New Web Quantity

(N. Otsuka, 2019-03-19, Memo CP-D/975)

1.What is "web quantity"?

The web quantity is not for compilers but for programmers who develop EXFOR retrieval systems. This quantity is adopted by many EXFOR web retrieval system as a key to find data sets of a specific quantity. Each quantity code (Dictionary 236) belongs to one of the following web quantities (Dictionary 113):

Web quantity	Expansion
CS	Cross section data
CSP	Partial cross section data
CST	Temperature dependent cross section data
DA	Differential data with respect to angle
DAE	Differential data with respect to angle and energy
DAP	Partial differential data with respect to angle
DE	Differential data with respect to energy
DEP	Partial differential data with respect to energy
E	Kinetic energies
FY	Fission product yields
INT	Cross section integral over incident energy
L	Scattering amplitudes
MFQ	Fission neutron quantities
MLT	Outgoing particle multiplicities
NQ	Nuclear quantities
POL	Polarization data
PY	Product yields
RI	Resonance integrals
RP	Resonance parameters
RR	Reaction rates
SP	Gamma spectra
SQ	Special quantities
TT	Thick target yields
TTP	Partial thick target yields

2. New web quantity defined by REACTION SF3-SF8

For users, however, the quantity of interest may be expressed by a combination of codes in REACTION subfields. Introduction of another new web quantity defined by REACTION SF3SF8 could be useful to make EXFOR search by a quantity name easier.

Example

New web quantity	SF3	SF4	SF6	SF7	SF8	Expansion
CSNON	NON		SIG			Nonelastic cross section
CSTOT	TOT		SIG			Total cross section
CSG	G		SIG			Capture cross section

(The blank fields mean "any").

The idea of this "New web quantity" is demonstrated on an "experimental" website: https://www.jcprg.org/exfor/index-st.html, where the system suggests some candidates if one types an word of the quantity of interest (e.g., "elastic").

The first three new web quantities on the pull down menu may be defined as follows:

New web quantity	SF3	SF4	SF6	SF7	SF8	Expansion
DAEL	EL		DA		Elastic scattering angular differential cross section	
CSEL	EL		SIG		Elastic scattering cross section	
DARTH	EL		DA		RTH	Elastic scattering Rutherford ratio

3. Two dictionary structure to support one-to-many relation

A limitation of the dictionary structure shown above is the one-to-one relation between the quantity name and the code combination. One quantity name may be related with several code combinations.

Example

Gamma production may be expressed by SF4=0-G-0 or SF7=G, and we would like to relate the quantity name and the code combinations as follows:

New web quantity	SF3	SF4	SF6	SF7	SF8	Expansion
CSGX		$0-G-0$	SIG			Gamma production cross
		SIG	G			

It is however difficult to implement this structure as a single record of the Archive/Backup dictionary since we have to accommodate the SF3-SF8 combination plus expansion in the 80 column explanation field. A possible solution is to split the table to two dictionaries:

New web quantities

New web quantity	Expansion
CSGX	Gamma production cross section

REACTION subfield combinations

REACTION subfield combination	New web quantity	SF3	SF4	SF6	SF7	SF8
CSGX1	CSGX		0-G-0	SIG		
CSGX2	CSGX			SIG	G	

Example

For a user looking for "Gamma production cross section" (CSGX), the retrieval system goes through the second dictionary, and finds that two SF3-SF8 combinations (CSGX1 and CSGX2) are related with CSGX. Then the system extracts from the database all EXFOR data sets where
(1) REACTION SF4=0-G-0 and SF6=SIG, or
(2) REACTINO SF6=SIG and SF7=G.

4. Test dictionaries $\mathbf{1 1 4}$ and 115

I generated Dictionary 114 (new web quantities) and Dictionary 115 (REACTION subfield combinations). These are currently for testing purpose, and the status of their records is INT (internal). The structures and contents of these two dictionaries are appended to this memo. In the dictionaries in the appendix, the following two further extensions are made:

1) Not only REACTION SF3-SF8, but also RESULT code are included.
2) A SF3-SF8 combination can be related with two new web quantities. For example (SF3=NON, SF6=SIG) is related with (1) nonelastic scattering cross section (CSNON) or (2) total reaction cross section (CSTRC). This is useful when the same quantity has two naming conventions.

