

EXFOR Activity at CNDC 2022-2023

Wang Jimin, Tao Xi, Jin Yongli

China Nuclear Data Center (CNDC)

China Institute of Atomic Energy (CIAE)

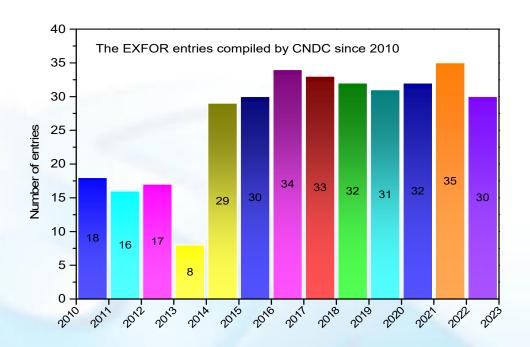
Technical Meeting on the **International Network of Nuclear Reaction Data Centres**

9 - 12 May, 2023, Vienna, Austria

CNDC X4 Group

- Compilers: Jimin Wang, Xi Tao, Lile Liu, Yang Su
- **■** Software developer: Yongli Jin
- Steering Committee: Nengchuan Shu, Zhigang Ge

CNDC


Responsibility

- Compilation of nuclear reaction data induced by neutron and charged particle measured in China under the guidance of IAEA/NDS.
- Revision of the entries with issues in EXFOR compiled at CNDC.
- Scanning of journals published in China.
- Software development for digitization and evaluation.

- Since 2010, more than 345 entries were compiled at CNDC, which include 182 neutron and 163 charged particle entries.
- Since the last NRDC meeting (2022-06-01), 30 new entries have been finalized, which include 18 neutron and 12 charged particle entries.

■ Neutron

No.	Entry No.	1st author	Reference	Status
1	32809	Luocheng Yang	J,ARI,164,109242,2020	Trans.3208
2	32810	X. X. Li	J,PR/C,106,065804,2022	Finalized
3	32811	Zhizhou Ren	J,PR/C,102,034604,2020	Trans.3208
4	32812	Junhua Luo	J,CPH/C,44,114002,2020	Trans.3208
5	32814	Yong Li	J,CPH/C,44,124001,2020	Finalized
6	32855	Junhua Luo	J,RCA,109,513,2021	Trans.3208
7	32856	Xin-Rong Hu	J,CNST,32,101,2021	Trans.3208
8	32857	S. Q. Yan	J,AJ,919,84,2021	Prelim.3209
9	32860	Luocheng Yang	J,ANE,165,108780,2022	Prelim.3209
10	32861	X. X. Li	J,PR/C,104,054302,2021	Finalized
11	32862	Zengqi Cui	J,EPJ/A,57,310,2021	Prelim.3209
12	32868	Zhang Jiang-Lin	J,ASI,71,052901,2022	Prelim.3209
13	32869	Wang De-Xin	J,ASI,71,072901,2022	Prelim.3209
14	32870	Jie Ren	J,CPH/C,46,044002,2022	Prelim.3209
15	32873	Yu.M.Gledenov	J,EPJ/A,58,86,2022	Prelim.3209
16	32886	Zhizhou Ren	J,EPJ/A,59,5,2023	Prelim.3209
17	32887	Yonghao Chen	J,PL/B,839,137832,2023	Finalized
18	32888	Chao Liu	J,NIM/A,1041,167319,2022	Finalized

■ Charged particle

No.	Entry No.	1st author	Reference	Status
1	S0087	Y.J.Li	J,PR/C,102,025804,2020	Trans.S031
2	S0235	F.F. Duan	J,PL/B,811,135942,2020	Trans.S031
3	S0249	Hua Wei	J,CNPR,34,138,2017	Trans.S031
4	S0261	Wang Tieshan	J,CST,35,496,2001	Trans.S031
5	S0262	Sun Xufang	J,CST,42,875,2008	Trans.S031
6	S0264	Su Xiaobin	J,CST,50,395,2016	Trans.S031
7	S0270	B.Liu	J,ARI,173,109713,2021	Trans.S031
8	S0273	W. H. Ma	J,PR/C,103,L061302,2021	Trans.S031
9	S0277	Y. Z. Sun	J,PR/C,104,014310,2021	Trans.S031
10	S0278	Hao Zhang	J,CPH/C,45,084108,2021	Trans.S032
11	S0279	Z. Y. Zhang	J,PRL,126,152502,2021	Trans.S032
12	S0295	B.Gao	J,PRL,129,132701,2022	Trans.S032

Revision

■ Since the last NRDC meeting (2022-06-01), 26 entries have been revised, which include 10 neutron and 16 charged particle entries.

