

Checking RRR in EXFOR

O. Cabellos OECD/NEA Data Bank

NRDC 2017, 23-26 May 2017

IAEA Headquarters (Room C0234), Vienna, Austria

© 2017 Organisation for Economic Co-operation and Development

1. NEA activities in 2016

SCM's Methodology (JEF/DOC-1778, Nov 2016)

- 1) Def. "distance" is the interval between two 95% vertical confidence intervals
- 2) Compute the min distance over the discretized horizontal confidence interval

3) Def. "<u>Rank value</u>" to identify the potential problems in EXFOR or ENDF:

- The higher the ratio the higher the disagreement
 The ratio is averaged for all the EXFOR points
- Potential outliers
- rank = "D", if $ratio \in]3,8]$
- rank = "E", if ratio > 8

Implementation SCM's Methodology

- 1) Finding the right scale for abscissa and discretizing it in 50 intervals
- 2) Constructing the **resonance indicator** as the "relative variance"
- 3) Computing the distance ratios for each intervals
 - $\Box \quad \text{In a no-resonance interval:} \quad \text{ratio_interval} = \frac{1}{N} \sum_{i=1}^{N} \frac{\text{distance}_i}{\max(\sigma_i^{EXFOR}, \sigma^{ENDF})}$

where

N is the total number of points in the interval

 σ is the standard deviation

distance_{*i*} is the distance between the EXFOR point *i* and the ENDF curve

$$\Box \quad \text{In a resonance interval:} \quad \text{ratio_interval} = \frac{|\bar{Y}_{ENDF} - \bar{Y}_{EXFOR}|}{\max(\bar{\sigma}_{ENDF}, \bar{\sigma}_{EXFOR})}$$

where

$$\overline{Y}^{\text{EXFOR or ENDF}} = \frac{1}{10} \sum_{j=1}^{10} \frac{1}{N_j} \sum_{i=1}^{N_j} Y_i^{\text{EXFOR or ENDF}},$$

Results

Among the 26,634 subentries checked:

- Ratio > 3: 2,937 subentries;
- Ratio > 5: 1,932 subentries;
- Ratio > 10: 284 subentries;
- Ratio > 20: 45 subentries.

Only subentries that disagree with all evaluators are counted; situations like below are not included:

MF	MT	Number	Rank of	D or E
		of	D or E	in (%)
		subentries		
3	(n,tot)	3742	142	3.8
3	(n <i>,</i> el)	1195	61	5.1
3	(n,nonelastic)	279	87	31.2
3	(n,n)	258	63	24.4
3	(n,2n)	1593	46	2.9
3	(n,3n)	66	0	0.0
3	(n,fission)	1440	45	3.1
3	(n,nalpha)	56	11	19.6
3	(n,2nalpha)	5	0	0.0
3	(n,np)	75	9	12.0
3	(n,nX)	3400	229	6.7
3	(n,n4)	28	2	7.1
3	(n,gamma)	3697	566	15.3
3	(n,p)	1913	29	1.5
3	(n,d)	43	2	4.7
3	(n,t)	157	16	10.2
3	(n,He)	38	15	39.5
3	(n,alpha)	1123	39	3.5
3	(n,2alpha)	4	0	0.0
3	(n,2p)	14	9	64.3
10	(n,n)	262	8	3.1
10	(n,2n)	1148	60	5.2
10	(n,3n)	20	4	20.0
10	(n,nalpha)	20	2	10.0
10	(n,np)	21	0	0.0
10	(n,n4)	3	0	0.0
10	(n,gamma)	496	113	22.8
10	(n,p)	690	29	4.2
10	(n,t)	45	5	11.1
10	(n,He)	6	1	16.7
10	(n,alpha)	310	25	8.1
10	(n,2p)	1	1	100.0
4	(n,el)	4549	1099	24.2

Results

Fig. 2. Proportion of subentries with ratio>5 for all reaction (from the worst to the best)

□ SCM's Methodology (JEF/DOC-1778, Nov 2016)

Limitation: <u>Resonance region</u>

500 eV

700 eV

1 keV

□ SCM's Methodology (JEF/DOC-1778, Nov 2016)

