Joint Research Centre

the European Commission's in-house science service

×

a

www.ec.europa.eujirc

1

Æ:

Serving society Stimulating innovation Supporting legislation Derivation of resonance parameters from time-offlight measurements

Stefan Kopecky

European Commission

Neutron induced reaction cross sections

Cross sections cannot be predicted by nuclear theory from first principles

- ⇒ parameterized by nuclear reaction models
- ⇒ different models in different energy regions

Time-of-flight measurement

Cross section measurements : transmission + reaction

Transmission $T = e^{-n \sigma_{tot}}$

T : transmission Fraction of the neutron beam traversing the sample without any interaction

 $T_{exp} = \frac{C_{in}}{C_{out}}$

Reaction

$$\gamma_{r} \cong (1 - e^{-n\sigma_{tot}}) \underbrace{\sigma_{r}}_{\sigma_{tot}} + \dots$$

 γ_{r} : reaction yield
Fraction of the neutron beam creating a
(n,r) reaction in the sample
Only for thin samples : $Y_{r} \approx n \sigma_{r}$
e.g. (n,γ)

ommission

Cross section measurements : transmission + reaction

Transmission T = $e^{-n\sigma_{tot}}$

T : transmission Fraction of the neutron beam traversing the sample without any interaction

$$T_{exp} = \frac{C_{in}}{C_{out}}$$

Absolute measurement

Experimental observables (resonance region)

Methodologies to determine $(Z_{exp}, V_{Z_{exp}})$ and report them in EXFOR are well established

Nuclear Data Sheets 113 (2012) 3054 - 3100

Becker et al., "AGS-concept", J. of Instrumentation 7 (2012) P11002

 \Rightarrow EXFOR Consultants' Meeting, 8 to 10 October 2013, IAEA, INDC(NDS)-0647

Reaction model parameters + covariance (θ , V_{θ})

- (θ , V_{θ}) determined by :
- Experimental data and parameters $(Z_{exp}, V_Z, \kappa, V_\kappa)$
- Model H_M : reaction model (θ) + experiment (κ)
 - Nuclear reaction model $F_M(\theta)$
 - Model to account for experimental parameters κ (i.e. resonance region)
- Methods or procedures to estimate model parameters (θ , V_{θ}) from (Z_{exp}, V_z, κ , V_{κ})

Reaction model parameters + covariance (θ , V_{θ})

- (θ , V_{θ}) determined by :
- Experimental data and parameters $(Z_{exp}, V_Z, \kappa, V_\kappa)$
- Model H_M : reaction model (θ) + experiment (κ)
 - Nuclear reaction model $F_M(\theta)$
 - Model to account for experimental parameters κ (i.e. resonance region)
- Methods or procedures to estimate model parameters (θ , V_{θ}) from (Z_{exp}, V_z, κ , V_{κ})

Model for experimental parameters

$$T_{\exp} = \int R(t,E)T(E)dE = \int R(t,E)e^{-n\sigma(E)}dE$$

$$\frac{\ln(T_{\exp})}{n} \neq \int R(t,E)\sigma(E)dE$$
So

Experimental broadening

Sample inhomogeneity

$$Y_{\rm exp} = K_{\rm exp} \cdot \int R(t, E) Y_{Mod}(E) dE$$

$$Y_{Mod}(E) = \varepsilon_c Y_c(E) + \varepsilon_{ns}(E) Y_s$$

 $Y_c(E) = F_0 Y_0(E) + F_m Y_m(E)$

Multiple Scattering

Gamma attenuation

Neutron sensitivity

TOF -> Energy

GELINA Target-moderator assembly

GELINA Response function

GELINA Response function

European Commission

Detector Response

Theoretical yield

+ Doppler

+Doppler + Response

+Doppler + Response

+Doppler + Response

¹⁹⁷Au(n,γ) at L=12m and 30 m

¹⁹⁷Au(n,γ) at L=12m and 30 m

⁵⁶Fe(n,γ) at L= 30 m

$$\Delta_{\text{FWHM}} = \sqrt{\Gamma^2 + \Delta_{\text{D}}^2 + \Delta_{\text{R}}^2}$$

dominated by Δ_{R} or Δ_{D} with

- Δ_R Experimental resolution
- Δ_{D} Doppler broadening
- Γ Total resonance width
- ⇒ effective experimental observable is resonance area

Sample inhomogeneity

Declared : $n_W = (1.084 \pm 0.014) \ 10^{-3} \ at/b$

Heterogeneous sample:

$$\overline{T} = \int T(n')p(n')dn' = \int e^{-n'\sigma_{tot}}p(n')dn'$$

^{nat}W-powder mixed with ^{nat}S-powder (80 cm diameter, 14 g ^{nat}W, 3.5 g ^{nat}S)

Transmission measurements

- a 25 m station of GELINA

- ⁶Li detector

European Commission

Sample inhomogeneity

Sample inhomogeneity

Normalization at saturated resonances

69 eV resonance in ²³²Th+n

Th metal disc 80 mm diameter 1 mm thick

⁵⁵Mn + n: Sputtering target, 77 mm diameter and 3 mm thick

⁵⁵Mn + n: Sputtering target, 77 mm diameter and 3 mm thick

Commission

γ- ray attenuation depends on resonance strength

Each resonance requires special WF

WRSRWeakStrongResonanceResonance

γ- ray attenuation depends on resonance strength

Each resonance requires special WF + each component Y_0 , Y_1 , Y_2

WR Weak Resonance

SR Strong Resonance

 \Rightarrow in practice not possible

Procedure:

 (1) Analyse experimental data for WR
 i.e. supposing homogeneous distribution of γ-rays

WR Weak Resonance

Procedure:

 (1) Analyse experimental data for WR
 i.e. supposing homogeneous distribution of γ-rays

(2) Correction factor on calculated yield mostly based on calculations

$$F_{0}(n\sigma_{tot}) \qquad F_{m}(n\sigma_{tot}) \approx 1$$

$$F_{c} = F_{0} Y_{0}(E_{n}) + F_{m} Y_{m}(E_{n})$$

WR Weak S Resonance Res

SR Strong Resonance

Schillebeeckx et al., Nuclear Data Sheets, December 2012

European Commission

Standard : From transmission $\sigma(n_{th}, \gamma) = (98.7 \pm 0.1) b$

GELINA : From capture $\sigma(n_{th}, \gamma) = (99.0 \pm 1.0) b$

Schillebeeckx et al., JKPS 59 (2011) 1563

European Commission

Neutron Sensitivity

Neutron scattered by the sample creates a capture event

in the detector

- Mo from µ-metal
- F from teflon in C₆D₆
- Al from
 - Sample holder
 - Detector structure

Neutron Sensitivity

²⁰⁶Pb(n,γ)

Conclusions

- Modelling of experimental effects
 - Important for reliable determination of nuclear parameters
- The question "How good is the experimental model" remains unanswered
- Uncertainty of nuclear parameters are determined in an interplay between (experimental) model and experimental uncertainties

stay in touch

Twitter: @EU_ScienceHub

LinkedIn: european-commission-joint-research-centre

You Tube YouTube: JRC Audiovisuals

