Status = Not OK (digitized or incomplete datasets)	EXFOR Status = ongoing (compilation work in progress)	EXFOR Status = OK (mandatory data available)	Data Dissemination Status (OK + ongoing)	
l (2001-2004)	(n,γ)	26	16	8	2	38%	
	(n,f)	13	0	2	11	100%	
	All	39	16	10	13	59%	
ll (2009-2012)	(n,γ)	4	3	0	1	25%	
	(n,f)	2	0	0	2	100%	
	(n,lcp)	2	0	2	0	100%	
	All	8	3	2	3	63%	

Table 2 - Detailed information on the status of n_TOF datasets (click on column headers to sort the data and <u>see notes</u> below for explanations of "Data Status" and "EXFOR Status")

Target	Reaction	n_TOF Phase	Area	Detector	Energy Range (eV)	INTC Proposal	Main Reference	Data Status	EXFOR Entry	EXFOR Status
4-Be-7	<u>(n,α)</u> ⊮?	Ⅲ (2014)	EAR2	Si	2.53E-02 - 1.00E+04	2015 - INTC-P-417	Final paper in preparation	Prelim	-	N/A
4-Be-7	(n,p) <u></u> ⊿?	Ⅲ (2014)	EAR2	Si	2.53E-02 -	2015 - INTC-P-417	-	Prelim	-	N/A

Summary

- Completeness of energy dependent data sets measured by n_TOF has been improved since June 2015 thanks to the new dissemination coordinator (Emmeric Dupont)
- Coverage (as of 8 June 2016) is
 - 38% (capture) + 100% (fission) for Phase I exp. (2001-2004)
 - 25% (capture) + 100% (fission) for Phase II exp. (2009-2012)
- A progress report will be orally presented by Emmeric in ND2016.