No.	Entry No.	1st author	Reference	Status
1	31454	Zhao Wenrong	J,CST,29,294,1995	Trans.3208
2	31463	Chen Zemin	J,CNPR,16,31,1999	Trans.3208
3	31506	Chen Zemin	J,CNPR,16,31,1999	Trans.3208
4	31507	Chen Zemin	J,CNPR,16,31,1999	Trans.3208
5	31609	Junhua Luo	J,NIM/B,265,453,2007	Trans.3208
6	32551	Zhao Wenrong	J,CST,33,415,1999	Trans.3208
7	32649	Ye Bangjiao	J,CST,33,193,1999	Trans.3208
8	32718	Feng Jing	J,CST,47,1473,2013	Prelim.3209
9	32786	Huaiyong Bai	J,PR/C,99,024619,2019	Trans.3208
10	32798	Jie Wen	J,ANE,140,107301,2020	Trans.3208
11	A0564	Liu Zuhua	J,CNPR,17,210,2000	Finalized
12	E2386	Wang Lichun	J,CNPR,30,107,2013	Finalized
13	E2517	Wang Lichun	J,CNPR,30,107,2013	Finalized

Revision

■ Since the last NRDC meeting (2022-06-01), 26 entries have been revised, which include 10 neutron and 16 charged particle entries.

No.	Entry No.	1st author	Reference	Status
14	S0012	Long Xianguan	R,NST-001,198505	Trans.S032
15	S0013	Long Xianguan	R,NST-003,198903	Trans.S032
16	S0047	Guo Bing	J,CST,41,158,2007	Trans.S032
17	S0053	Guo Bing	J,CST,39,118,2005	Trans.S032
18	S0058	Li Yunju	J,CNPR,29,224,2012	Trans.S032
19	S0076	Y.Y.Yang	J,NIM/A,701,1,2013	Trans.S032
20	S0083	He Jianjun	J,CNPR,34,403,2017	Trans.S032
21	S0085	Y.Y.Yang	J,PR/C,87,044613,2013	Trans.S032
22	S0160	Zhu Yongtai	J,CTNP,10,26,1993	Trans.S032
23	S0183	He Jianjun	J,CNPR,34,403,2017	Trans.S032
24	S0203	Y.Y.Yang	J,PR/C,90,014606,2014	Trans.S032
25	S0206	Y.Y.Yang	J,PR/C,98,044608,2018	Trans.S032
26	S0265	K.Wang	J,PR/C,103,024606,2021	Trans.S032

Scanning of journals

Currently CNDC is responsible for scanning of 8 journals published in China, namely ASI, CNPR, CNST, CPH/C, CPL, CST, HFH and NTC. The ASI is semimonthly, the HFH is bimonthly, the CNPR is quarterly and others are monthly. Submit the scanning results to IAEA/NDS every month.

26 experimental works

Journal	Vol.	Issue	Published	Page	1st author	Journal	Vol.	Issue	Published	Page	1st author
J,ASI		5	2022/3/5	052901	Zhang Jiang-Lin		46	7	2022/7/15	079001	A.Gandhi
	71	7	2022/4/5	072901	Wang De-Xin			8	2022/8/15	085001	Lin Zhao
		19	2022/10/5	192501	Zhu Chuan-Xin			9	2022/9/15	094003	Nguyen Van Do
		1	2022/1/15	014001	O.S.Deiev	J,CPH/C		10	2022/10/15	104001	X.Y.Wang
	46	1	2022/1/15	014002	A.Gandhi			11	2022/11/15	111001	Xiao-Dong Xu
		1	2022/1/15	014003	Shu-Ya Jin			11	2022/11/15	114002	Yu.E.Penionzhkevich
		2	2022/2/15	024001	Haoyu Jiang			12	2022/12/15	124001	O.S.Deiev
J,CPH/C		4	2022/4/15	044001	Junhua Luo	J,CST	56	1	2022/1/20	61	HU Jifeng
J,CFH/C		4	2022/4/15	044002	Jie Ren			5	2022/5/20	798	LIU Chao
		5	2022/5/15	054001	Z.W.Tan			5	2022/5/20	805	REN Jie
		5	2022/5/15	054002	R.K.Singh			5	2022/5/20	816	SUN Qi
		5	2022/5/15	054003	Yong Li			5	2022/5/20	825	HU Yiwei
		6	2022/6/15	064002	O.S.Deiev			5	2022/5/20	835	LIANG Jianfeng

