Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria

Memo CP-D/893

Incident Energy differential physical thick target yield

Date:23 February 2016To:DistributionFrom:N. Otsuka, S. Takács

Thin target excitation functions for (α, xn) reactions on osmium targets for platinum radiotracer production

F. Groppi,^{1*} C. Birattari,¹ M. Bonardi,¹ M. Gallorini,¹ L. Gini²

¹ LASA, University and INFN Milano, via F.Ili Cervi 201, 20090 Segrate, Milano, Italy ² CNR, Centre for Radiochemistry and Activation Analysis, Pavia, Italy

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research B 213 (2004) 373-377

www.elsevier.com/locate/nimb

Thin-target excitation functions and optimisation of NCA ⁶⁴Cu and ^{66,67}Ga production by deuteron induced nuclear reactions on natural zinc target, for radiometabolic therapy and for PET

F. Groppi ^{a,*}, M.L. Bonardi ^a, C. Birattari ^a, L. Gini ^a, C. Mainardi ^a, E. Menapace ^b, K. Abbas ^c, U. Holzwarth ^c, R.M.F. Stroosnijder ^c

^a Radiochemistry Laboratory, Accelerators and Applied Superconductivity Laboratory, LASA, Università degli Studi and National Institute of Nuclear Physics, INFN, via F.lli Cervi 201, I-20090 Segrate, Milano, Italy ^b ENEA, Division for Advanced Physical Technologies, via Don Fiammelli 2, I-40128 Bologna, Italy ^c Institute for Health and Consumer Protection, IHCP, JRC-Ispra, CEC, via E. Fermi, I-21020 Varese, Italy

Fig. 1. Thin-target excitation functions of ⁶⁴Cu and ⁶¹Cu, experimentally determined, as a function of incident deuteron energy (1 RSD).

The actual meaning of this quantity is the **differential of the physical thick target yield with respect to the incident energy**.

LEXFOR: "Thick- and Thin-Target Yields" explains that the **production thick target yield per 1 MeV of target thickness** Coded: in REACTION SF6-SF8 with TTY,,TM The unit code with dimension TTTE (e.g., CI/AHR/MEV).

As mentioned in Memo CP-A/155, this quantity has been typically seen in articles reporting charged-particle induced reaction activation experiments by the Milan group (M. Bonardi et al.).

REACTION (76-OS-0(A,X)78-PT-191,,TTY,,TM)

There are: 11 ENTRYs 69 SUBENTRYs

Dictionary 36: ,TTY,,TM

Production thick target yield (decay rate per unit of beam current * time) for 1 MeV target thickness The physical thick target yield for the initial particle energy of E is:

$$Y(E) \approx \int_{E_1}^{E_2} \sigma\left(E'\right) \left[\frac{dE}{dX}\left(E'\right)\right]^{-1} dE'$$

$$S = \frac{dE}{dX}$$

The energy differential is:

$$\frac{dY(E)}{dE} = \frac{d}{dE} \int_{E_1}^{E_2} \sigma\left(E'\right) \left[-\frac{1}{\rho} \frac{dE}{dX} \left(E'\right) \frac{1}{Ze} \right]^{-1} dE' = \sigma\left(E\right) \left[-\frac{1}{\rho} \frac{dE}{dX} \left(E\right) \frac{1}{Ze} \right]^{-1}$$

where E is not a secondary energy but the incident energy.

The actual meaning of this quantity is the **differential of the physical thick** target yield with respect to the incident energy.

This equation implies that we can derive the cross section $\sigma(E)$ by measuring the physical thick target yield at various incident energies.

Proposed revision of LEXFOR

Production Thick Target Yield per 1 MeV of Target Thickness REACTION Coding: ,TTY,,TM .

Units: a code from Dictionary 25 with dimension TTTE, e.g., CI/AHR/MEV

New content :

Physical Thick Target Yields Differential with respect to Incident Energy REACTION Coding: ,TTY/DEN,,PHY .

Units: a code from Dictionary 25 with dimension TTTE, *e.g.*, MBQ/C/MEV

Coding:

REACTION (76-OS-0(A,X)78-PT-191,,TTY/DEN,,PHY)