Threshold calculator and its application to REACTION SF3 checking

(R. Shimizu and N. Otsuka, 2022-05-18, Memo CP-D/1047)

We often need to list all contributing target and channels to get a particular product nuclide for comparison of measured production cross sections (*e.g.*, activation cross sections) with model prediction etc. One of us (RS) developed a threshold calculator (C++) to show all contributing target nuclides and channels with AME2020 mass evaluation as the mass table. Below are screenshots of an input and output on a web interface of this calculator (https://www.jcprg.org/tcalc/).

Example of input

Target and projectile are mandatory. Ejectile or product is mandatory.					
Target	Fe	(e.g., 100Mo, Mo)			
Projectile	a	(e.g., g, n, p, d, t, h, a, 27Al)			
Ejectile		(e.g., 2p+3d)			
Product	51Cr	(e.g., 99Tc)			
Upper energy (MeV)	30				
	submit reset				

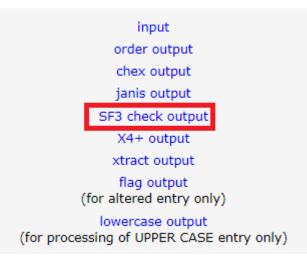
Example of output

Your request

T	arget	Projectile	Ejectile	Product	Emax (MeV)
na	^{it} Fe	α	(Unspecified)	⁵¹ Cr	30

Possible channels

Reaction	Q (MeV)	E _{thr} (MeV)
56 Fe(α ,n+2 α) 51 Cr	-19.652682	21.062699
54 Fe(α ,h+ α) 51 Cr	-19.735119	21.203445
54 Fe(α ,p+d+ α) 51 Cr	-25.228594	27.107022
57 Fe(α ,2n+2 α) 51 Cr	-27.298854	29.225011
54 Fe(α ,n+2p+ α) 51 Cr	-27.453160	29.497829


Such a tool is useful to check whether REACTION SF3 follow the following EXFOR compilation rules:

- 1. SF3 should not be X when only one process is possible.
- 2. SF3 should be X when several processes are possible.

Examples

- (79-AU-197 (D, P) 79-AU-198, , SIG) rather than
 (79-AU-197 (D, X) 79-AU-198, , SIG) below the ¹⁹⁷Au(d,nπ⁺)¹⁹⁸Au threshold (~140 MeV).
- (39-Y-89(D, X) 38-SR-87, , SIG)
 rather than
 (39-Y-89(D, A) 38-SR-87, , SIG)
 above the ⁸⁹Y(d,pt)⁸⁷Sr threshold (~13 MeV).

It is not always trivial to follow these rules for compilers since there exists variety in expressions adopted in the source articles. We implemented checking against **the first rule** by using the newly developed threshold calculator, and it is added to the JCPRG EXFOR compilation tool (<u>https://www.jcprg.org/exfor/tool/</u>) which now gives an additional output **SF3 check output**:

By clicking this link, you can see an output like

```
SF3=X Checker for ACTIV run on 2022-5-8
Input file: ../exfor/tool/./work/trans-584a.txt
F1456.002: X -> 6N 63-EU-151(A,X)65-TB-149-G,,SIG
F1458.002: X -> N 6-C-12(D,X)7-N-13,,SIG
Program terminated normally
```

The program currently does not check the energy range, and the message should be utilized with caution *when the incident energy is beyond the pion production threshold*. We wish this new function is useful for preparation of your future preliminary tapes.