Existing and upcoming particle accelerators in India

Alok Saxena Nuclear Physics Division, BARC

INDC(IND)-0050

B. Lalremruata, S. Kailas, V.N. Bhoraskar, S.Ganesan, Alok Saxena, B.K. Nayak, Ajay Tyagi, M.M.Musthafa, S. Mukherjee, G. Mukherjee, H. Naik, S.D. Dhole

Bhabha Atomic Research Centre

- BARC-TIFR14 UD Pelletron Accelerator with LINAC
- Folded Tandem Ion Accelerator(FOTIA)
- 14/2.45 MeV neutron generator (5 x 10¹⁰ n/sec), radiography, TOF, APT, Padova Univ
- 10 MeV electron RF LINAC photo-fission, nuclear data
- 3 MeV electron DC Accelerator food processing, industrial applications
- 6 MeV electron RF LINAC Cargo Scanning
- 16.5 Medical cyclotron Isotope Production and PET

Variable Energy Cyclotron Centre

224 cm Variable energy cyclotron (K-130)

Raja Ramanna Centre for Advanced Technology

Synchrotron Radiation Source INDUS-I & II 450 MeV & 2.5 GeV

1.7-3 MV Tandetron Accelerators

Guru Ghasidas Vishwavidyalaya, Bilaspur, Indian Institute of Technology, Kanpur, Indira Gandhi Centre for Atomic Research, Kalapakkam, Institute of Physics, Bhuvaneshwar, National Centre for Compositional Characterisation of Materials (CCCM), Hyderabad

15 UD Pelletron Accelerator with LINAC Inter University Accelerator Centre Microtron Accelerator (8 MeV) photo-fission, neutron source Mangalore University

Low energy cyclotron (2-3 MeV proton)

Panjab University, Chandigarh

14 MeV Neutron Generator IPR, Gandhinagar, Pune University

6.5 MeV Race-Track Microtron ⁹Be(γ, n) Pune University

BARC-TIFR 14 UD Pelletron-LINAC Facility (PLF) Mumbai

: 6 M irradiation set up for neutron physics experiments

Beam Species	Max. Energy	Max. current/Intensity
6,7 _{Li} , 10,11 _B , 12,13 _C , 14 _N , 16,18 _O ,	Upto 8-10 MeV/A	1-5 pnA
¹⁹ F, ²⁴ Mg, ²⁷ Al, ^{28,30} Si, ³¹ P,		
^{32,34} S, ^{35,37} Cl		
Proton	Upto 24 MeV	200 nA
Neutron	Using ⁷ Li(p,n) and ⁹ Be(p,n)	10^{7} - 10^{8} n/sec/cm ²

Experimental Facilities for

- Nuclear physics
- Atomic physics
- Condensed matter physics and
 - material science
- Radioisotopes production
- Production of track-etch membranes
- Low flux Protons irradiation
 - damage studies
- Secondary neutron
 production
 Accelerator Mass
 Spectrometry

BARC-TIFR Pelletron-LINAC Facility

Typical Accelerated Ion Beams (¹H to ¹⁹⁷Au)

Publications

•Users

- BARC
- TIFR

SINP & VECC, DRDO,
 ISRO and other research
 & educational
 institutions.

Hall 1 EXPERIMENTAL FACILITIES AT BARC-TIFR PLF

Charged Particle Array setup at

<u>PLF, Mumbai</u>

(a) View of the CPDA setup in the LINAC beam hall at TIFR

(b) Experiment using 10 nos of detector telescopes mounted inside the vacuum chamber.

General purpose scattering chamber

Neutron array

One of the six, RPCs (1m x 1m) under cosmic test, to be put in the hodoscope for muon tomography

Lowest x-sec ~ 20 nb

Novel sensitive γ spectroscopyTechnique using KX- γ coincidence at PLF

Stack of 4x4matrix of Plastic Scintillators(10cmx 10 cm x 100 cm : 160 kg) wrapped with Gd foils and coupled to a digital DAQ

Typical Research Activities

➢ Fusion dynamics

- Fusion around Coulomb barrier with stable. weakly bound and exotic projectile **Phys. Lett. B, 755, 332 (2016).**

Fission dynamics (neutron and charged particles emission, fragment angular, mass and total kinetic energy distributions)

- Dynamical hindrance, Nuclear level density *Phys. Rev. Lett.* 110, 062501 (2013)

- Studies in super heavy mass region , Phys. Rev. C 94 (2016) 044618

Fission fragment spectroscopy using reactors and accelerators, INGA experiments, Phys. Rev. C 96, 014315 (2017)

Elastic, inelastic scattering, breakup, multi-nucleon transfer, threshold anomaly studies, cluster states - electromagnetic transitions, Phys. Rev. C 94 061602(R) (2016)

Nuclear Data with direct and surrogate method, Phys. Rev. C 93, 021602(R) (2016) Nuclear Data Physics Centre of India (About 350 entries to EXFOR database), N_TOF studies at CERN

- Development of Monte Carlo nucleon transport codes, GEANTV, MONC
- Theoretical studies of geometrical phases of anti-neutrino propagation *Phys. Lett. B754, 135 (2016), INO*

➢ Nuclear Collisions at high energy, Phys. Lett. B770, 357 (2017).

