

International Atomic Energy Agency

Reaction Yield Divided by Areal Density

Naohiko Otsuka

IAEA Nuclear Data Section

Naohiko Otsuka / NRDC 2017

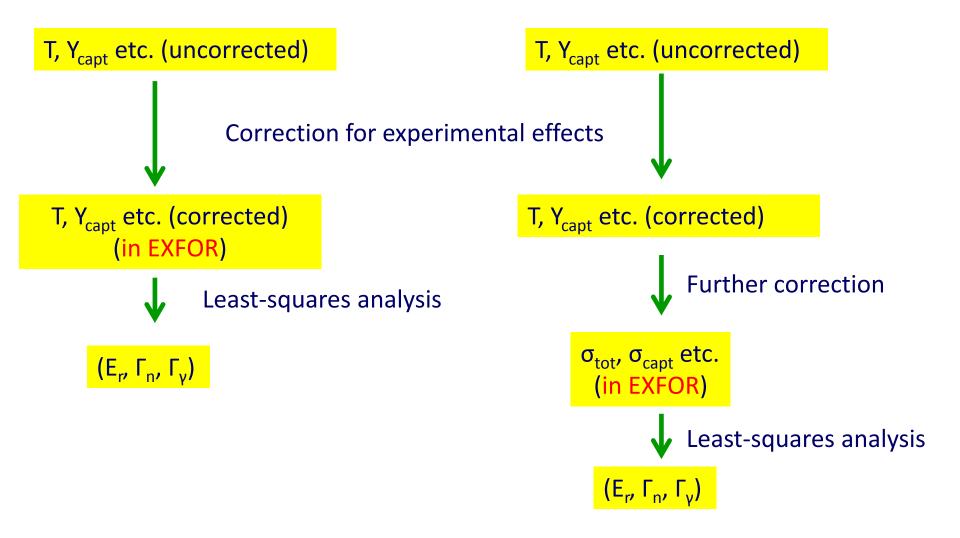
Resonance Analysis

Resonance parameters are adjusted so that they describe experimental observables.

Reich-Moore Formalism [2]

The Reich-Moore formalism involves summation over levels and a matrix inversion with respect to channels.

The matrix (1-RL) is partitioned into a 2×2 matrix, each element of which leads to a definition on the matrix

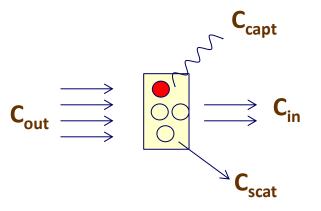

$$K_{cc'} = \frac{i}{2} \sum_{\lambda} \frac{\Gamma_{\lambda c}^{1/2} \Gamma_{\lambda c'}^{1/2}}{E_{\lambda} - E - \frac{i}{2} \Gamma_{\lambda \gamma}}$$

The neutron fission cross section can be expressed by:

$$\sigma_{nf} = \sum_{c=2}^{l+1} 4\pi \lambda_n^2 g \left| (1 - K_{nC})^{-1} \right|^2$$

where l = number of fission channels

Resonance Analysis

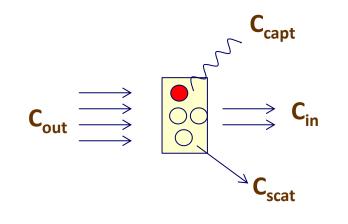


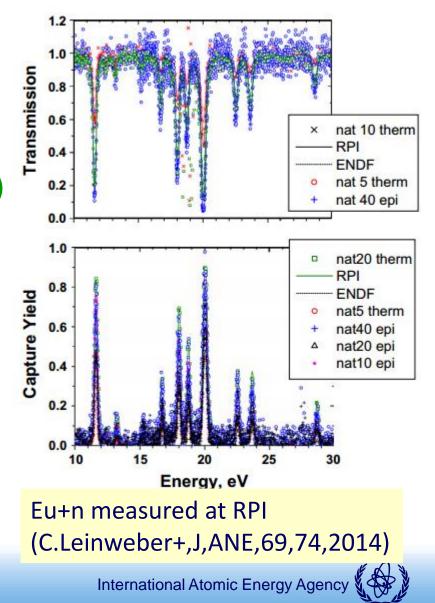
Transmission (TRN) and Reaction Yield (RYL)