Comments from programmers (e.g., dictionary structure) and users (addition of new web quantities) are welcome!

Dictionary 114: New web quantities (114 records)

Line	Contents	Format	Archive	Trans	CHEX
	Code	A7	$13-19$	N/A	
	Expansion	A80	$44-123$	N/A	
$2+$	Comment	A55	$44-98$	N/A	

> INT 201900 ANA INT 201900 AX INT 201900 CS INT 201900 CS2N
> INT 201900 CSA
> INT 201900 CSABS
> INT 201900 CSAX
> INT 201900 CSCUM
> INT 201900 CSD
> INT 201900 CSDX
> INT 201900 CSEL
> INT 201900 CSF
> INT 201900 CSFSA
> INT 201900 CSG
> INT 201900 CSG0
> INT 201900 CSGE
> INT 201900 CSGX
> INT 201900 CSH
> INT 201900 CSHX
> INT 201900 CSIND
> INT 201900 CSINL
> INT 201900 CSNON
> INT 201900 CSNX
> INT 201900 CSP
> INT 201900 CSPX
> INT 201900 CSSCT
> INT 201900 CST
> INT 201900 CSTOT
> INT 201900 CSTRC
> INT 201900 CSTX
> INT 201900 DAA
> INT 201900 DAAX
> INT 201900 DAD
> INT 201900 DADX
analysing power
alpha emission
cross section
(*, 2n) cross section
(*,alpha) cross section (2-body reaction)
absorption cross section
alpha emission cross section
cumulative cross section
(*, deuteron) cross section (2 -body reaction)
deuteron emission cross section
elastic scattering cross section
fission cross section
fission spectrum averaged cross section
capture cross section
gamma emission cross section
gamma emission cross section (exclusive)
gamma emission cross section (inclusive)
(*,helion) cross section (2-body reaction)
helion emission cross section
independent cross section
inelastic scattering cross section
nonelastic scattering cross section
neutron emission cross section
(*,proton) cross section (2-body reaction) proton emission cross section
scattering cross section
(*,triton) cross section (2-body reaction)
total cross section
total reaction cross section
triton emission cross section
(*, alpha) angular differential cross section (2-body reaction) alpha emission angular differential cross section
(*, deuteron) angular differential cross section (2-body reaction) deuteron emission angular differential cross section

	20	
INT	201900	DAEDX
INT	201900	DAEG0
INT	201900	DAEGE
INT	201900	DAEGX
INT	201900	DAEHX
INT	201900	DAEL
INT	201900	DAENX
INT	201900	DAEPX
INT	201900	DAETX
INT	201900	DAG0
INT	201900	DAGE
INT	201900	DAGX
INT	201900	DAH
INT	201900	DAHX
INT	201900	DAINL
INT	201900	DANX
INT	201900	DAP
INT	201900	DAPX
INT	201900	DAT
INT	201900	DATX
INT	201900	DEAX
INT	201900	DEDN
INT	201900	DEDX
INT	201900	DEG0
INT	201900	DEGE
INT	201900	DEGX
INT	201900	DEHX
INT	201900	DEINL
INT	201900	DENX
INT	201900	DEPFG
INT	201900	DEPFN
INT	201900	DEPX
INT	201900	DETX
INT	201900	DX
INT	201900	EN
INT	201900	ETA
INT	201900	FY
INT	201900	FYAP
INT	201900	FYCHG
INT	201900	FYCHN
INT	201900	FYCUM
INT	201900	FYDA
N	20190	DE