EXFOR is in resonance but ENDF is in no-resonance region

EXFOR is shifted from ENDF

© 2017 Organisation for Economic Co-operation and Development

2. NEA activities in 2017

Motivation: New evaluations based on TOF measurements

• NTOF

ENDF/B-VIIIb4 and JEFF-3.3

- 1. n-079_Au_197.endf: determined in measurements done at GELINA and n_TOF
- 2. n-090_Th_232.endf: eV according to the latest results obtained at n_TOF [Gu05]

• **GELINA**

ENDF/B-VIIIb4

1. 2. 3. 4. 5.	n-025_Mn_055.endf:Aerts et al. Capture cross sections measured at GELINA in 2006, 2525 1451 n-028_Ni_058.endf:et al.(2) and the GELINA very high resolution transmission 2825 1451 n-028_Ni_060.endf:et al.(2) and the GELINA very high resolution transmission 2831 1451 n-029_Cu_063.endf:Guber et al.[ref3] 100 - 90 000 GELINA Capt. 58m 2925 1451 n-029_Cu_065.endf:Guber et al.[ref3] 100 - 90 000 GELINA Capt. 58m 2931 1451
6.	n-048_Cd_106.endf:natural-Cd transmission and capture data measured at GELINA. The 4825 1451
7.	n-048_Cd_108.endf:natural-Cd transmission and capture data measured at GELINA. The 4831 1451
8.	n-048_Cd_110.endf:natural-Cd transmission and capture data measured at GELINA. The 4837 1451
9.	n-048_Cd_111.endf:natural-Cd transmission and capture data measured at GELINA. The 4840 1451
10.	n-048_CC_112.endi:natural-Cd transmission and capture data measured at GELINA. The 4843 1451
11.	n-046_Cd_114.endi.natural-Cd transmission and capture data measured at GELINA. The 4649 1451
13.	n-074 W 182.endf:at the Geel Linear Accelerator (GELINA), Belgium[ref3]. Neutron 7431 1451
14.	n-074_W_183.endf:at the Geel Linear Accelerator (GELINA), Belgium[ref3]. Neutron 7434 1451
15.	n-074_W_184.endf:at the Geel Linear Accelerator (GELINA), Belgium[ref3]. Neutron 7437 1451
16.	n-074_W_186.endf:at the Geel Linear Accelerator (GELINA), Belgium[ref3]. Neutron 7443 1451
17.	n-079_Au_197.endf: determined in measurements done at GELINA and n_TOF. 7925 1451
18.	n-090_Th_232.endf:Schillebeeckx(2) capture data(GELINA), and Gunsing(3) capture 9040 1451
19.	n-092_U_238.endf:** GELINA capture and ORNL transmission data. **9237 1451
20.	n-094_Pu_240.endf:than those used in the GELINA transmission measurements (Kolar et 9440 1451

JEFF-3.3T3

1. 25-Mn-55g.jeff33t3:Aerts et al. Capture cross sections measured at GELINA in 2006, 2525 1451 443

