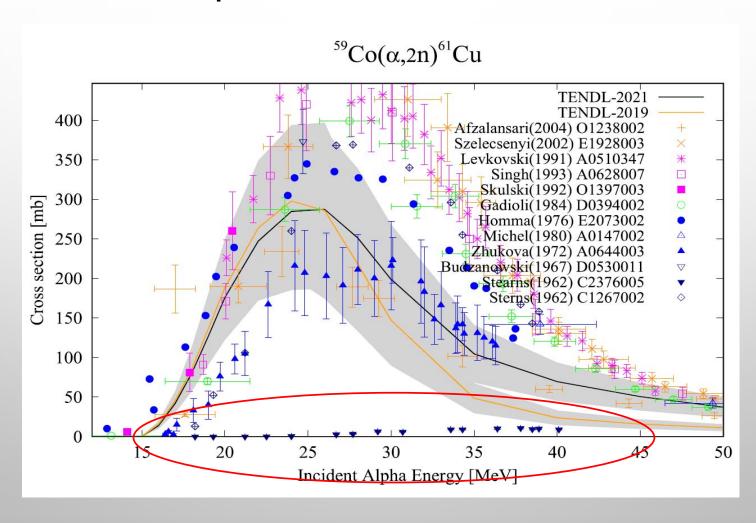
ANALYSIS OF EXFOR OUTLIERS

VIDYA DEVI
CONSULTANT
IAEA NUCLEAR DATA SECTION

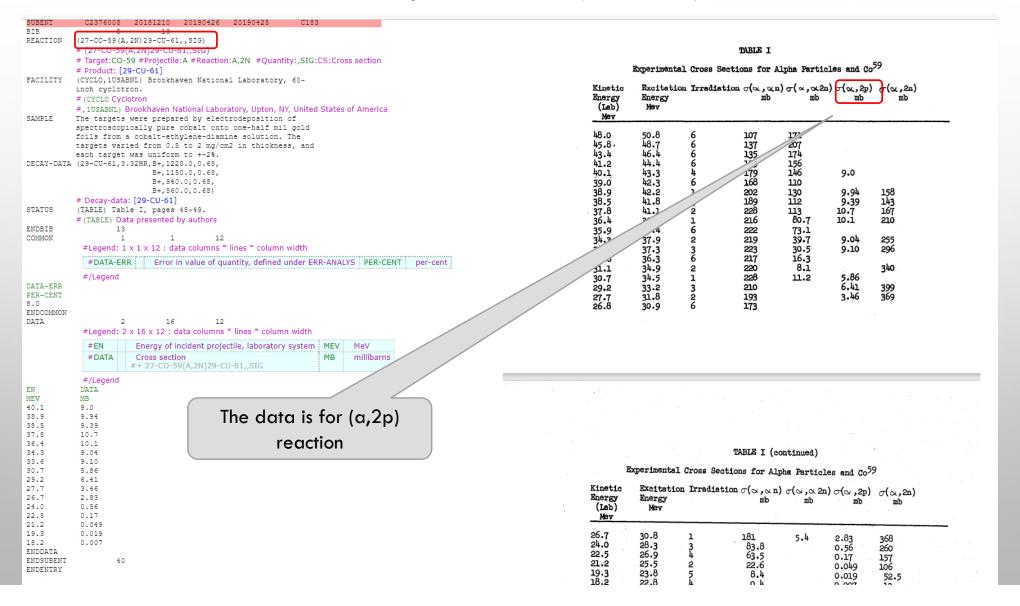
IAEA Technical Meeting, June 14-17, 2022 Vienna, Austria

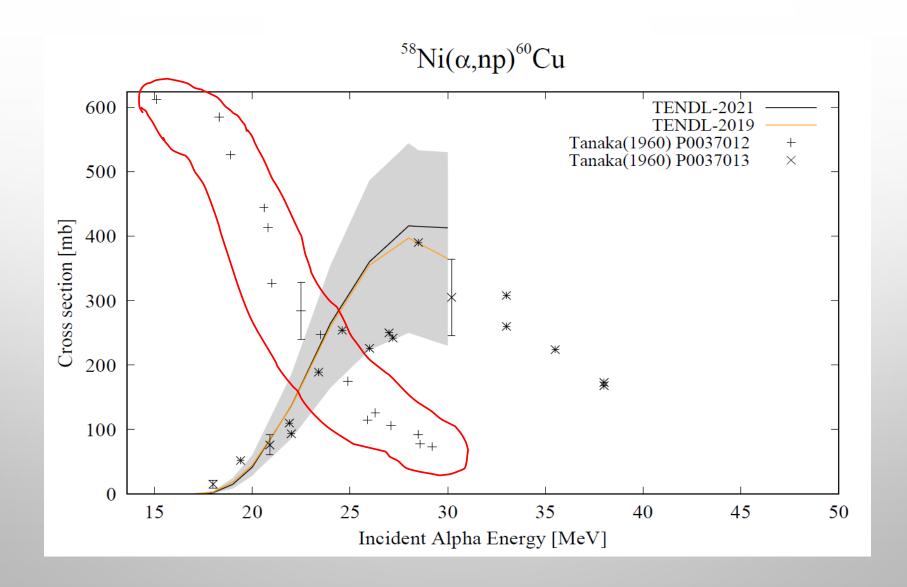
<u>Scope</u> Review of the production cross-section of a, d, g, h, p, and t induced reactions in validation of TENDL-2021 curves.

Method Observing each plot received from Arjan Koning one-by-one along with the source article and web retrieval system.

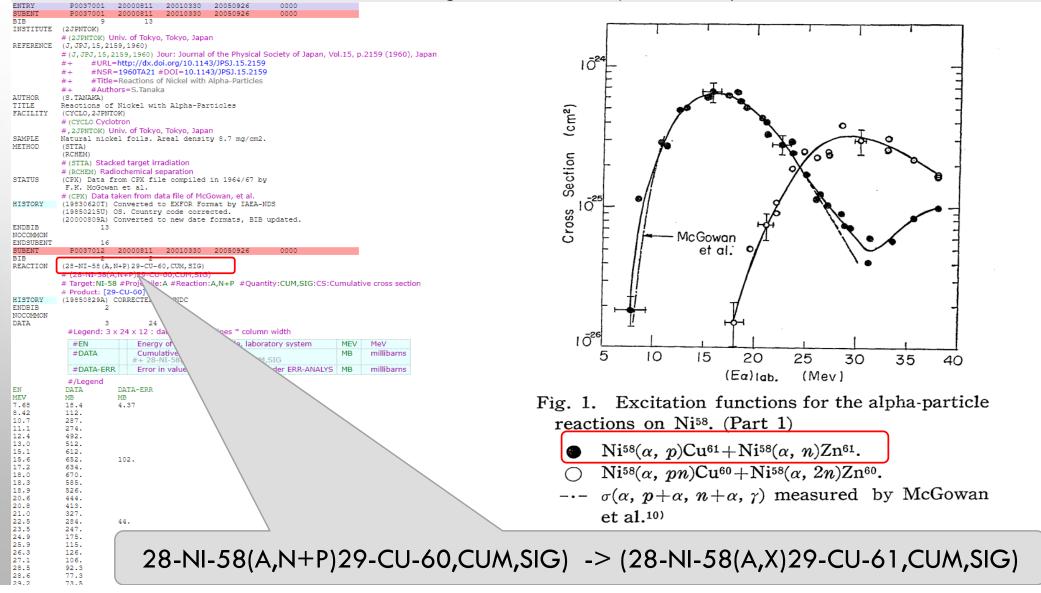

The suspicious cases, not evident from Arjan's plot, were also checked whenever needs arise.

<u>Current situation</u> The review of a, d and g induced reactions have been completed.


Content


- 1. Projectile covered
 - Alpha
 - Deuteron
 - Gamma
- 2. Quantity
 - Cross-section (CS)
- 3. Additional comments
- 4. Conclusion
- 5. Future plan

Alpha induced reactions



Wrong REACTION (SF3,SF4)

Wrong REACTION (SF3,SF4)

Wrong Unit

Unit problem mb -> μb

TABLE III. Results of the activation experiment. For each αparticle energy, the measured cross-section values for the different y-ray transitions are shown. The last column shows the weighted average of the obtained cross sections.

E_{α} [keV]	E_{γ} [keV]	σ [μb]	$\bar{\sigma}$ [μ b]
	605	48.4 ± 17.4	
14091 ± 28	407	35.3 ± 10.5	30.4 ± 8.8
	371	25.4 ± 7.4	
	605	11.1 ± 2.4	
	569	11.3 ± 3.1	
13689 ± 28	558	12.4 ± 3.2	9.9 ± 2.0
	518	9.6 ± 2.6	
	407	8.2 ± 2.4	
	371	7.4 ± 2.5	
	605	6.9 ± 2.0	
13286 ± 29	407	4.3 ± 1.7	4.97 ± 1.12
	371	4.4 ± 1.4	
	605	1.68 ± 0.71	
12785 ± 29	407	1.10 ± 0.30	1.13 ± 0.29
	371	1.03 ± 0.40	
12384 ± 29	605	0.68 ± 0.21	0.85 ± 0.19
	407	1.27 ± 0.35	0.00 = 0.17

As mentioned earlier, the $^{187}\text{Re}(\alpha,n)$ cross section is almost only sensitive to the α width in the measured energy range. Thus, deviations of theoretical predictions obtained by statistical-model calculations from the measured values are

```
approx.10%.
            (EN-ERR). Uncertainties from table 3
            (ERR-S,,10.). The statistical uncertainties for the
            efficiency is less than 10%.
            (ERR-1,,5.). The error in the gamma-ray intensities is
            less than 5%.
            (ERR-2,,20.). The error in the parameters for the gamma-
            ray transitions less than 20%.
            (ERR-3,,20.). The error in the summing correction
            less than 8%.
            (ERR-4,,20.). The error in the number of events in
            the area of the full-energy peak less than 30%.
HISTORY
            (20150203C) S.B.
ENDBIB
NOCOMMON
ENDSUBENT
                     45
SUBENT
                                      20150817
REACTION
            (75-RE-187 (A, N) 77-IR-190,, SIG)
            # (75-RE-187(A,N)77-IR-190,,SIG)
            # Target: RE-187 #Projectile: A #Reaction: A, N #Quantity: , SIG: CS: Cross section
            # Product: [77-IR-190]
DECAY-DATA ((1.)77-IR-190,, DG, 371.24, 0.228)
            ((2.)77-IR-190,,DG,407.22,0.285)
            ((3.)77-IR-190,,DG,518.55,0.340)
            ((4.)77-IR-190,,DG,557.95,0.301)
            ((5.)77-IR-190,,DG,569.30,0.285)
            ((6.)77-IR-190,,DG,605.14,0.399)
            # Decay-data: [0--0]
STATUS
            (TABLE). Table 3 of J, PR/C, 90, 065807, 2014
            # (TABLE) Data presented by authors
ENDBIB
NOCOMMON
DATA
                                 17
                                             12
             #Legend: 5 x 17 x 12 : data columns * lines * columns
                                 Energy of incident project
                                                            aboratory system
                                                                                 KEV
                                                                                           keV
               #EN-ERR
                                 Uncertainty in incident
                                                         Jectile energy
                                                                                 KEV
                                                                                           keV
               #DATA
                                 Cross section
                                                                                 MB
                                                                                           millibarns
                                                     -IR-190..SIG
               #FRR-T
                                 Total uncertained (1-Sigma)
                                                                                 MB
                                                                                           millibarns
                                 Decay flag See corresponding flag in BIB section
               #DECAY-FLAG
                                                                                           no Dimensions
             #/Legend
             EN-ERR
                          DATA
                                       ERR-T
                                                    DECAY-FLAG
             KEV
                          MB
                                       MB
                                                    NO-DIM
14091.
             28.
                                       17.4
14091.
             28.
                                                    2.
14091.
             28.
                          25.4
```

6.