INT 201900 DAEAX
INT 201900 DAEDX
NI 201900 DAEGO
201900 DAEGE
INT 201900 DAEGX
INT 201900 DAEHX
201900 DAEL
INT 201900 DAEPX
INT 201900 DAETX
INT 201900 DAG0
INT 201900 DAGE
INT 201900 DAG
INT 201900 DAHX
INT 201900 DAINL
INT 201900 DANX
1900 DAP
INT 201900 DAT
INT 201900 DATX
INT 201900 DEAX
INT 201900 DEDN
NT 201900 DEDX
INT 201900 DEGO
INT 201900 DEGE
INT 201900 DEGX
INT 201900 DEHX
NT 201900 DEIN.
INT 201900 DEPFG
TNT 201900 DFPFN
INT 201900 DEPX
INT 201900 DETX
INT 201900 DX
INT 201900 N
INT 201900 FY
INT 201900 FYAP
INT 201900 FYCH
INT 201900 FYCUM
INT 201900 FYDA
INT 201900 FYDE
alpha emission double differential cross section deuteron emission double differential cross section
gamma emission double differential cross section
gamma emission double differential cross section (exclusive) gamma emission double differential cross section (inclusive) helion emission double differential cross section elastic scattering angular differential cross section neutron emission double differential cross section proton emission double differential cross section triton emission double differential cross section gamma emission angular differential cross section gamma emission angular differential cross section (exclusive) gamma emission angular differential cross section (inclusive) (*,helion) angular differential cross section (2-body reaction) helion emission angular differential cross section inelastic scattering angular differential cross section neutron emission angular differential cross section
(*, proton) angular differential cross section (2-body reaction) proton emission angular differential cross section
(*,triton) angular differential cross section (2-body reaction) triton emission angular differential cross section
alpha emission energy differential cross section (spectrum) delayed fission neutron spectrum
deuteron emission energy differential cross section (spectrum) gamma emission energy differential cross section (spectrum) gamma emission energy differential cross section (spectrum, exclusive) gamma emission energy differential cross section (spectrum, inclusive) helion emission energy differential cross section (spectrum)
inelastic scattering energy differential cross section (spectrum) neutron emission energy differential cross section (spectrum)
prompt fission gamma spectrum
prompt fission neutron spectrum
proton emission energy differential cross section (spectrum)
triton emission energy differential cross section (spectrum)
deuteron emission
resonance energy
eta value
fission product yield
fission product most probable mass
fission product charge yield
fission product chain yield
fission product cumulative yield
fission product angular differential yield
fission product energy differential yield

INT	201900 FYFRC	fractional cumulative fission product yield
INT	201900 FYFRI	fractional independent fission product yield
INT	201900 FYIND	fission product independent yield
INT	201900 FYPFG	prompt fission gamma yield
INT	201900 FYTER	fission product yield for ternary fission
INT	201900 FYZP	fission product most probable charge
INT	201900 G0	gamma emission
INT	201900 GE	gamma emission (exclusive)
INT	201900 GX	gamma emission (inclusive)
INT	201900 HX	helion emission
INT	201900 IR	isomeric ratio
INT	201900 KEPFG	prompt fission gamma most probable energy
INT	201900 KEPFN	prompt fission neutron most probable energy
INT	201900 KER	kerma factor
INT	201900 NUD	delayed fission neutron yield
INT	201900 NUP	prompt fission neutron yield
INT	201900 NX	neutron emission
INT	201900 PN	delayed neutron emission probability
INT	201900 PX	proton emission
INT	201900 RIABS	absorption resonance integral
INT	201900 RIF	fission resonance integral
INT	201900 RIG	capture resonance integral
INT	201900 RR	reaction rate
INT	201900 RSG	capture resonance strength (area)
INT	201900 RTHEL	Elastic scattering Rutherford ratio
INT	201900 RVAL	fission product R-value
INT	201900 RYLG	capture yield
INT	201900 TKE	total kinetic energy
INT	201900 TRN	transmission
INT	201900 TTYEOB	EOB thick target yield
INT	201900 TTYGX	thick target gamma yield
INT	201900 TTYNX	thick target neutron yield
INT	201900 TTYPHY	physical thick target yield
INT	201900 TTYSAT	saturation thick target yield
INT	201900 TX	triton emission
INT	201900 WID	resonance width