Scanning of journals

Chin. Phys. B Vol. 28, No. 10 (2019) 100701

Photoactivation experiment of 197 Au (γ, n) performed with 9.17-MeV γ -ray from 13 C(p, γ) 14 N*

Yong-Le Dang(党永乐)^{1,2}, Fu-Long Liu(刘伏龙)^{1,2}, Guang-Yong Fu(付光水)^{1,2}, Di Wu(吳简)2, and Nai-Yan Wang(王乃彦)

College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China China Institute of Atomic Energy, Beijing 102413, China

(Received 29 May 2019: revised manuscript received 5 August 2019: published online 17 September 2019)

High energy γ_{eff} can be used for nuclear waste transmitation by using the gaint dipole resonance (GDR). It touches a reaction P^{i} Aug^{i} , p_{i} is it shown as a standard for market on photonic inside experiments. The previous experiment of P^{i} Aug^{i} , P^{i} is the same and standard for market P^{i} Aug^{i} , P^{i} Aug^{i} ,

PACS: 07.85 Fv. 24.30 -v. 25.20 -x DOI: 10.1088/1674-1056/ab3a8d

1. Introduction

Development of nuclear power is the strategic choice for solving the energy supply and ensuring the sustainable development of economy and society. However, nuclear reactor of 1-GW power products about 30-tons spent fuel per year, including long-lived fission product (LLFP) about 30 kg. [1] In this situation, the disposal of LLFP becomes much important. The prime ways such as deeply bury, transport to the space, and ice cover are unable to ensure absolute safety which is the fundamental requirement of long-lived radioactive wastes formed. In 1909. disposal. In 1990s. Accelerator Driven Sub-critical System (ADS) was known as an effective method. [2] For most radioactive wastes, the neutron cross sections are high enough so the coupling efficiencies of transmutation are considerable. However, for some nuclei, the neutron cross section is very low and there may be some new radioactive nuclei generated during the transmutation of 137Cs. Another approach, photoneutron transmutation, due to the giant dipole resonance (GDR), may be a supplement of neutron transmutation, in which the largest cross section will be several hundreds millibarn in the high energy range. [3]

The high energy γ-ray is generated mainly by bremsstrahlung, positron annihilation in flight, laser Compton scatter-ing, and nuclear excitation in nuclear reaction. [4] As a standard for studies on photonuclear reactions, 197 Au(y,n) has been investigated to verify the ability of transmutation perform with γ-ray. In previous studies, photonuclear experiments were per formed mainly by using the 7-ray source of positron annihilation in flight.^[5] The photoactivation experiment on ¹⁹⁷Au was measured with bremsstrahlung facility on ELBE (electron lin-threshold of ¹⁹⁷Au(y, n) and ¹⁹⁷Au(y, n) are

Project supported by the National Natural Science Foundation of China (Grant No. 11655003).

ear accelerator of high brilliance and low em

photoneutron cross section of 197 Au(γ ,n) was

laser Compton scattering γ-ray at ring at Al.

The nuclear transmutation rate on 197 Au wa

New SUBARU. [8] While the γ-rays from positi

in flight, bremsstrahlung, and laser Compton sc

mono-energetic even continuous, so it is nec

the cross section or transmutation using mono-

nuclei. In the present work, γ-ray from 13C(p

at $E_p = 1.75$ MeV has been used to measure the of 197 Au(γ , n) at 9.17 MeV

from the reaction product, 196Au. For the ac-

surement, the depth distribution of 196Au in a

the attenuation of γ-ray from 196Au inside the t

taken into account.