5.

4.

6.

BIB

ΕN

KEV

13689.

13689.

13689.

13689.

13689.

13689.

13286.

13286.

13286.

12785.

12785.

12785.

12384.

12384.

ENDDATA

28.

28.

28.

28.

28.

28.

29.

29.

29.

29.

29.

29.

11.1

11.3

12.4

9.6

8.2

7.4

6.9

4.3

4.4

1.68

1.10

1.03

0.68

2.4

3.1

3.2

2.6

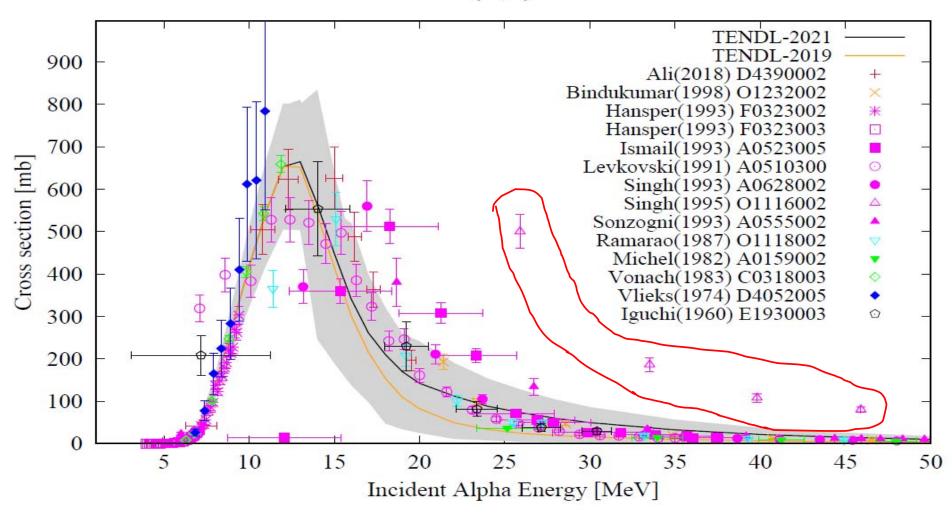
2.4

2.5

2.0

1.7

1.4


0.71

0.40

0.21

0.35

$^{51}V(\alpha,n)^{54}Mn$

01116002 20190916 20191218 20191217 (23-V-51(A,N)25-MN-54,,SIG) # (23-V-51(A,N)25-MN-54,,SIG) # Target: V-51 #Projectile: A #Reaction: A, N #Quantity: , SIG: CS: Cross section # Product: [25-MN-54] DECAY-DATA (25-MN-54, 312.D, DG, 835., 1.) # Decay-data: [25-MN-54] REL-REF (D,01118002, J.Rama Rao+, J, JP/G, 13, 535, 1987) Energy dependence form are similar, but numerical data ~10 times less, than in the paper. (D,B0009002,W.W.Bowman+,J,NP/A,131,513,1969) (D,E1930003,A.Iguchi+,J,AEJ,2,682,1960) Previous measurements of the reactions in vanadium induced by alpha particles with less accuracy. #(D,01118002, J.Rama Rao+, J, JP/G, 13, 535, 1987) Jour: Jour. of Physics, Pa #URL=http://dx.doi.org/10.1088/0305-4616/13/4/017 #NSR=1987RA05 #DOI=10.1088/0305-4616/13/4/017 #Title=Non-Equilibrium Effects in Alpha-Particle-Induced Reactions in #Authors=J.Rama Rao, A.V.Mohan Rao, S.Mukherjee, R.Upadhyay, N. #(D,B0009002,W.W.Bowman+, J,NP/A, 131, 513, 1969) Jour: Nuclear Physics, #URL=http://dx.doi.org/10.1016/0375-9474(69)90592-2 #NSR=1969B020 #DOI=10.1016/0375-9474(69)90592-2 #Title=Reactions of 51V and 27Al with 7-120 MeV α-Particles (Equilibrium and Non-Equilibrium #Authors=W.W.Bowman, M.Blann #(D,E1930003, A. Iguchi+, J, AEJ, 2, 682, 1960) Jour: Journal of the Atomic Energy Society of Japan #URL=http://dx.doi.org/10.3327/jaesj.2.682 #DOI=10.3327/jaesj.2.682 #Title=(alpha,n) cross sections for 48Ti and 51V #Authors=A.Iguchi, H.Amano, S.Tanaka STATUS (CURVE) fig.1,3 from J.of Phys., G21(1995)399 #(CURVE) Data read from a curve (20190916A) SD: BIB updated. DATA-ERR -> ERR-T. HISTORY ENDRIB 12 #Legend: 1 x 1 x 12 : data columns * lines * column width #EN-ERR-DIG Digitizing error of incident particle energy MEV MeV EN-ERR-DIG MEV 0.4 ENDCOMMON #Legend: 3 x 23 x 12 : data columns * lines * column width #FN Energy of incident projectile, laboratory system #DATA Cross section #+ 23-V-51(A,N)25-MN-54,,SIG millibarns #ERR-T Total uncertainty (1-Sigma) PER-CENT per-cent #/Legend

DATA

3900

5600. 2120.

186.

108. 80. 53.

29.9 20.7 20.7 16.8 13.4

33.5

39.8 45.9

64.3 67.6 70. 73.6 75.8 78.8

83.8 88.5 93.4 98.4 103.4 108.3

ENDDATA ENDSUBENT

ENDENTRY

PER-CENT

10. 11. 9.

8. 7. 10. 8. 8. 9. 11. 7. 11. 12. 14. 12.

45

Wrong y-scale

The scale on Y-axis (i.e., cross section) has been wrongly mentioned.

 10^{-1} should come in place of 10^{0} and hence the subsequent values (confirmed by the author)

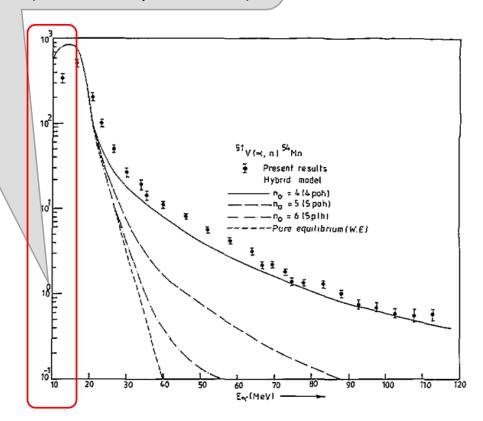
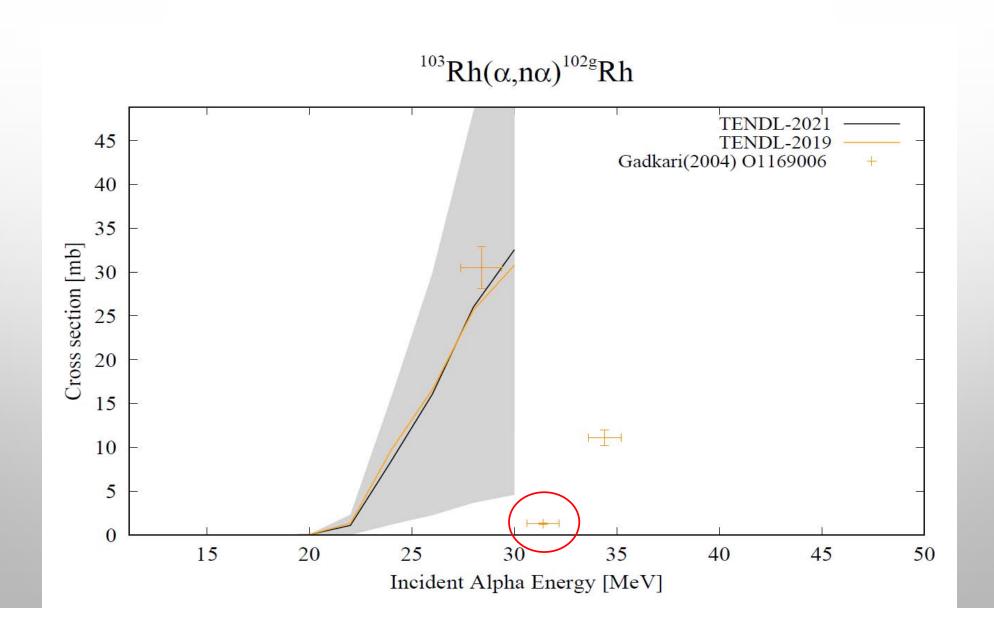
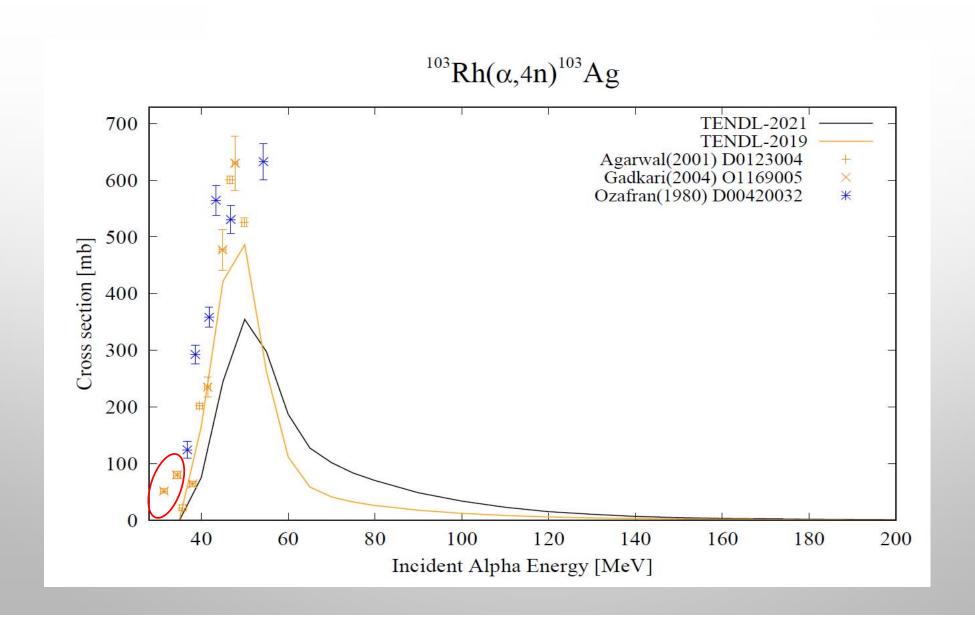




Figure 3. Excitation function of $^{51}V(\alpha, n)$ ^{54}Mn reaction.