Dictionary 115: REACTION subfield combinations (108 records)

Line	Contents	Format	Archive	Trans	CHEX
1	Code	A7	$13-19$	N/A	
	New web quantity (primary)	A7	$44-50$	N/A	
	New web quantity (secondary)	A7	$51-57$	N/A	
	REACITON SF3	A10	$58-67$	N/A	
	REACTION SF4	A10	$68-77$	N/A	
	REACTION SF5	A10	$78-87$	N/A	
	REACTION SF6	A10	$88-97$	N/A	
	REACTION SF7	A10	$98-107$	N/A	
	REACTION SF8	A10	$108-117$	N/A	
	Result	A6	$118-123$	N/A	
$2+$	Comment	A55	$44-98$	N/A	

INT 201900 ANA	ANA							*ANA*
INT 201900 AX	AX		X	2-HE-4				
INT 201900 CS	CS					SIG		
INT 201900 CS2N	CS2N		2N			SIG		
INT 201900 CSA	CSA		A			SIG		
INT 201900 CSABS	CSABS		ABS			SIG		
INT 201900 CSAX	CSAX		X	2-HE-4		SIG		
INT 201900 CSCUM	CSCUM				*CUM*	SIG		
INT 201900 CSD	CSD		D			SIG		
INT 201900 CSDX	CSDX		X	1-H-2		SIG		
INT 201900 CSEL	CSEL		EL			SIG		
INT 201900 CSF	CSF		F			SIG		
INT 201900 CSFSA	CSFSA					SIG		*FIS*
INT 201900 CSG	CSG		G			SIG		
INT 201900 CSGE	CSG0	CSGE				SIG	G	
INT 201900 CSGX	CSG0	CSGX	X	0-G-0		SIG		
INT 201900 CSH	CSH		HE3			SIG		
INT 201900 CSHX	CSHX		X	$2-\mathrm{HE}-3$		SIG		
INT 201900 CSIND	CSIND				*IND*	SIG		
INT 201900 CSINL	CSINL		INL			SIG		
INT 201900 CSNON	CSNON	CSTRC	NON			SIG		
INT 201900 CSNX	CSNX		X	0-NN-1		SIG		
INT 201900 CSP	CSP		P			SIG		

INT	201900	CSPX	CSPX		X	1-H-1		SIG	
INT	201900	CSSCT	CSSCT		SCT			SIG	
INT	201900	CST	CST		T			SIG	
INT	201900	CSTOT	CSTOT		TOT			SIG	
INT	201900	CSTX	CSTX		X	1-H-3		SIG	
INT	201900	DAA	DAA		A			DA	
INT	201900	DAAX	DAAX		X	$2-\mathrm{HE}-4$		DA	
INT	201900	DAD	DAD		D			DA	
INT	201900	DADX	DADX		X	1-H-2		DA	
INT	201900	DAEAX	DAEAX		X	2-HE-4		DA/DE	
INT	201900	DAEDX	DAEDX		X	1-H-2		DA/DE	
INT	201900	DAEGE	DAEG0	DAEGE				DA/DE	G
INT	201900	DAEGX	DAEG0	DAEGX	X	0-G-0		DA/DE	
INT	201900	DAEHX	DAEHX		X	2-HE-3		DA/DE	
INT	201900	DAEL	DAEL		EL			DA	
INT	201900	DAENX	DAENX		X	0-NN-1		DA/DE	
INT	201900	DAEPX	DAEPX		X	1-H-1		DA/DE	
INT	201900	DAETX	DAETX		X	1-H-3		DA/DE	
INT	201900	DAGE	DAG0	DAGE				DA	G
INT	201900	DAGX	DAG0	DAGX	X	0-G-0		DA	
INT	201900	DAH	DAH		HE3			DA	
INT	201900	DAHX	DAHX		X	$2-\mathrm{HE}-3$		DA	
INT	201900	DAINL	DAINL		INL			DA	
INT	201900	DANX	DANX		X	O-NN-1		DA	
INT	201900	DAP	DAP		P			DA	
INT	201900	DAPX	DAPX		X	1-H-1		DA	
INT	201900	DAT	DAT		T			DA	
INT	201900	DATX	DATX		X	1-H-3		DA	
INT	201900	DEAX	DEAX		X	$2-\mathrm{HE}-4$		DE	
INT	201900	DEDN	DEDN		F		* DL*	NU / DE	
INT	201900	DEDX	DEDX		X	1-H-2		DE	
INT	201900	DEGE	DEG0	DEGE				DE	G
INT	201900	DEGX	DEG0	DEGX	X	0-G-0		DE	
INT	201900	DEHX	DEHX		X	$2-\mathrm{HE}-3$		DE	
INT	201900	DEINL	DEINL		INL			DE	
INT	201900	DENX	DENX		X	0-NN-1		DE	
INT	201900	DEPFG	DEPFG		F	0-G-0	* PR *	FY/DE	
INT	201900	DEPFN	DEPFN		F		* PR *	NU / DE	
INT	201900	DEPX	DEPX		X	1-H-1		DE	
INT	201900	DETX	DETX		X	1-H-3		DE	
INT	201900	DX	DX		X	1-H-2			
INT	201900	EN	EN					EN	
INT	201900	ETA	ETA					ETA	
INT	201900	FY	FY					FY	