Transmission

 $T = \exp(-n < \sigma_{tot} >)$ $= N C_{in} / C_{out}$

Reaction yield for channel x

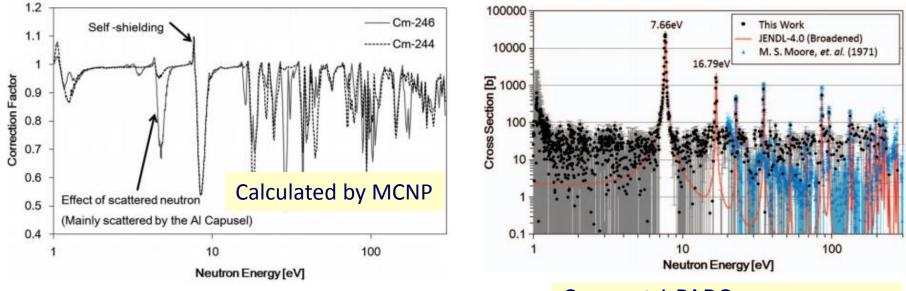

$$Y_{x} = [1 - \exp(-n < \sigma_{tot} >)] \cdot (<\sigma_{x} > / < \sigma_{tot} >) + Y_{m}$$
$$= N C_{x} / \phi + Y_{m}$$


C: net count, φ: beam flux n: areal sample density N: normalization constant <σ>: Doppler broadened cross section Y_m: Yield due to multiple interaction

Transmission and Reaction Yield

Transmission (dimensionless) T = exp(-n<σ_{tot}>)

Reaction yield for channel x (dimensionless) $Y_x = [1 - exp(-n < \sigma_{tot} >)] \cdot (<\sigma_x > / < \sigma_{tot} >) + Y_m$



Reaction Cross Section (SIG)

Sometimes reaction yields are converted to the reaction cross sections by the experimentalist:

 $Y_x = [1 - exp(-n < \sigma_{tot} >)] \cdot (< \sigma_x > / < \sigma_{tot} >) + Y_m \rightarrow < \sigma_x > = \dots$

Cm+n at J-PARC A. Kimura+, J,NST,49,708,2012

Reaction Yield and Cross Section

For a thin sample (i.e. neutron interact with nuclide one time at maximum),

 $Y_x = [1 - exp(-n < \sigma_{tot} >)] \cdot (<\sigma_x > / < \sigma_{tot} >) + Y_m \sim n < \sigma_x >$

(Y_x: dimensionless; n: atoms/barn)

 Y_x/n is a quantity in barn, and some experimentalists adopt it as an expression (normalization) of the yield (even for thick samples).

This is a cross section not corrected for sample effects, namely <u>raw</u> <u>cross section</u> (,SIG,,RAW) according to LEXFOR.

LEXFOR (Feb. 2008) "Raw Data"

Reaction yields:

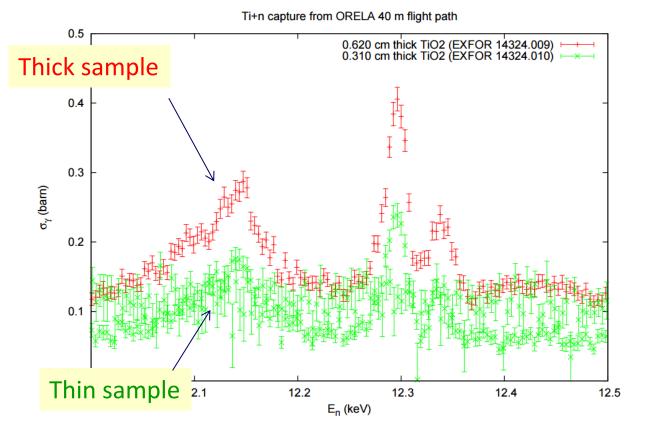
$$\langle y_r \rangle = \left\langle \left(1 - e^{-n\overline{\sigma_T}} \right) \frac{\overline{\sigma_r}}{\overline{\sigma_T}} + \sum_{i=1}^{\infty} y_{r,i} \right\rangle$$

- where: <...> denotes resolution broadening
 - *n* is the sample thickness in nuclei/barn
 - σ_T and σ_r are the Doppler-broadened, abundance-weighted total and partial reaction cross sections, respectively
 - y_{r,i} is the reaction yield from neutrons scattered i times before inducing the reaction of type r, *e.g.*, fission, scattering or radiative capture.