Two data points from next column

| SUBENT | 01169006 | 20041028 | 20050926 | 0000 | <u>-</u> | | | | | | | | |
|--------------------|-------------------|------------------------|---|------------------|---|------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------|-------------------------------|-----------------------|
| BIB
REACTION | 4
//E_DU_102/A | 8
,N+A)45-RH-102-G, | TND/M1 CTC) | | | | | | | | | | |
| REACTION | | (A,N+A)45-RH-102-G, | | | | | | | | | | | |
| | | | eaction:A,N+A #Quanti | tv:IND/M+ SIG: | CS:Independent | cross sect incl isome | ric trans | | | | | | |
| | # Product: [45 | | caccioning (* * * * · · · · · · · · · · · · · · · | c/11(10/11 /010) | co i macpenacii | cross seed, men isome | ric crans. | | | | | | |
| RAD-DET | (45-RH-102-G | | | | | | | | | | | | |
| DECAY-DATA | (45-RH-102-G | ,206.D,DG,475.,0. | | | | M | S Gadkari | and NL | Sinah | | | | |
| | " B L | DG, 628., 0. | 044) | | | IVI | o Guanari | unu IV L | Diligit | | | | |
| COMMENT | # Decay-data: | | sition from long-live | ad | | | | | | | | | |
| COMMENT | | /2~2.9 years) = 0 | | eu. | | Tab | le 2. Cross | s-sections (| of the α -inc | duced reac | tions on 10 | ³ Rh. | |
| | 2. According | to ENSDF 206-day | activity is one of | ground | | | | | | | | | |
| | state, but n | ot isomer state. | | | | Reaction | (lpha,n) | $(\alpha, 2n)$ | $(\alpha,3n)$ | $(\alpha, 4n)$ | $(\alpha, \alpha n)$ | $(\alpha, \alpha 2n)$ | $(\alpha, \alpha 3n)$ |
| ENDBIB
NOCOMMON | 8 | | | | | D 1 / | | | | | | | |
| DATA | 4 | 7 | 12 | | | Product | 106m 4 | 105 4 | 104 | 103 . | 102m p. | 101 m p. | 100 |
| | #Legend: 4 | x 7 x 12 : data colur | nns * lines * column wid | dth | | nucleus | $^{106\mathrm{m}}\mathrm{Ag}$ | $^{105}\mathrm{Ag}$ | $^{104}\mathrm{Ag}$ | $^{103}\mathrm{Ag}$ | $^{102\mathrm{m}}\mathrm{Rh}$ | $^{101\mathrm{m}}\mathrm{Rh}$ | $^{100}\mathrm{Rh}$ |
| | #EN | Energy of incide | nt projectile, laboratory | system MEV | MeV | Threshold | = 0 | 150 | 0 | 0.4.0 | 0.0 | 15.5 | 07.0 |
| | #EN-ERR | | cident projectile energy | MEV | MeV | energy (MeV) | 7.0 | 15.2 | 25.6 | 34.3 | 9.6 | 17.5 | 27.6 |
| | #DATA | | ss sect., incl. isomeric tr | | millibarn | $E_{\alpha} (\mathrm{MeV})$ | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ | $\sigma \; (\mathrm{mb})$ | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ |
| | #DAIA | #+ 45-RH-103(A, | N+A)45-RH-102-G,IND/ | M+,SIG | minibam | 17.6 ± 1.2 | 128 ± 10 | 129 ± 10 | | | | | |
| | #ERR-T | Total uncertainty | / (1-Sigma) | MB | millibarn | 21.5 ± 1.1 | 76.0 ± 6.0 | 553 ± 42 | | | | | |
| | #/Legend | | | | | 25.0 + 1.0 | 28.0 + 2.0 | 856 + 66 | | | / | | |
| EN | EN-ERR | DATA ERR- | T | | | $28.4 {\pm} 1.0$ | 13.2 ± 1.0 | 873 ± 68 | 114 ± 9 | / | 30.5 ± 2.4 | 0.9 ± 0.0 | |
| MEV | MEV | MB MB | | | | $31.4 {\pm} 0.8$ | 8.1 ± 0.7 | 650 ± 50 | 554 ± 42 | | 51.5 ± 4.0 | 1.3 ± 0.1 | |
| 28.4 | 1. | 30.5 2.4 | <u> </u> | | | $34.4 {\pm} 0.8$ | $5.8 {\pm} 0.5$ | 331 ± 25 | 988 ± 74 | | 80.0 ± 6.3 | 11.1 ± 0.9 | J |
| 31.4
34.4 | 0.8 | 1.3 0.1
11.1 0.9 | | | | 38.0 ± 0.8 | $4.6 {\pm} 0.4$ | 149 ± 11 | 1078 ± 81 | 64.0 ± 5.0 | 89.0 ± 7.0 | 31.6 ± 2.5 | |
| 38. | 0.8 | 89. 7. | | | | $41.5 {\pm} 0.7$ | $3.5 {\pm} 0.3$ | $89.0 {\pm} 7.0$ | $648 \!\pm\! 33$ | $235 {\pm} 18$ | 98.0 ± 8.0 | 51.0 ± 4.0 | $0.4 {\pm} 0.0$ |
| 41.5 | 0.7 | 98. 8. | | | | 44.9 ± 0.7 | $2.8 {\pm} 0.3$ | 61.0 ± 4.7 | 422 ± 32 | 477 ± 36 | 101±8 | 58.0 ± 4.5 | 10.9 ± 0.8 |
| 44.9
47.8 | 0.7
0.6 | 101. 8.
103. 8. | | Dat | ta points | ±0.6 | $2.5 {\pm} 0.2$ | 47.0 ± 3.6 | 260 ± 20 | $630 \!\pm\! 48$ | 103±8 | 57.0 ± 4.5 | 31.5 ± 2.5 |
| ENDDATA | 0.0 | 103. 8. | | wrong | ly inserte | d | | | | | | | |
| ENDSUBENT | 22 | | | | ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | |
| | | | | | | | | | | | | | |