29-Cu-63g.jeff33t3:Guber et al.[ref3] | 100 - 90 000 | GELINA | Capt. 58m 2925 1451 34 2. 3. 29-Cu-65g.jeff33t3:Guber et al.[ref3] | 100 - 90 000 | GELINA | Capt. 58m 2931 1451 34 4. 45-Rh-103g.jeff33t3: E < 600 eV New parameters from the analysis of recent GELINA 4525 1451 146 48-Cd-106g.jeff33t3: of Neutron Resonance Cross Section Data at GELINA", NDS 119 5. 4825 1451 45 6. 48-Cd-108g.jeff33t3: of Neutron Resonance Cross Section Data at GELINA", NDS 119 4831 1451 45 48-Cd-110g.jeff33t3: of Neutron Resonance Cross Section Data at GELINA", NDS 119 7. 4837 1451 40 48-Cd-111g.jeff33t3: of Neutron Resonance Cross Section Data at GELINA", NDS 119 4840 1451 40 8. 9. 48-Cd-112g.jeff33t3: of Neutron Resonance Cross Section Data at GELINA", NDS 119 4843 1451 45 48-Cd-113g.jeff33t3: of Neutron Resonance Cross Section Data at GELINA", NDS 119 4846 1451 45 10. 11. 48-Cd-114g.jeff33t3: of Neutron Resonance Cross Section Data at GELINA", NDS 119 4849 1451 45 12. 48-Cd-116g.jeff33t3: of Neutron Resonance Cross Section Data at GELINA", NDS 119 4855 1451 64 13. 53-I-127g.jeff33t3: THE GELINA FACILITY [Nog04]. RESONANCE SHAPE ANALYSIS WERE 5325 1451 103 14. 53-I-129g.jeff33t3: THE GELINA FACILITY [Nog04]. RESONANCE SHAPE ANALYSIS WERE 5331 1451 103 15. 72-Hf-174g.jeff33t3: using GELINA at IRMM GEEL (Ref.6.). A further natural 7225 1451 82 16. 72-Hf-176g.jeff33t3: using GELINA at IRMM GEEL (Ref.6.). A further natural 7231 1451 82 17. 72-Hf-177g.jeff33t3: using GELINA at IRMM GEEL (Ref.6.). A further natural 7234 1451 82 18. 72-Hf-178g.jeff33t3: using GELINA at IRMM GEEL (Ref.6.). A further natural 7237 1451 82 19. 72-Hf-179g.jeff33t3: using GELINA at IRMM GEEL (Ref.6.). A further natural 7240 1451 82 20. 72-Hf-180g.jeff33t3: using GELINA at IRMM GEEL (Ref.6.). A further natural 7243 1451 82 21. 74-W-182g.jeff33t3:GELINA [Em12]. These include transmission and capture data on 7431 1451 30 22. 74-W-183g.jeff33t3:GELINA [Em12]. These include transmission and capture data on 7434 1451 34 23. 74-W-184g.jeff33t3:GELINA [Em12]. These include transmission and capture data on 7437 1451 30 24. 74-W-186g.jeff33t3:GELINA [Em12]. These include transmission and capture data on 7443 1451 30 79-Au-197g.jeff33t3: determined in measurements done at GELINA and n TOF. 25. 7925 1451 52 26. 90-Th-232g.jeff33t3:Schillebeeckx(2) capture data(GELINA), and Gunsing(3) capture 9040 1451 444 27. 92-U-238g.jeff33t3:** GELINA capture and ORNL transmission data. **9237 1451 22

2. NEA activities in 2017

New SCM's Methodology applied in RRR

- 1) Applied to large ENTRIES (e.g TOF measurements)
- 2) Average ratio (EXFOR/ENDF) in different bins of energy: "Checking Normalization"
- 3) Convolution of EXFOR and Evaluation data: "Looking for a resolution function"
 - EXFOR: E, δE,<y(x)>, δy
 - Evaluations $P(p_1, p_2, ..., p_N)$ based on Model (e.g. R-Matrix)

where: $\langle y(E) \rangle^{EXFOR} = \int f^{res}(E', E) \times f^{model}(E') dE'$

- Finding the right "fres" discretized in energy bins/intervals
- Assuming a Gaussian "fres"

$$f^{res}(E',E) = \frac{1}{\Delta} \exp(-\frac{(E'-Er)^2}{2\Delta^2})$$

- Identifying the P values in evaluated files (e.g lack of Er ?)
- f^{model}(E) at the room temperature (Doppler broadening)
- Normalization: shift at the maximum: max(f^{model}(E)) to Y^{max}
- Δ^{res} versus nominal resonance energy by intervals

Different Er values ? Shift to the EXFOR value

□ Lack of Er in the evaluation ?

^{© 2017} Organisation for Economic Co-operation and Development

□ Resolution change as a function of E?

^{© 2017} Organisation for Economic Co-operation and Development

□ How do we to take into account Exfor uncertainties?

^{© 2017} Organisation for Economic Co-operation and Development

□ Any possibility to extend the RRR ?

^{© 2017} Organisation for Economic Co-operation and Development

2. NEA activities in 2017

- **Problem with the current SCM Methodology** based on "distances": Large fluctuations in the RRR provoke difficulties to analyze this info
- What type of data do we want to check? Data in RRR/URR, e.g. TOF measurements, ...
- How do we test these data ? Ratio avg. EXFOR/ENDF, resolution functions... in energy bins, per resonance energy, ...
- What type of data do we expect from the new method? Identify potential outliers, lack of resonances in the evaluation, resolution function of EXFOR data per energy bin, ...
- The benefit of this work: EXFOR and Evaluators

Acknowledgments

To acknowledge Gottfried Berton (SCM) for his high motivation to participate in this work, and Luiz Leal (IRSN) for the stimulating and fruitful discussions.