2. Experiment

⁷Au(γ,n) at 9.17 MeV, by measuring th

Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria

Memo CP-D/1075

2023-03-16 Date: Distribution To:

N. Otsuka, Jimin Wang From:

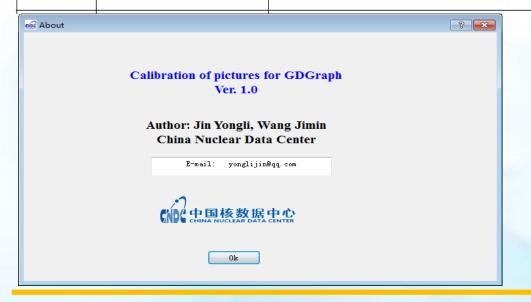
Dictionary 5 (Journal) - CPH/B; Dictionary 22 - LABR3 Subject:

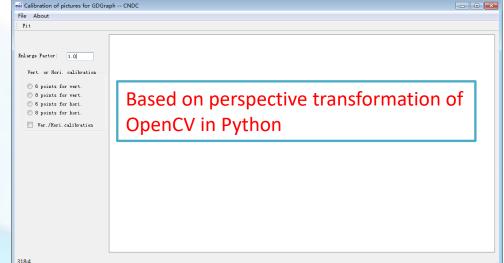
We propose the following two new codes for compilation of the 197Au(γ,n)196Au cross sections published in Yong-Le Dang et al., Chin. Phys. B 28 (2019) 100701.

Dictionary 5 (Journals)

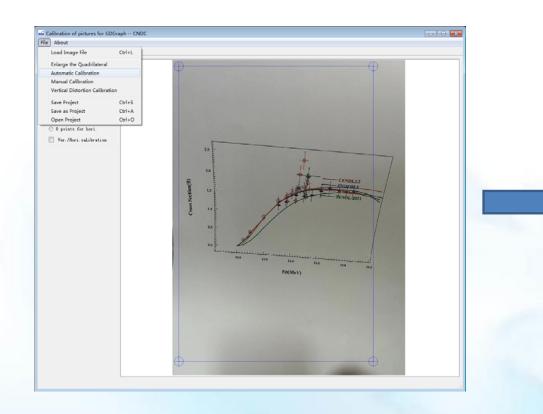
Chinese Physics B

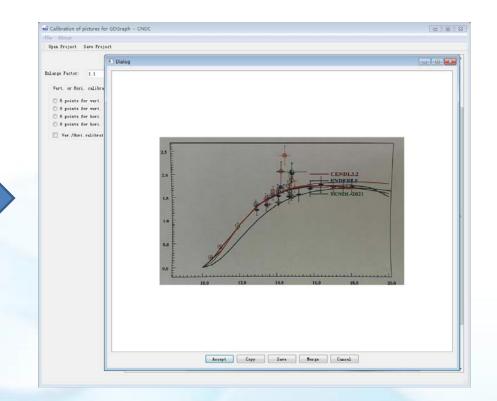
Dictionary 22 (Detectors)

