Using for a bound dineutron in REACTION SF3=n2 (O. Gritzay, 2021-04-27)

The dineutron was predicted by A. B. Migdal ["Two interacting particles in the potential hole", Sov. J. Nucl. Phys., v. 16, p.238, 1973) to be formed as a bound particle under certain circumstances when an additional bound state appears, not existing in the perturbation theory. This bound state is interpreted as a single particle state for the two neutrons, or bound dineutron, located near the surface of some nucleus, beyond its volume but within its potential well.

At first this reaction channel was attempted to observe by I. M. Kadenko in 2016 ("Possible observation of the neutron in the 159Tb (n, ²n) 158 gTb nuclear reaction", EPL, v. 114, p. 42001, 2016), but the cross section value was not determined through low statistic.

A new nuclear reaction channel on 197Au with the neutron as a projectile and a bound dineutron (²n) as an ejectile in the output channel was experimentally observed These results were published in the article "Statistically significant observation of and cross-sections for a new nuclear reaction channel on 197Au with bound dineutron escape" by I. M. Kadenko, B. Biro and A. Fenyvesi, EPL, v. 131 p. 52001, 2020.

It is very difficult to find another experimental works (I could not do it), as this reaction channel has no special code, so I propose to use in REACTION SF3=n2 for a bound dineutron.

REACTION (79-AU-197(N,N2)79-AU-196-G,,SIG,,SPA)

ENTRY	32251			
SUBENT	32251001			
	Statistically significant observation of and			
IIILE	cross-sections for a new nuclear reaction channel on 197Au with bound dineutron escape			
AUTHOR	(I.M.Kadenko,B.Biro,A.Fenyvesi)			
INSTITUTE	(4UKRKGU, 3HUNDEB)			
REFERENCE	(J,EUL,131,52001,2020) #doi:10.1209/0295-5075/131/52001			
FACILITY	(CYCLO,3HUNDEB) The MGC-20E cyclotron.			
INC-SOURCE	JRCE (D-D) The energies of the deuterons were			
	Ed = 3.459 MeV and Ed = 3.523 MeV. The energy spread			
	of the analysed deuteron beam was $dEd/Ed = 0.1\%$.			
DETECTOR	(HPGE)			
METHOD	(ACTIV)			
ANALYSIS	It was estimated:			
ERR-ANALYS	The contribution of the 196 Hg(n, X)196 Au nuclear interference to the 196g Au production was less than 1% (taking into account that the evaluated cross sections of the 196Hg(n, X)196Au reaction are 9.6 mb at En = 6.0 MeV and 24.5 mb at En = 6.8 MeV). The contribution of the 197 Au(n, 2n)196g Au reaction to the measured net areas of the gamma peaks observed at 332.983 and 355.983 keV energies is about 6.e-4%. The contribution of the 196 Hg(n, p)196g Au nuclear reaction to 196g Au production in the samples of gold via this nuclear reaction channel is about 1.4e-11%. (DATA-ERR) The main contributors for the total uncertainty were as follows. (ERR-1,,10.) Positioning of the stacks in front of the D2-gas target, <10%. (ERR-2,,5.) Limited knowledge on the possible contribution of neutrons generated by the bombarding deuteron beam impinged on the Ta collimators, the Nb window foil and the W beam stop. <5%			
HISTORY	<pre>window foil and the W beam stop, <5%. (ERR-S) Counting statistics. (ERR-3) Uncertainty of the detection efficiencies estimated for the counting geometry used at the HPGe detector at Atomki. The partial uncertainties were summed up in quadrature and then the square root of the sum was used for estimation of the total uncertainty. (20210424C) UkrNDC</pre>			
FNDBTB				
NOCOMMON				
ENDSUBENT				
SUBENT	32251002			
BIB				
REACTION	(79-AU-197(N,N2)79-AU-196-G,,SIG,,SPA)			
DECAY-DATA	(79-AU-196-G,6.183D,DG,332.983,0.229, DG,355.684,0.87)			
SAMPLE	Three Au foil samples (99.9 per cent by weight Au of chemical purity) 100 mu-m thick and 1.3 cm diameter putted in a closed cadmium cover of 0.51 mm wall thickness. The presence of Hg (0.1 wt%) with natural isotopic composition and minor Bi (<0.01 wt%) were detected as impunities			
STATUS	(TABLE) Tab.1 (p.52001-p5) in EPL,131,52001,2020. (SUPPL,32251004) Calculated neutron spectrum			
ENDBIB	9			
NOCOMMON	0 0			

DATA		3	1	
EN-MIN	EN-MAX	DATA	DATA-ERR	
MEV	MEV	MB	MB	
6.09	6.39	0.18	0.06	
ENDDATA				
ENDSUBENT				
SUBENT	32251003			
BIB	5 9			
REACTION	(79-AU-197(N,N2)79-AU-196-G,,SIG,,SPA)			
DECAY-DATA	(79-AU-196-G,6.7D, DG,355.684,0.87)			
SAMPLE	Three Au fo	oils (99.9	per cent by weight Au of	
	chemical purity)- two samples of 12.2 mm diameter and			
	150 mu-m thickness and one Au sample of the same			
	diameter and 200 mu-m thickness stacked and covered by			
	1 mm thick cadmium shielding. The presence of			
	Hg (0.1 wt%) with natural isotopic composition and			
CTATUC	minor B1 (<0.01 wt%) were detected as impurities.			
STATUS	(TABLE) Tab.1 (p.52001-p5) in EPL,131,52001,2020. (SUPPL.32251005) Calculated neutron spectrum			
ENDBIB	(9		
COMMON				
ERR-S	ERR-3			
PER-CENT	PER-CENT			
22.	17.			
ENDCOMMON				
DATA		3	1	
EN-MIN	EN-MAX	DATA	DATA-ERR	
MEV	MEV	MB	MB	
6.175	6.455	0.037	0.008	
ENDDATA				
ENDSUBENT				
ENDENTRY				