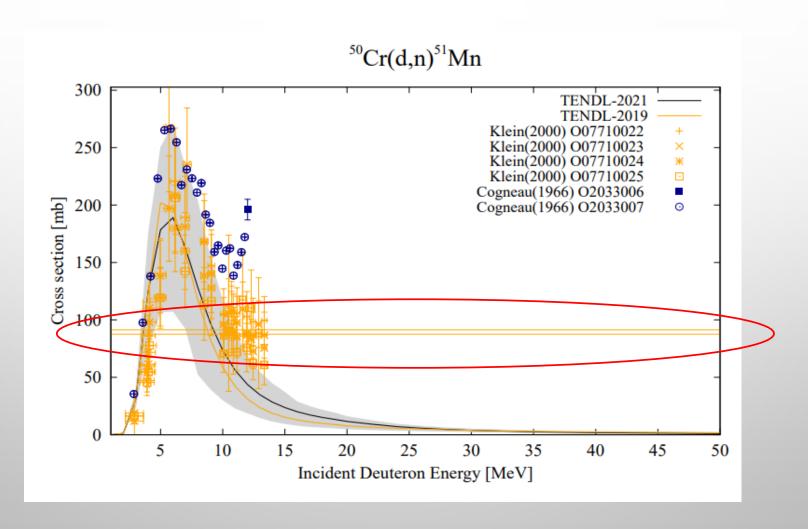
Two extra data points from next column

| | #/Legend | | | | | | SUBENT | 01169007 | 2004 | 1028 | | 20050926 | 000 | 00 | | |
|------------------|--------------------|----------------------|----------------------------|---------------------------|------------|------------|-----------------|-------------------|------------|-------------------------------|---------------------|-----------------------|-----------------------|-------------------------------|-------------------------------|----------------------|
| ERR-1 | | | | | | | BIB | 3 | 2001 | 4 | | | 55. | , , | | |
| PER-CENT | | | | | | | REACTION | (45-RH-103(A | A, 2N+A | A) 45-RH-10 | 1-M,,SIG) | | | | | |
| 6.
ENDCOMMON | | | | | | | | # (45-RH-103 | 3(A,2N | +A)45-RH- | 101-M,,SIC | 3) | | | | |
| ENDSUBENT | 50 | | | | | | | # Target:RH-: | 103 #F | Projectile:A | #Reaction | :A,2N+A | #Quantity: | ,SIG:CS:C | ross sec | tion |
| SUBENT | 01169005 | 20041028 | | 20050926 0000 |) | | | # Product: [4 | 5-RH-: | 101] | | | | | | |
| BIB | 4 | 10 | | | | | RAD-DET | (45-RH-101-N | M,DG) | | | | | | | |
| REACTION | (45-RH-103(| A, 4N) 47-AG- | 103,,SIG) | | | | DECAY-DATA | (45-RH-101-N | м,4.34 | | | | | | | |
| | # (45-RH-10 | 3(A,4N)47-A0 | G-103,,SIG) | | | | | | _ | DG,544. | ,0.04) | | | | | |
| | # Target:RH- | 103 #Project | ile:A #Reaction | n:A,4N #Quantity:,SIG | :CS:Cros | s section | | # Decay-data | i: [45-l | RH-101] | | | | | | |
| | # Product: [4 | 17-AG-103] | | | | | ENDBIB | 4 | | | | | | | | |
| RAD-DET | (47-AG-103- | G,DG) | | | | | NOCOMMON | | | 5 | 12 | | | | | |
| | (47-AG-103- | | | | | | DATA | #Legend: 4 | v 5 v | _ | | noc * coli | ımp width | | | |
| DECAY-DATA | (47-AG-103- | | | | | | | | X J X | 12 . uata C | Olullins 11 | mes con | anni widdi | | | |
| | | | 266.,0.094,
531.,0.061) | | | | | #EN | Er | nergy of ind | cident proje | ectile, lab | oratory syst | em MEV | MeV | |
| | (47-AG-103- | | | Isomer trasition-100 |) ≗ | | | #EN-ERR | Uı | ncertainty i | in incident | projectile | energy | MEV | MeV | |
| | # Decay-data | | | IDOMOI CIADICION IO | , , | | | #DATA | Cı | ross section |
າ | | | MB | millib | arns |
| COMMENT | | | | on was measured by | | | | | #+ | 45-RH-10 | 3(A,2N+A) | 45-RH-10 | 1-M,,SIG | | | |
| | allowing fo | r the compl | ete decay of | the metastable stat | e | | | #ERR-T | To | otal uncerta | ainty (1-Sig | ma) | | MB | millib | arns |
| | to the grou | | | | | | | #/Legend | | | | | | | | |
| ENDBIB | 10 | | | | | | EN | EN-ERR | DATA | A F | RR-T | | | | | |
| NOCOMMON
DATA | | c | 12 | | | | MEV | MEV | MB | | IB | | | | | |
| DATA | #Logond: / | 0
1 v 6 v 10 · d: | | lines * column width | | | 28.4 | 1. | 0.9 | | | | | | | |
| | | | | | | | 38. | 0.8 | 31.6 | | .5 | | | | | |
| | #EN | Energy (| of incident proj | jectile, laboratory syste | m MEV | MeV | 41.5 | 0.7 | 51. | | | | | | | |
| | #EN-ERR | Uncertai | inty in incident | projectile energy | MEV | MeV | 44.9
47.8 | 0.7 | 58.
57. | | .5
.5 | | | | | |
| | #DATA | Cross se | ection | | MB | millibarns | 4/.8
FNDDATA | 0.0 | 5/. | 4 | . 5 | | | | | |
| | | #+ 45-RI | H-103(A,4N)47 | -AG-103,,SIG | | | ENDSUBENT | | , , | C C - 11 | | C:1 | | | | |
| | #ERR-T | Total un | certainty (1-Si | gma) | MB | millibarns | ENDENTRY | | M | S Gadkari | and N L | Singh | | | | |
| | #/Legend | de de | | | | | | | | | | | | | | |
| EN | #/Legend
EN-ERR | DATA | ERR-T | | | | | | Tak | ble 2. Cros | s-sections o | f the α -in | duced react | ions on 103 | Rh. | |
| MEV | MEV | MB | MB | | | | | Reaction | | (α, n) | (a, 2n) | $(\alpha, 3n)$ | $(\alpha, 4n)$ | $(\alpha, \alpha n)$ | $(\alpha, \alpha 2n)$ | $(\alpha, \alpha 3n$ |
| 31.4 | 0.8 | 51.5 | 4. | | | | | THE ACTION | | (α, n) | $(\alpha, 2n)$ | (α, sn) | $(\alpha, 4n)$ | $(\alpha, \alpha n)$ | $(\alpha, \alpha 2n)$ | (α, α σπ |
| 34.4 | 0.8 | 80. | 6.3 | | | | | Product | | | | | | | | |
| 38. | 0.8 | 64. | 5. | | | | | nucleus | | $^{106\mathrm{m}}\mathrm{Ag}$ | $^{105}\mathrm{Ag}$ | $^{104}\mathrm{Ag}$ | $^{103}\mathrm{Ag}$ | $^{102\mathrm{m}}\mathrm{Rh}$ | $^{101\mathrm{m}}\mathrm{Rh}$ | $^{100}\mathrm{Rh}$ |
| 41.5 | 0.7 | 235. | 18. | | | | | Threshold | | | | | | | | |
| 44.9
47.8 | 0.7
0.6 | 477.
630. | 36.
48. | | | | | energy | | 7.0 | 15.2 | 25.6 | 34.3 | 9.6 | 17.5 | 27.6 |
| 4/.0
EMDDATA | 0.0 | 030. | 40. | | | | | E_{α} (MeV | J | σ (mb) | σ (mb) | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ | σ (mb) |

47.8 ENDDATA ENDSUBENT

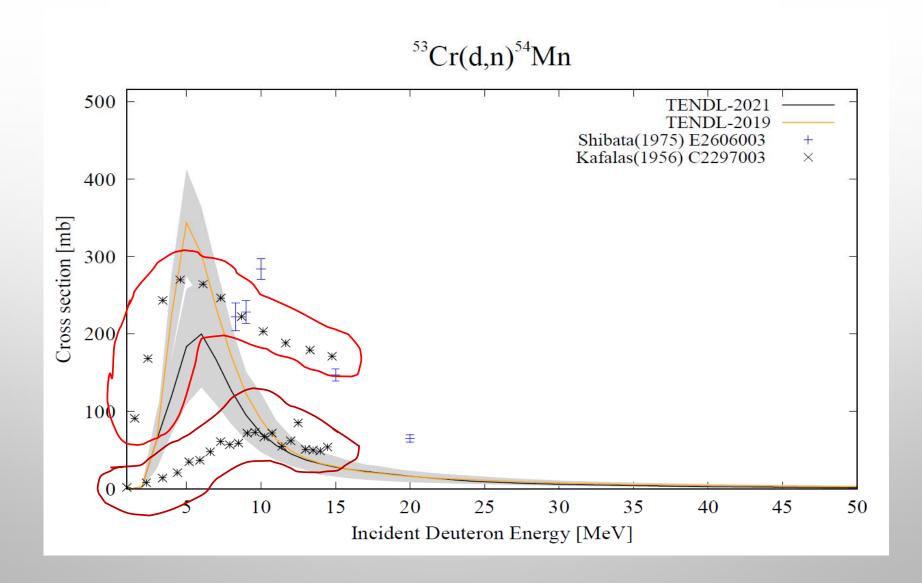
ENDENTRY

23

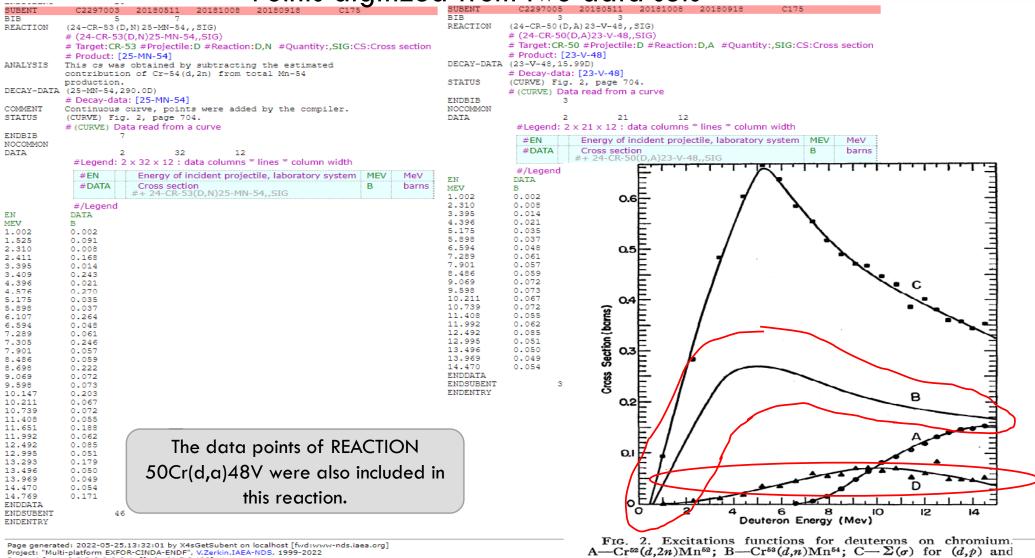

Request from: 0:0:0:0:0:0:0:1 [fwd:161.5.6.190]

Page generated: 2022-05-25,15:14:51 by X4sGetSubent on localhost [fwd:www-nds.iaea.org]