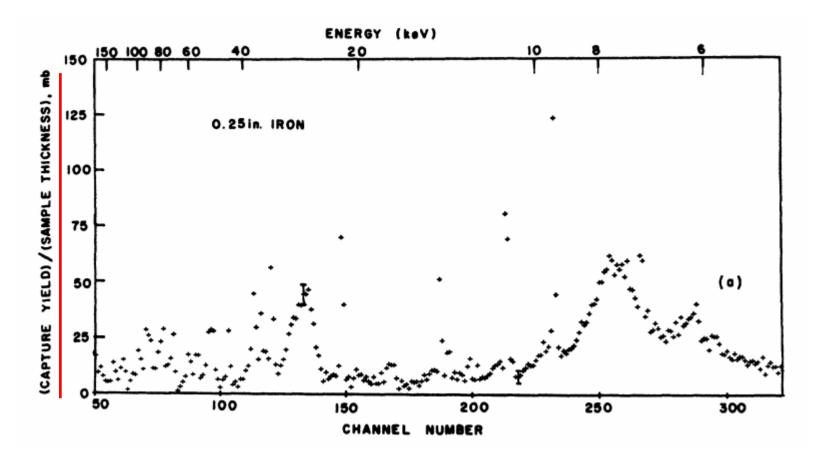
Note that the following simple relationship with the (broadened) cross section exists for thin samples $(n \langle \sigma_T \rangle << 1)$:

$$-\frac{1}{n}\ln\left\langle e^{-n\sigma_{T}}\right\rangle \cong \left\langle \overline{\sigma_{T}}\right\rangle; \quad \frac{1}{n}\left\langle y_{r}\right\rangle \cong \left\langle \overline{\sigma_{r}}\right\rangle$$

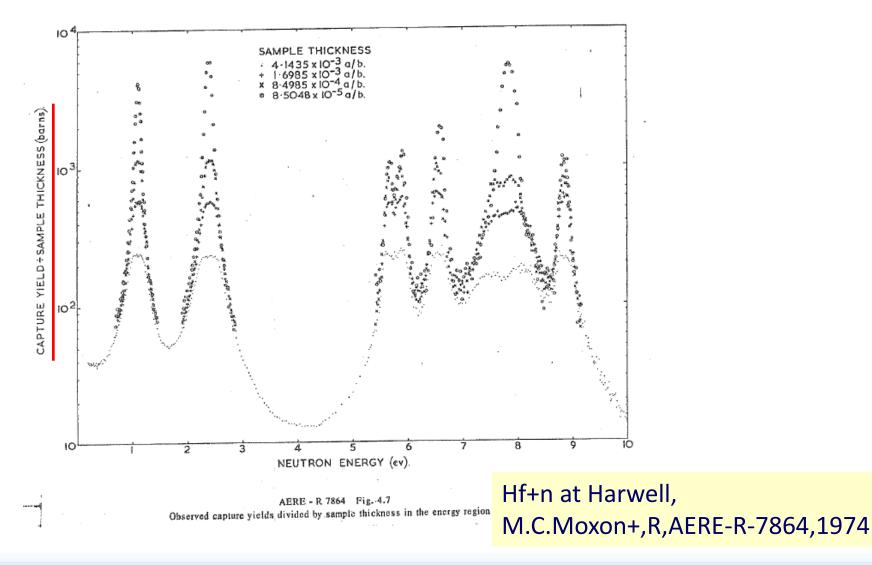
Data may be given as counts or as uncorrected cross sections in barns.


The data may be transmitted in EXFOR using the modifier RAW in REACTION SF8; it should always be explained in free text.