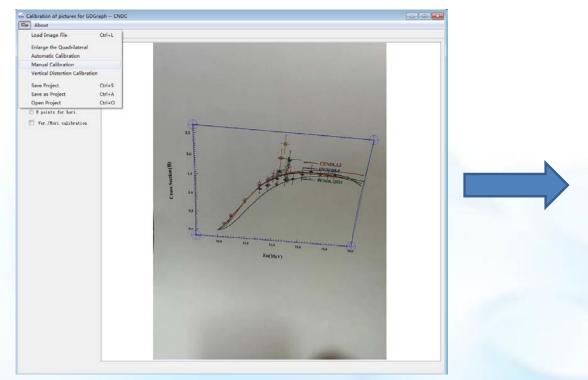

LaBr3 scintillator

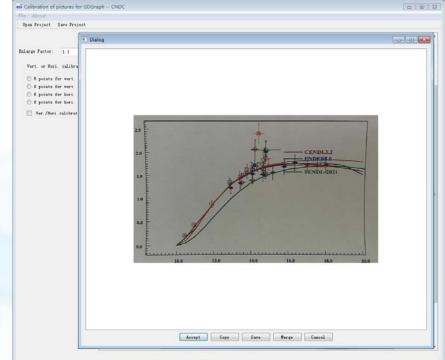

ENTRY G0090 20230303 SUBENT G0090001 20230303 BIB 12 TITLE Photonuclear reaction study with the (p,g) resonance gamma-source AUTHOR (Chuangye He, Yongle Dang, Fulong Liu, Guangyong Fu, Di Wu, Yangping Shen, Zhiyu Han, Qiwen Fan, Bing Guo, Naiyan Wang) INSTITUTE (3CPRAEP, 3CPRBNU) REFERENCE (J, EPJ/CS, 239, 01014, 2020) (J,CPH/B,28,100701,2019) Preliminary data given FACILITY (VDGT,3CPRAEP) 2x1.7-MV tandem accelerator INC-SOURCE (MPH=(6-C-13(P,G)7-N-14)) Proton beam (8 uA, 1.750 MeV) on 13C (100 ug/cm2) evaporated on Au (10 mm diam x 2 mm thick) SAMPLE Two air-cooled 197Au disks (purity of 99%, 10 mm diam.) coated with 13C foil (100 ug/cm2) DETECTOR (HPGE) Coaxial HPGe detector to measure 9.17 MeV gamma (LABR3) LaBr3(Ce) to measure 9.17 MeV gamma angular distribution (NAICR) NaI(T1) to monitor 9.17 MeV gammas (HPGE) Anti-Compton HPGe to measure gamma-rays from activated samples METHOD (ACTIV) Irradiated for 6 hrs and 5.5 hrs, cooled for cooled for 3.6 hrs and 3.1 hrs, measured for 20.6 hrs CORRECTION Corrected for attenuation of 9.17 MeV and 355.7 keV gamma-rays in the gold sample ERR-ANALYS (ERR-T) Total uncertainty (ERR-S) Statistical uncertainty (ERR-SYS) Systematic uncertainty (20230303C) On HISTORY ENDBIB 0

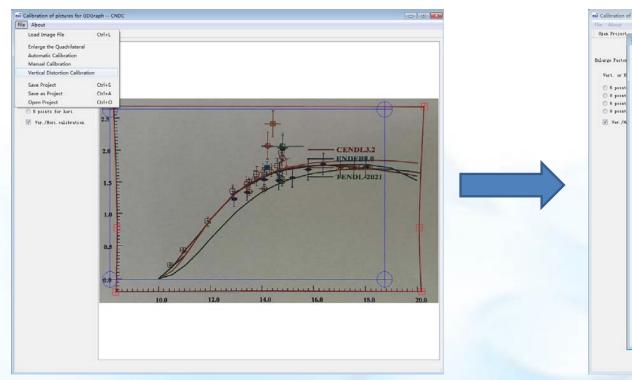
- **NDPlot**: a program designed to facilitate the visualization and manipulation of nuclear data, developed by Dr. Yongli Jin (CNDC). The latest version 0.97 beta was released in Dec.20,2022, some new features were introduced, such as radioactive nuclides production cross sections plotting, more flexible legends settings, and so on.
- **GDGraph**: a graph digitization tool, developed by Dr. Yongli Jin (CNDC). A friendly interface has been implemented by use of WxWidgets as the graphical user interface toolkit.

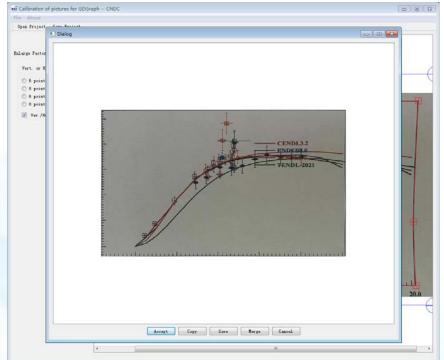

2D calibration


(Continuing action) Study problems in 2D calibration of original pictures, A83 Jin and process of approval of results of digitizing using plotting facilities. Suzuki Pikulina Zerkin




Automatic calibration




Manual calibration

Vertical distortion calibration

Thank you for your attention!

Comments and suggestion welcome!