INT	201900 FYAP	FYAP		F			AP			
INT	201900 FYCHG	FYCHG		F		CHG	FY			
INT	201900 FYCHN	FYCHN				CHN	FY			
INT	201900 FYCUM	FYCUM		F		* CUM*	FY			
INT	201900 FYDA	FYDA		F			FY/DA			
INT	201900 FYDE	FYDE		F			FY/DE			
INT	201900 FYFRC	FYFRC		F						FRCUM
INT	201900 FYFRI	FYFRI		F						FRIND
INT	201900 FYIND	FYIND		F		*IND*	FY			
INT	201900 FYPFG	FYPFG		F	0-G-0	*PR*	FY			
INT	201900 FYTER	FYTER		F		*TER*	FY			
INT	201900 FYZP	FYZP		F			ZP			
INT	201900 GE	G0	GE					G		
INT	201900 GX	G0	GX	X	0-G-0					
INT	201900 HX	HX		X	2-HE-3					
INT	201900 IR	IR			*-* /*		*/RAT			
INT	201900 KEPFG	KEPFG			0-G-0	*PR*	KE			
INT	201900 KEPFN	KEPFN			0-NN-1	*PR*	KE			
INT	201900 KER	KER					KER			
INT	201900 NUD	NUD		F		*DL *	NU			
INT	201900 NUP	NUP		F		*PR*	NU			
INT	201900 NX	NX		X	0-NN-1					
INT	201900 PN	PN					PN			
INT	201900 PX	PX		X	1-H-1					
INT	201900 RIABS	RIABS		ABS			RI			
INT	201900 RIF	RIF		F			RI			
INT	201900 RIG	RIG		G			RI			
INT	201900 RR	RR					SGV			
INT	201900 RSG	RSG		G			WID/STR			
INT	201900 RTHEL	RTHEL		EL			DA		*RTH*	
INT	201900 RVAL	RVAL		F						RVAL
INT	201900 RYLG	RYLG		G			RYL			
INT	201900 TKE	TKE					*KE	$L F+H F$		
INT	201900 TRN	TRN					TRN			
INT	201900 TTYEOB	TTYEOB					TTY		*EOB*	
INT	201900 TTYGX	TTYGX		X	0-G-0		PY		*TT*	
INT	201900 TTYNX	TTYNX		X	0-NN-1		PY		*TT*	
INT	201900 TTYPHY	TTYPHY					TTY		*PHY*	
INT	201900 TTYSAT	TTYSAT					TTY		*SAT*	
INT	201900 TX	TX		X	1-H-3					
INT	201900 WID	WID					WID			