Project: "Multi-platform EXFOR-CINDA-ENDF", V.Zerkin, IAEA-NDS, 1999-2022

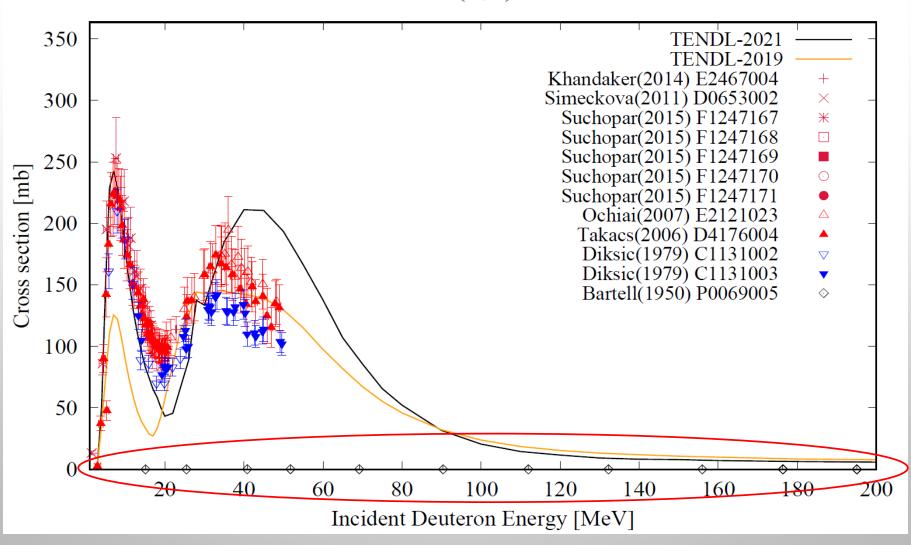

| Reaction | (α,n) | $(\alpha,2n)$ | $(\alpha,3n)$ | $(\alpha,4n)$ | $(\alpha,\alpha n)$ | $(\alpha,\alpha 2n)$ | $(\alpha,\alpha3n)$ |
|--------------------|-------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|
| Product | | | | | | | |
| nucleus | $^{106\mathrm{m}}\mathrm{Ag}$ | $^{105}\mathrm{Ag}$ | 104 Ag | $^{103}\mathrm{Ag}$ | $^{102}{}^{m}{ m Rh}$ | $^{101{ m m}}{ m Rh}$ | $^{100}{ m Rh}$ |
| Threshold | _ | | | | | | |
| energy (MeV) | 7.0 | 15.2 | 25.6 | 34.3 | 9.6 | 17.5 | 27.6 |
| E_{α} (MeV) | σ (mb) | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ | $\sigma \text{ (mb)}$ | σ (mb) | $\sigma \text{ (mb)}$ | σ (mb) |
| 17.6 ± 1.2 | 128 ± 10 | 129 ± 10 | | | | | |
| 21.5 ± 1.1 | 76.0 ± 6.0 | 553 ± 42 | | | | | |
| 25.0 ± 1.0 | 28.0 ± 2.0 | 856 ± 66 | | | | | |
| 28.4 ± 1.0 | 13.2 ± 1.0 | 873 ± 68 | 114 ± 9 | | 30.5 ± 2.4 | 0.9 ± 0.0 | |
| 31.4 ± 0.8 | 8.1 ± 0.7 | 650 ± 50 | 554 ± 42 | | 51.5 ± 4.0 | 1.3 ± 0.1 | |
| 34.4 ± 0.8 | 5.8 ± 0.5 | 331 ± 25 | 988±74 | | 80.0 ± 6.3 | 11.1 ± 0.9 | |
| 38.0 ± 0.8 | 4.6 ± 0.4 | 149 ± 11 | 1078 ± 81 | 64.0 ± 5.0 | 89.0 ± 7.0 | 31.6 ± 2.5 | |
| 41.5 ± 0.7 | 3.5 ± 0.3 | 89.0 ± 7.0 | 648±33 | 235 ± 18 | 98.0 ± 8.0 | 51.0 ± 4.0 | 0.4 ± 0.0 |
| 44.9 ± 0.7 | 2.8 ± 0.3 | 61.0 ± 4.7 | 422 ± 32 | 477 ± 36 | 101 ± 8 | 58.0 ± 4.5 | 10.9 ± 0.8 |
| 47.8 ± 0.6 | 2.5 ± 0.2 | 47.0 ± 3.6 | 260 ± 20 | 630 ± 48 | 103 ± 8 | 57.0 ± 4.5 | 31.5 ± 2.5 |

Deuteron induced reactions



Cross-section data point repeated as in EN-ERR

(26-FE-54 (D, N) 27-CO-55, , SIG) MONITOR (24-CR-52(D, 2N) 25-MN-52,,SIG) (79-AU-197 (D, 2N) 80-HG-197-M, , SIG) (22-TI-0(D,X)23-V-48,,SIG) (F1220001,N.A.Vlasov+,J,AE,2,189,1957) MONIT-REF (C0336004, H.L.West+, J, PR/C, 35, 2067, 1987) (C1996003, R.Vandenbosch+, J, PR, 120, 1313, 1960) (D4105001, K.L.Chen+, J, PR, 134, B1269, 1964) ERR-ANALYS (ERR-1) The errors of the final deuteron fluxes 16% ERR-4) The error of the number of target nuclei STATUS (TABLE) Tbl. 4 of RCA,88,253,2000 # (TABLE) Data presented by authors (20151204A) SD: ERR-1, ERR-4, METHOD added; BIB update.
MISC cols -> DATA cols (split on four REACTION codes). HISTORY Table 4. Cross sections for the 50Cr(d,n)51Mn reaction. Data were obtained using 4 different methods. Value (DATA 1) at En=10.85 MeV corrected. σ (50Cr(d,n)51Mn) [mb] ENDRIB COMMON #Legend: 2 x 1 x 12 : data columns * lines * column width 511 keV ND 511 keV MDA 320 keV DAU 749 keV CP Weighted mean (40%)° (30%)" 1st partial uncertainty, defined under ERR-ANALYS PER-CENT (20%)° #FRR-4 4th partial uncertainty, defined under ERR-ANALYS PER-CENT per-cent 2.90 ± 0.73 16.5 ± 3.5 18.9 ± 19.0 16.2 ± 4.0 15.6 ± 6.3 3.91 ± 0.57 60.1 ± 12.6 47.2 ± 9.9 54.5 ± 13.1 45.6 ± 11.5 53.7 ± 11.8 ERR-1 ERR-4 4.02 ± 0.56 86.1 ± 18.1 61.5 ± 12.9 71.8 ± 17.2 54.7 ± 12.5 72.7 ± 15.8 PER-CENT PER-CENT 4.12 ± 0.54 115.6 ± 25.3 98.0 ± 20.5 110.3 ± 27.1 77.8 ± 21.0 105.5 ± 23.4 16. 4.98 ± 0.46 139.9 ± 29.3 119.7 ± 25.0 138.3 ± 32.3 119.3 ± 26.6 131.5 ± 28.4 ENDCOMMON 5.68 ± 0.41 267.4 ± 55.9 196.9 ± 45.8 337.3 ± 79.5 255.6 ± 56.5 DATA 6.17 ± 0.39 220.7 ± 46.3 179.7 ± 37.6 208.5 ± 49.0 206.1 ± 48.1 204.5 ± 44.4 #Legend: 12 x 22 x 12 : data columns * lines * column width 6.97 ± 0.35 189.2 ± 39.6 160.0 ± 33.5 181.1 ± 44.0 142.3 ± 31.8 174.1 ± 37.9 Energy of incident projectile, laboratory system MEV 7.13 ± 0.34 235.3 ± 49.2 235.3 ± 49.2 #FN-FRR Uncertainty in incident projectile energy MEV MeV 8.51 ± 0.29 168.4 ± 35.4 138.5 ± 29.0 168.2 ± 41.4 113.9 ± 31.7 153.9 ± 34.3 Cross section #+ 24-CR-50(D,N)25-MN-51,,SIG,,,DERIV 9.09 ± 0.28 #DATA MB millibarns 147.3 ± 31.0 128.0 ± 26.8 140.3 ± 34.0 116.5 ± 30.2 137.0 ± 30.2 10.07 ± 0.25 105.1 ± 22.0 86.2 ± 18.0 96.0 ± 23.5 70.6 ± 16.3 94.2 ± 20.5 Total uncertainty (1-Sigma) MB millibarns #ERR-T 10.48 ± 0.25 112.3 ± 23.6 90.9 ± 19.0 105.8 ± 68.0 89.9 ± 21.6 102.3 ± 30.9 10.72 100.7 ± 22.1 #DATA Cross section #+ 24-CR-50(D,N)25-MN-51,,SIG MB millibarns 106.9 ± 22.5 87.8 ± 18.4 108.0 ± 25.6 99.7 ± 25.0 10.85 ± 0.24 90.3 ± 23.5 91.3 ± 19.7 87.5 ± 34.9 millibarns #FRR-T Total uncertainty (1-Sigma) MB 11.14 ± 0.2 105.8 ± 22.2 85.1 ± 17.8 97.5 ± 23.1 72.2 ± 16.5 6 ± 20.5 Cross section #+ 24-CR-50(D,N)25-MN-51,,SIG 11.61 ± 0.23 109.5 ± 23.5 117.5 ± 40.3 millibarns 111.5 ± 27.7 11.94 ± 0.22 103.0 ± 21.7 88.8 ± 18.6 86.6 ± 21.3 75.8 ± 21.1 92.7 ± 20.6 #ERR-T Total uncertainty (1-Sigma) MB millibarns 12.29 ± 0.22 83.1 ± 17.4 110.5 ± 33.0 90.0 ± 21.3 12.44 ± 0.21 98.3 ± 20.6 MB millibarns 72.7 ± 15.2 86.6 ± 19.9 62.4 ± 14.5 #DATA Cross section #+ 24-CR-50(D,N)25-MN-51,,SIG 84.7 ± 18.2 12.89 ± 0.21 96.3 ± 20.2 88.5 ± 48.3 94.4 ± 27.2 #FRR-T MB milliharns 13.34 ± 0.20 99.5 ± 20.9 Total uncertainty (1-Sigma) 75.5 ± 15.8 86.7 ± 20.0 60.8 ± 17.3 85.9 ± 18.8 #DATA Cross section #+ 24-CR-50(D,N)25-MN-51,,SIG MB millibarns a: Weighting factor [%]; for details see text. #ERR-T Total uncertainty (1-Sigma) MB millibarns #/Legend ERR-T ERR-T 1 DATA ERR-T 2 DATA 3 DATA 4 ERR-T 4 DATA ERR-T EN-ERR DATA MB MB MB MB MB MB 0.73 15.6 16.5 3.5 18.9 19.0 16.2 53.7 11.8 60.1 12.6 54.5 45.6 4.02 0.56 86.1 18.1 61.5 12.9 15.8 71.8 54.7 21.0 0.46 131.5 28.4 139.9 29.3 119.7 138 3 32.3 119.3 26 6 79.5 5.68 0.41 255.6 56.5 267.4 55.9 196.9 45.8 337.3 0.39 179.7 48.1 204.5 44.4 189.2 39.6 7 13 0.34 235 3 49.2 235 3 49.2 41.4 8.51 0.29 153.9 34.3 168.4 35.4 138.5 29.0 0.28 30.2 31.0 140.3 34.0 30.2 0.25 94.2 105.1 22.0 96.0 23.5 10.48 0.25 102.3 30.9 23 6 90 9 19 0 105.8 68 0 89 9 21 6 10.72 22.1 22.5 18.4 106.9 87.8 108.0 25.6 99.7 90.3 90.3 23.5 105.8 22.2 97.5 23.1 11 61 0.23 111 5 27 7 109 5 23 5 117 5 40.3 11.94 0.22 20.6 88.8 18.6 86.6 75.8 12.29 12.44 0.21 84.7 18.2 98.3 86.6 19.9 12.89 0.21 94.4 96.3 88.5 48.3 13.34 ENDDATA ENDSHBENT 92 ENDENTRY


Points digitized from two data sets

Request from: 0:0:0:0:0:0:0:1 [fwd:161.5.6.190]

 $(d,n)^{\stackrel{\circ}{\to}}$ for Cr^{51} formation; neglecting the (d,t) contribution above 6.3 Mev; D— $\operatorname{Cr}^{50}(d,\alpha)\operatorname{V}^{48}$.