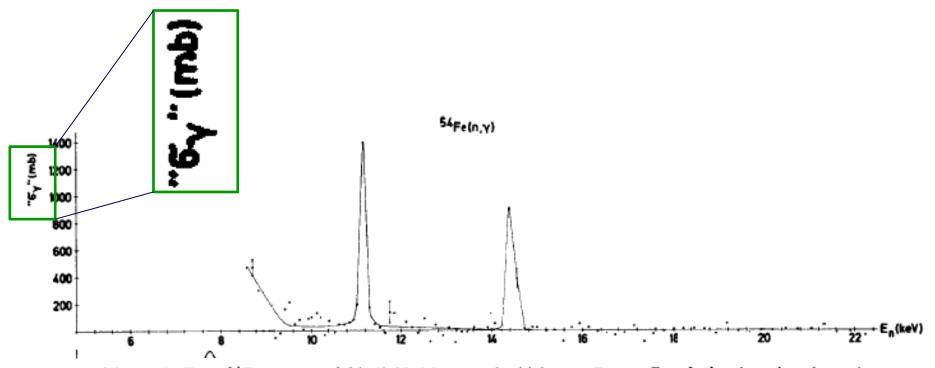
This part is missed in the current LEXFOR (my fault!)

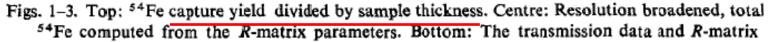

Finite Sample Thickness Effect

Capture yield divided by areal density by Klaus Guber et al. ("experimental cross section" in his terminology.)

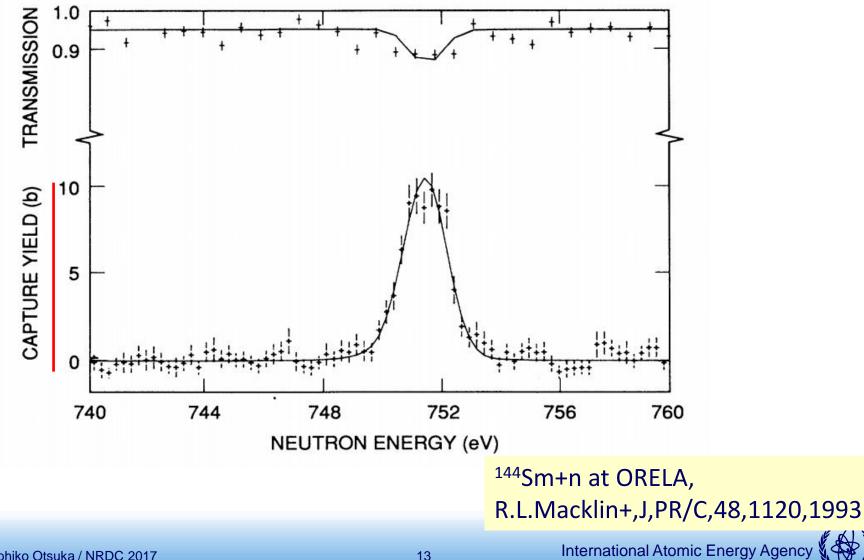


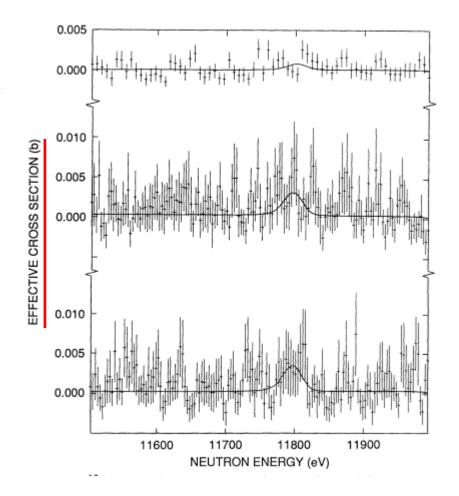
Can be used for R-matrix analysis only after corrections for sample effects