INGA campaign

Physics Highlights Search and characterization of novel excitation Magnetic and Anti-Magnetic Rotation Degenerate dipole bands and chirality Wobbling Excitation Shell model excitation and emergence of collectivity Isomers and its application Fission fragment spectroscopy Reaction dynamics study

BARC, IUAC, IUC-KC, SINP, TIFR, VECC, IITs, Univ

Investing in the polarization measurements of gamma rays and "wide-range timing spectroscopy" proved to be a successful approach for creating our specific "niche" and complement research at large scale facilities.

DSP based DAQ has Increased the data throughput by 10 times for INGA

R. Palit et al. NIMA 680, 90 (2012)

Accelerator Mass Spectrometry Programme at Pelletron

Accelerator Mass Spectrometry (AMS): ultra-sensitive means of counting individual atoms of long half life.

✤ This technique is already established for ³⁶Cl (10⁵ yrs) for waste disposal site identification.

✤ The measurements further extended to ¹²⁹I (10⁷ yrs) for environmental studies.

¹²⁹ I spectra for standard sample

Fission Fragment Spectroscopy Studies using thermal neutrons:

- (1) Understanding of Nuclear Fission Process
- (2) Nuclear data required for decay heat calculations and future advanced reactor/RIB design
- (3) Nuclear applications from Prompt Gamma Neutron Activation Analysis (PGNA)

Neutron flux : 10⁷ cm⁻² sec⁻¹ (at target position)

Detection system : 2 Clover Germanium detectors were used for gamma ray measurements

<u>Upcoming facility</u> at Dhruva reactor beam-line R-3001

Fig. 1. Experimental setup at the CIRUS reactor facility for studying prompt $\gamma-\gamma$ coincidence spectroscopy.

Experiment at CIRUS reactor: ²³⁵U(n, f)

Fig. 5. Total projection spectrum from the $\gamma-\gamma$ matrix in $^{225}U(n_{th},f)$ reaction. The transitions from the isotopes with higher yields are labeled and the γ -rays marked with the * are from unidentified fragments or background contamination.

D.C. Biswas et al., Nucl. Inst. and Meth A 703 (2013) 163, S. Mukhopadhyay et al., Phys. Rev C85, 064321 (2012)

15 UD Pelletron with superconducting LINAC booster

The facility has never been used as neutron source for neutron physics experiments

Indian National gamma Array (INGA): 24 Clover Detector array with a total photo-peak detection efficiency of ~5%

Gamma Detector Array (GDA): 12 Compton suppressed HPGe detectors setup Heavy Ion Reaction Analyzer (HIRA): One of few recoil mass spectrometers (RMS) in the world and first of its kind in Asia dedicated to the study of heavy ion induced nuclear reaction dynamics.

Hybrid Recoil mass Analyzer (HYRA)

General Purpose Scattering Chamber (GPSC): A1.5 m diameter scattering chamber equipped with

rotating arms and in-vacuum target transfer system.

National Array of Neutron Detectors (NAND): About100 organic liquid scintillators of 5" diameter and

5" thickness for fission fragment in coincidence with neutrons studies.

Accelerator Mass Spectrometry (AMS):

Facilities for fusion-fission study at IUAC

Fission fragment mass distribution measurement using MWPC time of flight set-up inside scattering chamber

Neutron detector array for measuring neutron multiplicity in coincidence with fission fragments

HYbrid Recoil mass Analyzer (HYRA) at IUAC, New Delhi

Fusion reactions around Coulomb barrier Evaporation Residue (ER) spin distribution measurements ER-gated high spin spectroscopy Microsecond isomer search Clustering Vs Pairing in nuclei

New isomer of 1.6 ms lifetime 195 observed in Bi nucleus

Variable Energy Cyclotron Centre (VECC), Kolkata, India K=130

Beam details: : Extracted and Delivered to the users for experiments. Presently available maximum energies are given in the parenthesis.