$^{\text{nat}}$ Cu(d,x) 64 Cu

Digitized from wrong y-scale

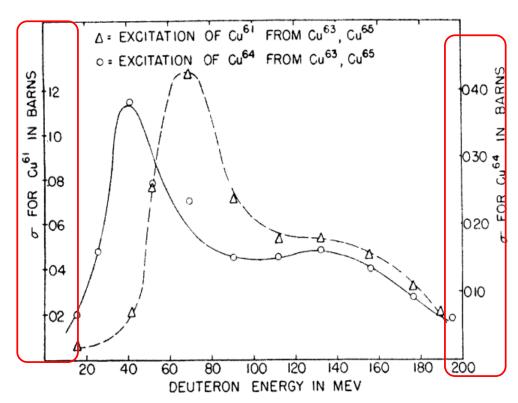
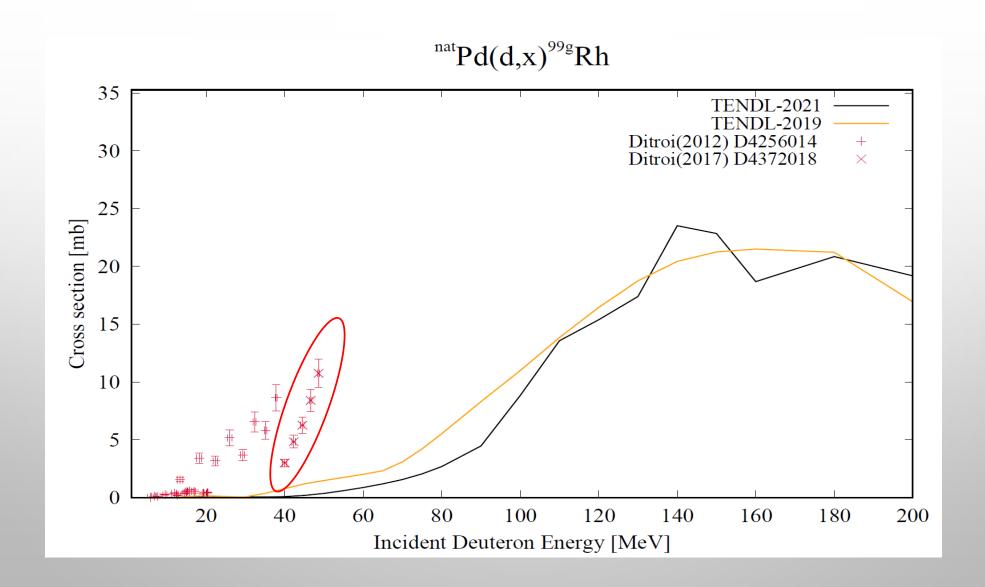
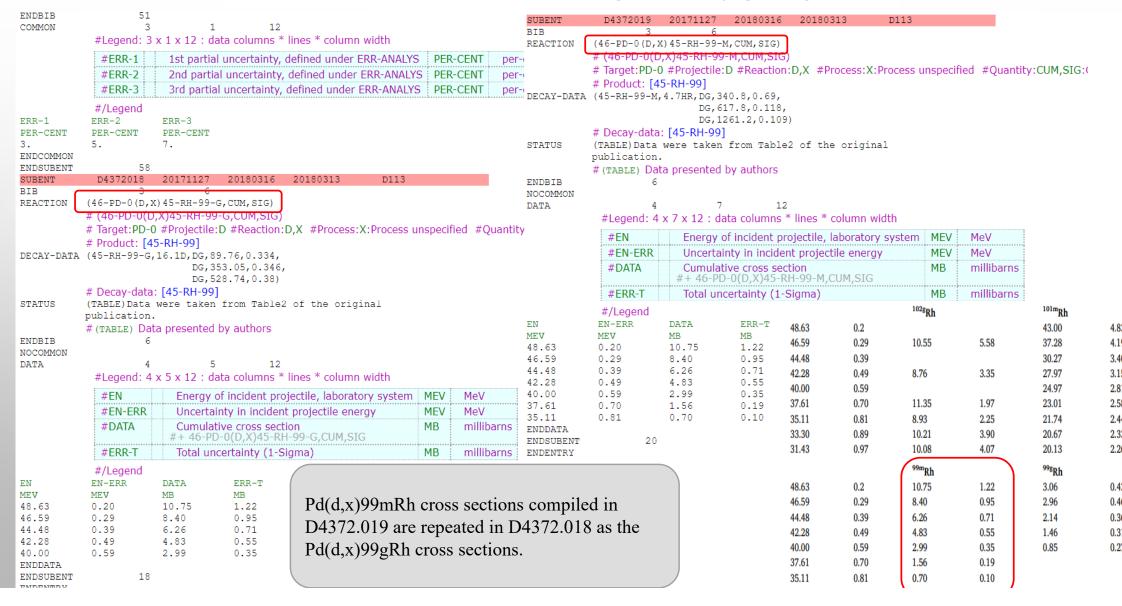
```
SUBENT
BIB
            (29-CU-0(D,X)29-CU-64,,SIG)
REACTION
            # (29-CU-0(D,X)29-CU-64,,SIG)
            # Target:CU-0 #Projectile:D #Reaction:D,X #Process:X:Process unspecified #Quantity:,SIG:CS:Cross section
            # Product: [29-CU-64]
            (CURVE) Fig.2, page 1007.
STATUS
            # (CURVE) Data read from a curve
            (20181113A) BP: Digitized Fig. 2 and replaced the data.
HISTORY
ENDBIB
NOCOMMON
                                  15
                                              12
DATA
             #Legend: 2 x 15 x 12 : data columns * lines * column width
                          Energy of incident projectile, laboratory system
               #EN
                                                                        MEV
                                                                                MeV
                          Cross section
                                                                         MB
                                                                                millibarns
               #DATA
                         #+ 29-CU-0(D,X)29-CU-64,,SIG
             #/Legend
ΕN
             DATA
MEV
             MB
15.089
             0.020
25.469
             0.048
40.836
             0.115
51.771
             0.079
69.163
             0.070
90.396
             0.045
                              The data is about 1000 times too low (unit
             0.046
111.970
132.251
             0.048
                            problem). Data wrongly digitized with respect
             0.040
155.963
                           to y-axis on the left side rather than the y-axis of
             0.028
176.385
                                            the right side?
176.385
             0.028
176.385
             0.028
195.080
             0.018
             0.018
195.080
             0.018
```

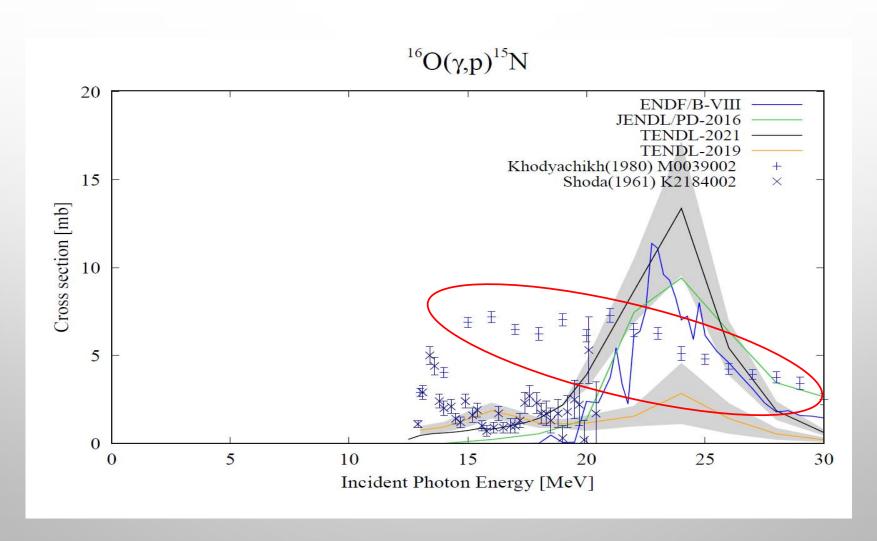
195.080

ENDDATA

ENDSUBENT ENDENTRY

25


Fig. 2. Excitation function of Cu⁶⁴ and Cu⁶¹.

Data set of another subentry wrongly repeated

Gamma induced reactions

Not clear which one must be compiled

```
NOCOMMON
ENDSUBENT
             (8-0-16 (G, P) 7-N-15,, SIG)
            # (8-O-16(G,P)7-N-15,,SIG)
            # Target: O-16 #Projectile: G #Reaction: G,P #Quantity:, SIG: CS: Cross section
            # Product: [7-N-15]
            Data from Fig. 1.
HISTORY
            (20130524A) BRA removed.
ENDBIB
NOCOMMON
DATA
                                              12
              #Legend: 3 x 43 x 12 : data columns * lines * column width
                            Energy of incident projectile, laboratory system
               #DATA
                                                                                  millibarns
               #ERR-S
                            Statistical uncertainty (1-Sigma)
                                                                                  millibarns
              #/Legend
              DATA
MEV
             MB
                           MB
             2.90
                           0.25
13.00
14.00
             4.04
                           0.29
15.00
                           0.28
             7.18
                           0.32
16.00
                           0.29
18.00
                           0.36
19.00
20.00
                           0.35
21.00
             7.28
                           0.40
22.00
23.00
24.00
25.00
                           0.30
26.00
                           0.31
28.00
29.00
                           0.35
                          0.31
30.00
32.00
                          0.31
33.00
34.00
35.00
36.00
37.00
                           0.25
39.00
                           0.21
                           0.13
43.00
                          0.12
45.00
                           0.10
47.00
49.00
53.00
55.00
60.00
                           0.04
66.00
                           0.05
75.00
84.00
93.00
                           0.04
103.00
                          0.03
                           0.03
```

