LEXFOR "Fitting Coefficients" - LEG/RS0 and LEG/RSD

(N. Otsuka, 2020-12-24, Memo CP-D/1007)

Note added to this Working Paper:

Addition of the zero-th order coefficient is proposed to the formulae of LEG/RS0 and LEG/RSD in LEXFOR "Fitting Coefficients".

LEXFOR "Fitting Coefficients" defines DA,,LEG/RS0 and DA,,LEG/RSD as follows:
$\mathrm{DA}, \mathrm{LEG} / \mathrm{RS} 0=\mathrm{B}_{1}$ (units NO-DIM) where:

$$
\frac{d \sigma}{d \Omega}(E, \theta)=\frac{d \sigma}{d \Omega}\left(E, 0^{\circ}\right) \sum_{l=1}^{n} a_{l}(E) P_{l}(\cos \theta)
$$

$\mathrm{DA}, \mathrm{LEG} / \mathrm{RSD}=\mathrm{B}_{1}$ (units NO-DIM) where:

$$
\frac{d \sigma}{d \Omega}(E, \theta)=\frac{d \sigma}{d \Omega}\left(E, 90^{\circ}\right) \sum_{l=1}^{n} a_{l}(E) P_{l}(\cos \theta)
$$

Due to absence of the $l=0$ term, the integration of the right-hand side over the whole solid angle gives zero. This is strange! I found they were defined differently in an old LEXFOR entry (IAEA-NDS-3 Rev.96/11):

$$
\begin{aligned}
\text { UK, }, ~ L E G / R S O & =a_{l} \quad \text { (no dimension) where: } \\
\frac{d \theta}{d \Omega}(E, \theta) & =\frac{d \sigma}{d \Omega}\left(E, O^{\circ}\right) \sum_{e=0}^{n} a_{e}(E) P_{e}(\cos \theta) \\
D A,, \text { LEG/RSD } & =a_{e} \text { (no dimension) where: } \\
\frac{d \sigma}{d \Omega}(E, \theta) & =\frac{d \sigma}{d \Omega}\left(E, 90^{\circ}\right)\left[1+\sum_{e=1}^{n} a_{e}(\epsilon) P_{e}(\cos \theta)\right]
\end{aligned}
$$

For DA,,LEG/RSD, however, I do not see a reason to fix the 0th order term to 1 (ie., the angular integrated cross section is not necessary to be 4π times the 90 deg angular differential cross section in general.). I propose the following definitions:

DA,,LEG/RS0 $=a_{l}$ (units NO-DIM) where:

$$
\frac{d \sigma}{d \Omega}(E, \theta)=\frac{d \sigma}{d \Omega}\left(E, 0^{\circ}\right)\left[a_{0}+\sum_{l=1}^{n} a_{l}(E) P_{l}(\cos \theta)\right]
$$

$\mathrm{DA}, \mathrm{LEG} / \mathrm{RSD}=a_{l}$ (units NO-DIM) where:

$$
\frac{d \sigma}{d \Omega}(E, \theta)=\frac{d \sigma}{d \Omega}\left(E, 90^{\circ}\right)\left[a_{0}+\sum_{l=1}^{n} a_{l}(E) P_{l}(\cos \theta)\right]
$$

There are many data sets compiled with one of these quantities without the 0th order coefficient, and they are suspicious. I checked such questionable entries and found that LEG/RS0 or LEG/RSD are often wrongly used for the coefficients for the expansion $W(\theta)=1+a_{1} P_{1}+a_{2} P_{2}+\ldots$ which must be coded with LEG/RS. Below is a summary from my quick review, and the originating centre is asked to check each case against the source article before correction and retransmission.

SF8 must be LEG/RS.
41027.003, 41136.003, 41140.004, 41615.004, 41660.002+004, 41684.002-003, $41685.005+006$, A1156.008+009, A1358.004, C1361.004, C1499.0004-005, F0216.004, F0360.005, F0397.003+005, F0475.002, M0283.013-022, O1347.004.

SF8 must be probably LEG/RS (though the expansion formula is not given in the article or wrong).
40354.003, A1357.004, M0879.003-004

SF8 must be RSD.
41616.008-011

SF8 must be COS/RS.
F0013.004
Not clear
23411.002-003, 30455.003, 40449.002, O1195.004

