Korea Nuclear Data Center Progress Report for 2021-2022

Do Heon KIM & Sung-Chul YANG

Korea Nuclear Data Center Korea Atomic Energy Research Institute

June 14 – 17, 2022 NRDC 2022, IAEA Headquarter, Vienna

KNDC-Progress Report **CONTENTS**

01 Introduction

02 Measurement Facility

03 Nuclear Data Activity

04 EXFOR Activity

01 Introduction

- KNDC
 - Established in 1997 to start research on nuclear data in Korea (formerly, 'Nuclear Data Evaluation Lab.')
 - Joined the International Network of NRDC in 2000

Main tasks

- Evaluation and method development for nuclear reaction data
- Establishment of processing and validation system of nuclear reaction/covariance data
- Measurement of nuclear reaction data and establishment of measurement facility
- Production and validation of atomic/molecular collision data

Staff

11 staff members: 9 regular staffs, a post-retirement researcher,

and a Ph.D. student

Existing facilities

Facility	Characteristics	Measurements
Cyclotron (KIRAMS)	 p: 20- 50 MeV / 40 μA d: 10- 25 MeV / 20 μA α: 20- 50 MeV / 1 μA 	 Activation cross section
Proton Linear Accelerator (KOMAC, KAERI)	• p : 20 & 100 MeV (linac)	 Activation cross section
Cyclotron (Jeongeup, KAERI)	• p : 30 MeV / 100 μA	 Activation cross section

Planned facilities

Facility	Characteristics	Status	
Heavy-Ion Accelerator (NDPS, IBS)	 Cyclotron (70 MeV proton) SC linac (H ~ U, 200 MeV/u(U)) SC linac (d (49 MeV/u), p (83 MeV)) 	 Installed all components in 2021 Performance tests in 2022 Scheduled to operate in 2023 	

02 Measurement Facility

NDPS of IBS

- Constructing Nuclear Data Production System (NDPS) as a part of Heavy-Ion Accelerator in Institute for Basic Science (IBS)
- Cooperation with KNDC (KAERI), SKKU and UNIST in Korea
- Installed all the components for NDPS: neutron target system, collimator, beam dump, beam line, single bunch selector, detection system, etc.
- Carrying out performance tests for some components
- To measure various nuclear reactions such as (n,f), (n, xn), etc. using TOF method in the range of 5 to 40 m

Primary	Beam energy [MeV/u]	Beam	Beam power [kW]	Target			
beam		intensity [#/sec]		Material	Density [g/cm ³]	Thickness [mm]	Neutrons [#/sec]
d	48.9	7.68E+13	1.20	С	2.253	25	1.25E+13
р	82.7	9.74E+13	1.29	Li	0.534	2~7	9.21E+11
							KAERI

03 Nuclear Data Activity

Neutron-induced CP data update

- Under I-NERI project with LANL
- To analyze experimental data for angular distributions and spectra of (n,p) and (n,a) on several structural materials such as Fe, Ni, and Zn isotopes
- To evaluate/update the accompanying data

New Project on TSL data production

- Launched in April 2022
- To establish an MD-based TSL data production system
- To produce, validate and support TSL data of coolant/moderator materials for future advanced nuclear reactor development in Korea

(qm)

Cross Section

KAERI

03 Nuclear Data Activity

Event

 11th Korea-Japan Joint Summer School on Accelerator and Beam Science, Nuclear Data, Radiation Engineering and Reactor Physics (Aug. 1~4, 2022)

Organized by KOMAC/KAERI and supported by KNDC

Support for Nuclear/Radiation R&D (last 10 years)

Responsibility

- Begin in 2009
- Compile nuclear reaction data in Korea under the guidance of IAEA/NDS
- Measurement data induced by neutron, charged particle, and photon

Compilation status

- Number of entries in EXFOR: 10
 - ✓ Incident particle: neutron (4), proton (1), gamma (3), alpha (2)
- Compiled and transmitted: proton (5)
- Checking tool: www.jcprg.org/exfor/tool

Status

No.	TRANS	ENTRY	SUBENTRIES	ARTICLE	STATUS
1	3201	30847	8	JRN,313,47,2017	EXFOR
2	3200	30848	3	RCA,105,593,2017	EXFOR
3	G047	G3136	5	RCA,105,789,2017	EXFOR
4	G047	G3137	2	EPJ,CS,106,04008,2016	EXFOR
5	G048	G3138	2	JRN,311,1559,2017	EXFOR
6	3206	30849	4	NP/A,970,156,2018	EXFOR
7	3206	30850	3	NP/A,970,411,2018	EXFOR
8	D135	D7028	4	RCA,106,87,2018	EXFOR
9	D135	D7029	8	EPJ/A,54,12,2018	EXFOR
10	D135	D7030	11	JRN,317,1021,2018	EXFOR
11		D7031	10	JRN,318,1863,2018	Compiled
12		D7032	4	KPS,72,228,2018	Compiled
13		D7033	8	JRN,318,2049,2018	Compiled
14		D7034	3	NIM/B,449,35,2019	Compiled
15		D7035	11	NIM/B,464,74,2020	Compiled

KAERI

D7031 Entry

- Article: Excitation functions of ^{nat}Ta(p,x) reactions up to 44.2 MeV
- Isomeric flagging: half-life (2.36 h) of ¹⁷⁸Ta

^{178m1} Ta	2.36 h	88.9	64.4	181 Ta(p,tn)	$\beta^{+}(100)$
		93.2	17.2	¹⁸⁰ Ta(p,t)	
		213.4	81.4	¹⁸¹ Ta(p,d2n)	
		325.6	94.1	¹⁸¹ Ta(p,p3n)	
		331.6	31.19		
		426.4	97.0		

- [Ref. NuDat-2.6 in paper]
- ✓ Nuclear wallet cards (2011): metastable state
- ✓ JAEA nuclear chart (2014): ground state
- ✓ NuDat 3.0: ground state
- Selection: 2.36 h half-life of Ta-178 as ground state

D7035 Entry

- Article: Activation cross-sections of ^{nat}Dy(p,x) reactions up to 45 MeV
- Floating point number in data file
- Use of E: illegal floating point error (JCPRG exfor tool)
- Use of e: no problem (JCPRG, JANIS)
- Discussion with Dr. Otsuka and Prof. G.N. Kim
- Selection: floating point number as E

¹⁵⁶ Tb		
6.51	<u>+</u>	0.47
5.99	1	0.43
4.62	<u>+</u>	0.33
3.93	-	0.29
3.25	1	0.24
3.14	<u>+</u>	0.23
2.48	1	0.18
1.69	+	0.13
0.95	_	0.07
0.54	-	0.04
0.25	1	0.02
0.16	<u>±</u>	0.02
0.06	<u>+</u>	0.01
0.03	<u>±</u>	5E-3
1E-3	<u>+</u>	JE-3
	2/	
2000000000	K	AFRI

Summary

- Compilation: ~8 per year
- To be reserved entries: 30 (as of 2022-06-07)