ENDBIB

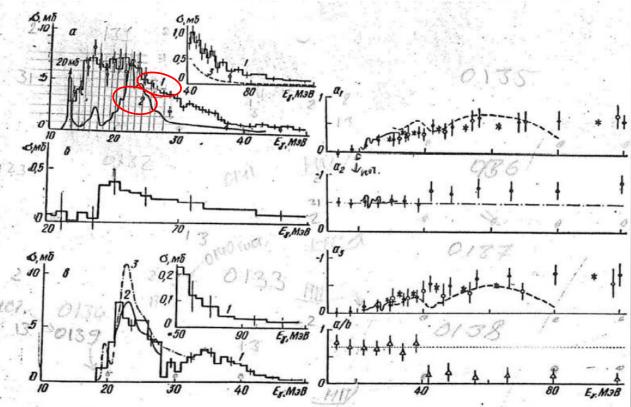
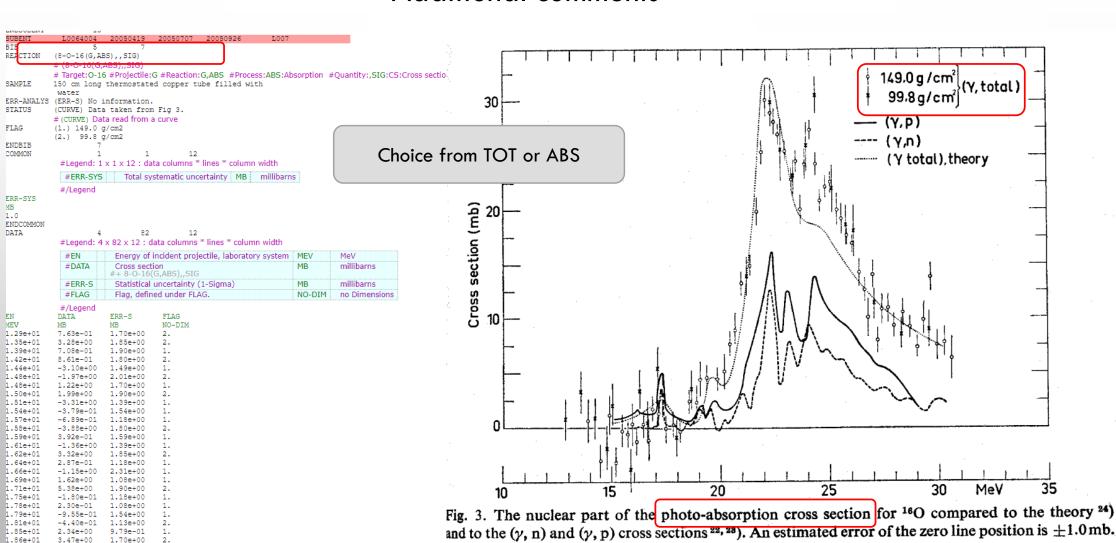



Рис. 1. Зависимость полных сечений от E_7 : a — реакция $^{16}O(\gamma, p)^{15}N$ (I — наши данные, O — [8], 2 — [2], 3 — [9]), 6 — фотообразование состояния $1/2^+$, a — фотообразование состояния $3/2^-$ (I — наши данные, 2 — [13], 3 — [4]).

Рис. 2. Зависимость коэффициентов угловых распределений от E_{ν} : \bigcirc , \triangle — наши данные, \times — ⁴He [10], \bigcirc — 12 C [10], сплошные — [1], штриховые — [18].

Additional comments

.89e+01

1.93e+01

.98e+01

2.02e+01

4.19e+00

4.50e+00

4.29e+00

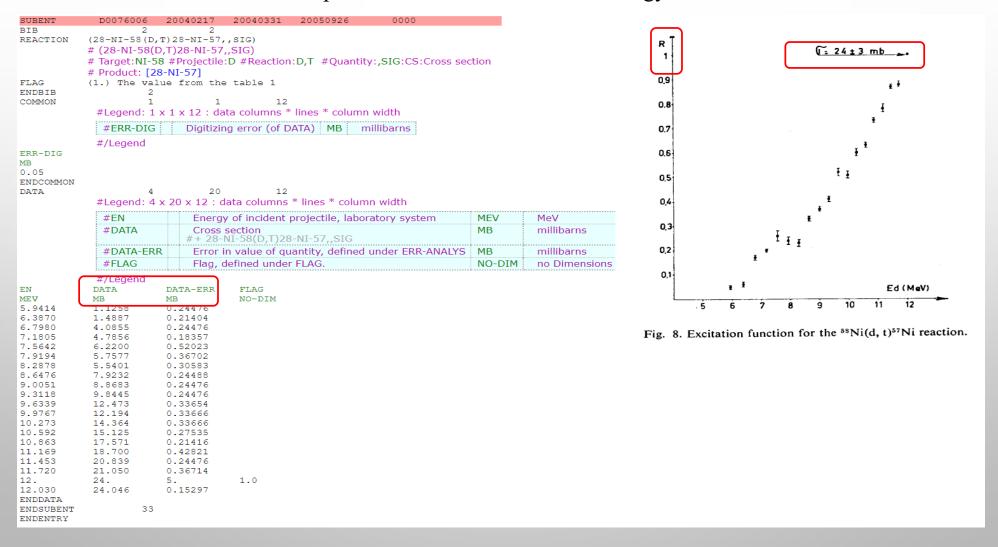
5.06e+00

1.70e+00

1.13e+00

1.03e+00

1.54e+00


Cross-section in ub/A (normalized to the mass number). Should compiler multiply with mass number to compile the cross-section values in mb?

| The Company | | | | | | | | |
|--|----------|------------|---------------|---------------|------------------|-----------|----------|---------|
| # (3-LI-0(G,ABS),,SIG) # (3-LI-0(G,ABS),SIG) # (3-LI-0(G,ABS),SIG) # (3-LI-0(G,ABS),SIG) # Target:LI-0 #Projectile:G #Reaction:G,ABS #Process:ABS:Absorption #Quanti AMPLE # Solid target in form of circular disk, 3 cm in diam. and thickness 1.996 (0.029) g/cm**2. **OMMENT The data from the table II multiplied to mass number A = 7. **PATUS (TABLE) Data from Table II of Phys.Rev.,C54(1996)1688. # (TABLE) Data presented by authors **INTALE: Data presented by SD and VV: STATUS, DATA-ERR -> ERR-S. **INTALE: Data presented by SD and VV: STATUS, DATA-ERR -> ERR-S. ***STATA | SUBENT | м0590002 | 20190626 | 20190821 | 20190821 | M101 | | |
| # (3-LI-0(G,ABS),SIG) # Target:LI-0 #Projectile:G #Reaction:G,ABS #Process:ABS:Absorption #Quanti AMPLE solid target in form of circular disk, 3 cm in diam. | BIB | | | | | | | |
| # Target.LI-O #Projectile:G #Reaction:G,ABS #Process:ABS:Absorption #Quanti Solid target in form of circular disk, 3 cm in diam. and thickness 1.996 (0.029) g/cm**2. OMMENT The data from the table II multiplied to mass number A = 7. TATUS (TABLE) Data from Table II of Phys.Rev.,C54(1996)1688. # (TABLE) Data presented by authors ISTORY (20190626U) Corrected by SD and VV: STATUS, DATA-ERR -> ERR-S. NDBIB BOCOMNON ATA 3 26 12 #Legend: 3 x 26 x 12 : data columns ** lines ** column width #EN Energy of incident projectile, laboratory system MEV MeV #DATA Cross section ## # 3 1 L-1 CG,ABS),,SIG #ERR-S Statistical uncertainty (1-Sigma) MB millibarn #/Legend N DATA ERR-S EV MB MB 43. 3.080 1.05 69. 2.723 .070 89. 2.457 .084 00. 2.268 .091 39. 1.974 .063 1.799 .091 90. 1.708 .084 40. 1.358 .049 99. 1.554 .077 16. 1.477 .042 36. 1.372 .042 44. 1.491 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 44. 1.491 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 44. 1.491 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .049 17. 1.442 .056 51. 1.358 .066 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 89. 1.155 .070 119. 1.029 .056 109. 1.084 | REACTION | | | | | | | |
| AMPLE Solid target in form of circular disk, 3 cm in diam. and thickness 1.996 (0.029) g/cm**2. | | | | | 0.400 #5 | | | |
| and thickness 1.996 (0.029) g/cm**2. OMMENT The data from the table II multiplied to mass number A = 7. TATUS (TABLE) Data from Table II of Phys.Rev., C54 (1996) 1688. # (TABLE) Data presented by authors (20190626U) Corrected by SD and VV: STATUS, DATA-ERR -> ERR-S. NDBIB 8 CCOMMON ATA 3 26 12 #Legend: 3 x 26 x 12 : data columns * lines * column width #EN Energy of incident projectile, laboratory system MEV MeV #DATA Cross section MB millibarn #/Legend N DATA ERR-S Statistical uncertainty (1-Sigma) MB millibarn #/Legend N DATA ERR-S EV MB MB 43. 3.080 .105 65. 2.723 .070 89. 2.457 .084 00. 2.268 .091 39. 1.974 .063 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 91. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 55. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 55. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.185 .070 119. 1.029 .056 163 .980 .084 NDDATA NDATA NDATA | | | | | | | orption | ı #Quan |
| The data from the table II multiplied to mass number | SAMPLE | | | | | diam. | | |
| TATUS | COMMENT | | | | | nımbox | - | |
| ## (TABLE) Data from Table II of Phys.Rev.,C54(1996)1688. ## (TABLE) Data presented by authors ISTORY (20190626U) Corrected by SD and VV: STATUS, DATA-ERR -> ERR-S. NDBIB OCOMMON ATA #Legend: 3 x 26 x 12 data columns * lines * column width #EN | COMMENT | | om the table | s II muicip | iled to mass | number | | |
| # (TABLE) Data presented by authors ISTORY (2019)626U) Corrected by SD and VV: STATUS, DATA-ERR -> ERR-S. NDBIB 8 #Legend: 3 x 26 x 12 : data columns * lines * column width #EN | STATUS | | a from Table | II of Phy | s.Rev.,C54(19 | 96)1688. | ر | |
| STORY (20190626U) Corrected by SD and VV: STATUS, DATA-ERR FER-S Statistical uncertainty (1-Sigma) MB millibarns MB MB MB MB MB MB MB M | | | | _ | 2.1.011,001(12 | | | |
| -> ERR-S. NDBIB OCCOMMON RATA #Legend: 3 x 26 x 12 : data columns * lines * column width #EN | HISTORY | | | | V: STATUS, DA | TA-ERR | | |
| Section Sect | | | | 2 | , | | | |
| #EN | ENDBIB | | | | | | | |
| #Legend: 3 x 26 x 12 : data columns * lines * column width #EN | NOCOMMON | | | | | | | |
| #EN Energy of incident projectile, laboratory system MEV MeV #DATA Cross section #+ 3-LI-0(G,ABS),,SIG #ERR-S Statistical uncertainty (1-Sigma) MB millibarns #/Legend MB MB MB MB MB MB MB M | DATA | 3 | 26 | 12 | | | | |
| #DATA Cross section #+ 3-LL-O(G,ABS),,SIG MB millibarns #ERR-S Statistical uncertainty (1-Sigma) MB millibarns #/Legend N DATA ERR-S EV MB MB 43. 3.080 .105 69. 2.723 .070 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 68. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA | | #Legend: 3 | x 26 x 12 : d | lata columns | * lines * colum | nn width | | |
| #DATA Cross section #+ 3-LL-O(G,ABS),,SIG MB millibarns #ERR-S Statistical uncertainty (1-Sigma) MB millibarns #/Legend N DATA ERR-S EV MB MB 43. 3.080 .105 69. 2.723 .070 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 68. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA | | #EN | Energy of | incident proj | iectile laborato | ry cyctom | MEV | MaV |
| ## 3-LI-O(G,ABS),,SIG #ERR-S Statistical uncertainty (1-Sigma) MB millibarns #/Legend N | | | | | ectile, laborato | ry system | | |
| #ERR-S Statistical uncertainty (1-Sigma) MB millibarns #/Legend N DATA ERR-S EV MB MB 43. 3.080 .105 69. 2.723 .070 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 0044. 1.015 .063 0051. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA | | #DAIA | | | | | MB | milliba |
| #/Legend N DATA ERR-S EV MB MB 43. 3.080 .105 69. 2.723 .070 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.358 .056 08. 1.183 .056 08. 1.197 .056 044. 1.015 .063 08. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA | | "EDD 6 | | | (4.6:) | | ME | -11-1 |
| N DATA ERR-S EV MB MB 43. 3.080 .105 669. 2.723 .070 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 99. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 884. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 08. 1.197 .056 008. 1.197 .056 0044. 1.015 .063 0051. 1.155 .070 119. 1.029 .056 163980 .084 NNDDATA NNDDATA NNDDATA NNDDATA | | #ERR-S | Statistical | uncertainty | (1-Sigma) | | МВ | milliba |
| N DATA ERR-S EV MB MB 43. 3.080 .105 669. 2.723 .070 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 99. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 884. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 08. 1.197 .056 004. 1.015 .063 0051 .1155 .070 119. 1.029 .056 163980 .084 NNDATA NNDATA NNDATA | | #/Leaend | | | | | | |
| 43. 3.080 .105 69. 2.723 .070 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 65. 1.358 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 88. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.197 .056 044. 1.015 .063 001. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA NDDATA NDDATA NDDATA NDDATA | N | | ERR-S | | | | | |
| 69. 2.723 .070 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.197 .056 0044 .1.015 .063 0081 .1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA NDDATA | EV | MB | MB | | | | | |
| 89. 2.457 .084 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 08. 1.183 .056 08. 1.197 .056 044. 1.015 .063 064. 1.197 .056 064. 1.197 .056 064. 1.197 .056 064. 1.015 .063 061. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA NDDATA NDDATA NDDATA | 43. | 3.080 | .105 | | | | | |
| 08. 2.268 .091 39. 1.974 .063 65. 1.799 .091 99. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 0044. 1.015 .063 0081 .1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA | 69. | | | | | | | |
| 199. 1.974 .063 155. 1.799 .091 100. 1.708 .084 14. 1.561 .084 101. 1.358 .049 188. 1.554 .077 16. 1.477 .042 16. 1.372 .042 16. 1.372 .042 16. 1.491 .049 17. 1.442 .056 11. 1.358 .063 18. 1.162 .049 17. 1.260 .063 18. 1.162 .049 17. 1.260 .063 18. 1.183 .056 18. 1.183 .056 18. 1.183 .056 18. 1.197 .056 144 .1.015 .063 181 .1.155 .070 191 .1.029 .056 163 .980 .084 IDDATA IDSUBENT 41 | | | | | | | | |
| 65. 1.799 .091 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 00. 1.183 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.185 .056 00. 1.197 .056 004. 1.015 .063 005. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA NDDATA | | | | | | | | |
| 90. 1.708 .084 14. 1.561 .084 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 551. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 044. 1.015 .063 061. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA | | | | | | | | |
| 14. | | | | | | | | |
| 40. 1.358 .049 98. 1.554 .077 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 044. 1.015 .063 061. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA NDDATA NDDATA | | | | | | | | |
| 98. | | | | | | | | |
| 16. 1.477 .042 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA | 598. | | | | | | | |
| 36. 1.372 .042 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 044. 1.015 .063 061. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA NDDATA NDDATA | 516. | | | | | | | |
| 64. 1.491 .049 84. 1.435 .049 17. 1.442 .056 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 08. 1.183 .056 08. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA | 36. | | | | | | | |
| 17. | 564. | 1.491 | .049 | | | | | |
| 51. 1.358 .063 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA | 684. | 1.435 | | | | | | |
| 88. 1.162 .049 17. 1.260 .063 40. 1.358 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA | 717. | | | | | | | |
| 17. | 51. | | | | | | | |
| 40. 1.358 .056 08. 1.183 .056 36959 .049 73. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDSUBENT 41 | | | | | | | | |
| 08. 1.183 .056 36959 .049 73. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA | | | | | | | | |
| 36959 .049 73. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA NDDATA | | | | | | | | |
| 73. 1.197 .056 044. 1.015 .063 081. 1.155 .070 119. 1.029 .056 163980 .084 NDDATA | | | | | | | | |
| 044. 1.015 .063
081. 1.155 .070
119. 1.029 .056
163980 .084
NDDATA
NDSUBENT 41 | | | | | | | | |
| 081. 1.155 .070
119. 1.029 .056
163980 .084
NDDATA
NDSUBENT 41 | 1044. | | | | | | | |
| 119. 1.029 .056
163980 .084
NDDATA
NDSUBENT 41 | 1081. | | | | | | | |
| 163980 .084
NDDATA
NDSUBENT 41 | 1119. | | | | | | | |
| NDDATA
NDSUBENT 41 | 163. | | | | | | | |
| | NDDATA | | | | | | | |
| NDENTRY | NDSUBENT | 41 | | | | | | |
| | IDENTRY | | | | | | | |