Beam Species	Max. Energy	Max. current/Intensity
	(MeV)	(nA)
Proton	7-20 (15)	10000 (Ch 1)
Alpha	26 - 80 (60)	4000 – 5000 (Ch 1), upto 20
-		(ch 2/ch 3)
Nitrogen	122	135 (extracted)
Oxygen	180	410 (extracted)
Neon	200	310 (extracted)
Argon	350	150 (extracted)

facility has not been used as a neutron source for neutron scattering or as a neutron generator

¹⁴O (71 sec), ⁴²K (12.4 hrs), ⁴³K (22.2 hrs) and ⁴¹Ar (1.8 hrs) have been successfully produced , using a novel gas-jet recoil transport coupled Electron Cyclotron Resonance (ECR) ion- source

Experimental facilities and **Nuclear Physics Research Activities** at VECC

Charge particle detector array

Gamma Multiplicity Filter

MWPC

Penning Ion trap

Segmented Clover

LAMBDA Detector array

Folded Tandem Ion Accelerator (FOTIA)

Beam Species	Max. Energy	Max. current/Intensity
⁷ Li, ¹² C, ¹⁶ O and ¹⁹ F	66 MeV	< 100 nA
and other heavy ion		
beams upto A=40		
Proton	Upto 6 MeV	200 nA
Neutron	Below 5 MeV using	10 ⁶ -10 ⁷ n/sec/cm ²
	⁷ Li(p,n) and ⁹ Be(p,n)	

Multipurpose scattering chamber Scintillator detectors for neutrons (NE213) Charged particle detectors PIXE (Particle Induced X-ray Emission) RBS (Rutherford Back Scattering) PIGE (Particle Induced Gamma Emission)

25 degree Hill-Side Beam Line being developed for inverse Kinematics ⁷Li beam on proton

Scattering Chamber

FOTIA BEAM HALL

EXPERIMENTAL DETAILS FOR PFNS STUDIES

≻Natural ⁷Li metallic target of thickness of 4.0 mg/cm2 (1.0 × 1.0 cm² area)

12.7 cm in diameter and 5.0 cm thick

Photograph of Fission chamber and neutron detector used in the experiment. Fission fragments were detected in 2π geometry

Schematic of the experimental setup.

IUAC, New Delhi

14 MeV Neutron Generator, Pune University, BARC

14 MeV neutrons with flux ~ 10⁸ n/cm2-sec

(n, g), (n, p), (n, a), (n, 2n)

Deutron induced cross-section measurements for light elements important for astrophysics.

Future Plans/ Upcoming facilities

•ECR Injector for the SC Linac (Delhi)(in progress)
•ECR Injector based HI accelerator(Mumbai)(Design and Development)

- •Low Energy High Intensity Proton Accelerator(LEHIPA) 20 MeV Proton Accelerator-(Mumbai)(in progress)
- •FRENA 3 MV Accelerator for Astrophysics
- (installation in progress Kolkatta)
- •SC K=500 cyclotron- (Beam trials) (Kolkata)
- •ANURIB–National RIB (Design and Development) (Kolkatta)
- 30 MeV (500 $\mu\text{A})$ Medical Cyclotron

Studies in Nuclear Astrophysics at SINP: experimental and theoretical efforts

Experimental

•. Indirect methods in Nuclear Astrophysics-

> •Cluster transfer, breakup and ANC technique.

•Coulomb breakup

Theoretical

•Nuclear reaction modelling- Continuum Discretized Coupled Channel (CDCC) and Asymptotic Normalisation Constant method

- R-matrix theory analysis of capture reaction
- Shell model studies of neutron rich exotic nuclei on the r-process path: new shell closure predicted
- Facility for experimental Nuclear Astrophysics (FRENA) : 3MV Tandetron Civil work for installation of the machine in full swing

Developmental work for utilization of FRENA

•Detector testing: background suppression

• Implanted Target preparation, development and characterization

•Gas detector development

•Offline gamma array installation – digital data acquisition testing

Roadmap for Accelerator Development for ADS

BARC SERVICE OF THE S

Ongoing Projects/Activities in DAE & IUAC

Design and development work for proton accelerator and support technologies viz superconducting cavities, cryogenics, RF power, magnets is going on at RRCAT, BARC, VECC, IUAC

- LEHIPA (BARC)
- R&D Activities of high energy Proton Linac for SNS (RRCAT)
- SCRF Cavities, Test stands, RF Power and Control Instrumentation (RRCAT, BARC, VECC, IUAC)

International Collaborations

- Fermilab (Project X)
- CERN (Linac 4)