Fe+n at RPI (EXFOR 10001) R.W.Hockenbury+,J,PR,178,1746,1960





⁵⁴Fe+n at KFK, H.Beer+,J,NP/A,240,29,1975

¹²C+n at ORELA, R.L.Macklin,J,AJ,357,649,1990

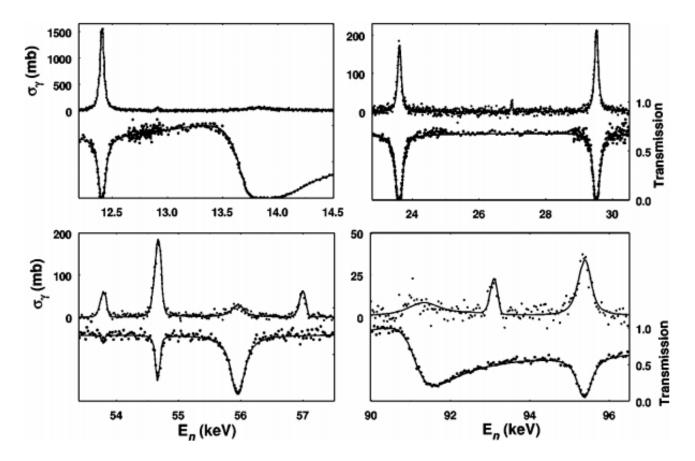
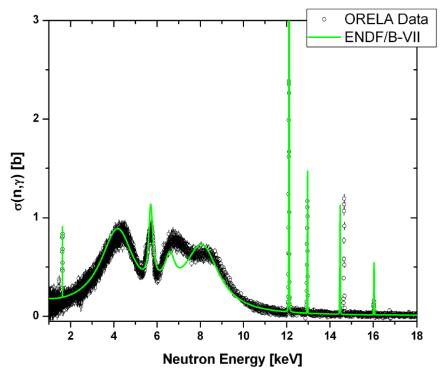



FIG. 2. Representative data (points) and SAMMY fits (solid curves) from our capture (top) and transmission (bottom) measurements on ⁸⁸Sr. The effective capture cross sections have not been corrected for finite-thickness effects. The corrections are included by the code SAMMY; hence, the fits represent the theoretical cross seccalculated from the resotions. nance parameters, after adjustment for these sample-dependent effects. The scales for the capture data are on the left of each plot, whereas the transmission scales are on the right.

⁸⁸Sr+n at ORELA, P.E.Koehler+,J,PR/C,62,055803,2000

International Atomic Energy Agency

"Experimental cross section" according to the author (K. Guber)

⁵³Cr+n at ORELA, K.H.Guber+,J,KPS,59,1685,20011

Fig. 4. (Color online) Neutron capture for ⁵³Cr oxide compared to ENDF/B-VII evaluation parameters.

These data are compared to the cross sections or transmission calculated using the most recent resonance parameter set from the ENDF/B-VII library. SAMMY [5] was used to calculate the neutron capture cross section and transmission, including all experimental effects. In most cases, resonances up to 600 keV were resolved with sufficient statistics.

SAMMY Option: "NORMALIZE AS CROSS Section"

N.M.Larson+,ORNL/TM-9179/R8

Normalization and input options

Capture yield data may be normalized in a variety of ways; therefore, SAMMY allows the user to choose which normalization is to be taken. The normalization generally referred to as capture "yield" is the one shown in the equations in this section; this choice has the property that values are in the range from 0 to 1. Another commonly used normalization requires dividing by thickness *n*; in this case, the value approaches the capture cross section in the limit of zero thickness. Finally, the data may be normalized as $(1 - e^{-n\sigma_{tot}})\sigma_{tot}$, that is, by multiplying the yield by the total cross section. To use these options, the appropriate phrase must be included in the alphanumeric section of the INPut file:

NORMALIZE AS CROSS Section rather than yield NORMALIZE AS YIELD Rather than cross section NORMALIZE AS (1-E)SIgma

SAMMY accepts <u>the yield divided by the areal density (thickness</u>). This quantity is in barn, but still different from the cross section (even though we specify it "CROSS S" in SAMMY input").

Is ,SIG,,RAW appropriate?

- Reaction yields divided by the sample areal density Y_x/n are for EXFOR compilation. Some R-matrix analysis code (e.g., SAMMY) accept this quantity as a variation of reaction yield normalization.
- The name of this quantity depends on the author (e.g., yield, yield per thickness, effective cross section, experimental cross section)
- This quantity is in barn, and we have used ,SIG,,RAW (raw cross section), namely cross section not corrected for known effects.
- Problems for us of ,SIG,,RAW
 - 1. The name "raw cross section" does not explain the definition of this quantity.
 - 2. "raw" sounds not very appropriate for some people.

Summary and Proposal

- Some experimentalists report reaction yields in barn.
- This quantity must be distinguished from the cross section (,SIG) because we can use this quantity for resonance analysis only after correction for sample effects.
- Introduce a new quantity code for "reaction yield divided by the areal sample density" to avoid a generic code ,SIG,,RAW.
- ,RYL,,DAD (reaction yield <u>divided</u> by the <u>areal</u> sample <u>density</u>) could be a candidate as an extension of the reaction yield (,RYL).