TABLE II. Total cross-section values normalized to the mass number $\it A$ for the studied nuclei. Also indicated are the statistical errors. The average is computed weighting each nucleus cross-section datum with its statistical error.

| k
(GeV) | ⁷ Li
(μb/A) | C
(μb/A) | Al
(μb/A) | Cu
(µb/A) | Sn
(μb/A) | Pb
(μb/A) | Average (µb/A) |
|------------|---------------------------|--------------|--------------|--------------|--------------|--------------|-----------------|
| - | 4 | | | | | | |
| 0.301 | | 420 ± 10 | 397 ± 13 | 375 ± 16 | 398±19 | 387±21 | 401.5 ± 6.5 |
| 0.317 | | 430 ± 7 | 412±9 | 430 ± 12 | 419 ± 14 | 381 ± 15 | 419.5 ± 4.6 |
| 0.343 | 440 ± 15 | 432 ± 6 | 416±8 | 403 ± 10 | 417 ± 11 | 415 ± 12 | 421.2 ± 3.6 |
| 0.369 | 389 ± 10 | 406 ± 6 | 414±8 | 413 ± 13 | 413 ± 10 | 410 ± 12 | 407.1 ± 3.6 |
| 0.389 | 351 ± 12 | 393 ± 6 | 376±8 | 376 ± 8 | 399 ± 11 | 389 ± 10 | 383.6 ± 3.4 |
| 0.408 | 324 ± 13 | 362 ± 7 | 353 ± 9 | 358 ± 12 | 378 ± 13 | 329 ± 14 | 354.7 ± 4.1 |
| 0.439 | 282±9 | 324 ± 6 | 323 ± 7 | 317±9 | 328 ± 10 | 337 ± 15 | 317.8 ± 3.3 |
| 0.465 | 257 ± 13 | 287±5 | 288 ± 7 | 294±9 | 322 ± 10 | 319 ± 12 | 292.0 ± 3.2 |
| 0.490 | 244 ± 12 | 251±5 | 255±7 | 252±8 | 250±9 | 257 ± 11 | 251.6 ± 3.2 |
| 0.514 | 223 ± 12 | 254±4 | 251±5 | 247±6 | 241 ± 8 | 273±9 | 250.9 ± 2.5 |
| 0.540 | 194±7 | 235 ± 3 | 243 ± 4 | 236±5 | 245±6 | 249 ± 7 | 235.7 ± 2.0 |
| 0.568 | | 216±6 | 222±7 | 219±9 | 228 ± 11 | 240 ± 13 | 221.1 ± 3.6 |
| 0.598 | 222 ± 11 | 218±6 | 227±7 | 212±9 | 222 ± 10 | 210 ± 12 | 218.8 ± 3.4 |
| 0.616 | 211±6 | 200±5 | 202 ± 6 | 197±8 | 210±9 | 197±8 | 202.6 ± 2.7 |
| 0.636 | 196±6 | 210±4 | 211±5 | 201 ± 6 | 203 ± 7 | 192±8 | 204.2 ± 2.3 |
| 0.664 | 213±7 | 207 ± 4 | 213±5 | 198±7 | 207±7 | 191±7 | 206.4 ± 2.2 |
| 0.684 | 205 ± 7 | 190±6 | 201 ± 8 | 192±7 | 181 ± 10 | 174±9 | 192.4 ± 3.0 |
| 0.717 | 206±8 | 185±5 | 201±6 | 186±7 | 171±9 | 173±9 | 188.4 ± 2.7 |
| 0.751 | 194±9 | 181±7 | 190±9 | 175 ± 10 | 207 ± 9 | 159 ± 12 | 186.0 ± 3.6 |
| 0.768 | | 195±5 | 191 ± 6 | 179±8 | 178 ± 13 | 187 ± 12 | 189.8 ± 3.2 |
| 0.788 | 166 ± 7 | 184±7 | 183 ± 9 | 174 ± 12 | 173 ± 13 | 173 ± 12 | 176.3 ± 3.6 |
| 0.817 | 180±9 | 183 ± 7 | 185±9 | 163 ± 12 | 187 ± 14 | 178 ± 12 | 180.3 ± 3.9 |
| 0.840 | 194±8 | 187±5 | 178 ± 6 | 179 ± 8 | 180 ± 10 | 182 ± 11 | 183.7 ± 3.0 |

Should compiler convert a excitation function in arbitrary unit to the absolute one when the authors report the absolute value at one energy?.

Conclusion

- The main issue in many entries is in the REACTION code
- Wrong unit selection is also evident in many entries.
- Inclusion of data points belonging to another subentry.
- In some entries (mostly old), cross section values were compiled after mathematical operations. We now avoid performing such mathematical operations on any data provided by the author in the article. In such type of data, the respective centre should take the responsibility to correct that data.

Future Plan

- This review will be continued for the h, p and t induced reactions.
- We will also prepare a correction list and upload it in the feedback list for the correction.

ACKNOWLEDGEMENT

I would like to thanks Naohiko, Arjan and Viktor for the fruitful discussions.

THANK YOU FOR YOUR KIND ATTENTION