(Dictionary 236 (Quantities))

S.C. YANG, N. Otsuka

May 14 – 17, 2024 NRDC 2024, IAEA Headquarter, Vienna

Proposal

Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria

Memo CP-D/1100

Date: 5 February 2024

To: Distribution

From: S.C. Yang, N. Otsuka

Subject: Dictionary 236 (Quantities) – M+,SIG,,RAB and question on RAB

The following new quantity code is proposed for compilation of 30856.003. This entry relates the cross section of Zr isotopes with the fast neutron. Zr-89 has both a short-lived metastable state Zr-89m ($t_{1/2}$ =4.161 m) and a ground state Zr-89g ($t_{1/2}$ =78.41 h). The Zr-89m decays to the unstable Zr-89g through IT process with the branching ratio of 93.77%. According to the current rule, M+ is used when there is no contribution from another nuclide and partial feeding via IT is not 100%. However, its combination with RAB is absent in the current Dictionary 236.

Mistory

Entry number: 30856

Eur. Phys. J. A (2021) 57:267 https://doi.org/10.1140/epja/s10050-021-00568-8 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Measurement of cross sections of Zr-isotopes with the fast neutrons based on the ⁹Be(p, n) reaction

Haladhara Naik¹, Guinyun Kim^{2,a}, Kwangsoo Kim², Thi Hien Nguyen², Muhammad Nadeem², Muhammad Sahid²

```
REFERENCE (J, EPJ/A, 57, 2674, 2021)
FACILITY
           (CYCLO, 3KORKRM) MC-50 cyclotron (KIRAMS)
INC-SOURCE (P-BE) The neutron beam was produced from the 9Be(p,n)
            reaction by impinging 25, 35 and 45 MeV proton beams
            on a 5 mm thick Be target.
           (EN-RSL-HW) The neutron spectrum was characterized by
INC-SPECT
            MCNPX 2.6.0.
           natural Zr foil
SAMPLE
            - purity: >99.99%
            - thickness: 0.05 mm
            - Size: 0.8-1 cm x 1cm
            - weight: 71.6, 103.8, 75.3 mg
           (ACTIV) Irradiation for 1 hour
METHOD
           (GSPEC) Started after the cooling time (1.86-2.78 h)
```


¹ Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India

² Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea

Table 4 Flux-weighted average cross sections of the 96 Zr(n, 20) 95 Zr and 90 Zr(n, 20) 89,88 Zr reactions from this work, literature values and calculated values from the TALYS-1.9 [62] at different flux-weighted average neutron energies.

Reactions	Flux-weighted average neutron energy $(\langle E_n \rangle_{i,j}^k)$ (MeV)	Reference [Ref.]	Average reaction cross-section (< σ >) (mb)			
			m-state TALYS	g-state TALYS	Total (m+g)	
					Measured	TALYS
⁹⁶ Zr(n, 2n) ⁹⁵ Zr	13.80	Present	-	_	1489.3 ± 196.4	1479.6
	13.74	Filatenkov et al.[26]			1614.0 ± 161.4	
	13.96	Filatenkov et al.[26]			1594.0 ± 91.8	
	18.91	Present	_	_	960.7 ± 75.0	940.8
	25.81	Present	_	_	446.4 ± 92.9	336.7
⁹⁰ Zr(n, 2n) ⁸⁹ Zr	16.11	Present	221.7	762.0	983.3 ± 51.3	983.7
	15.92	Abboud et al. [41]			1053.6 ± 11.1	
	16.02	Wenrong et al. [53]			1033.0 ± 42.0	
	16.23	Bayhurst et al. [46]			994.0 ± 42.0	
	16.28	Abboud et al. [41]			1024.6 ± 15.4	
	16.30	Semkova et al. [61]			1090.0 ± 60.0	
	20.92	Present	196.2	927.3	1190.7 ± 80.0	1123.5
	20.60	Semkova et al. [61]			1200.0 ± 80.0	
	19.90	Semkova et al. [61]			1200.0 ± 70.0	
	19.98	Bayhurst et al. [46]			1225.0 ± 52.0	
	19.76	Prestwood et al. [38]			1169.0 ± 58.0	
	28.74	Present	85.3	592.9	642.8 ± 33.2	678.2
	27.99	Bayhurst et al. [46]			750.0	
⁹⁰ Zr(n, 3n) ⁸⁸ Zr	25.37	Present	_	_	118.0 ± 12.6	131.7
	31.33	Present	_	_	503.2 ± 38.1	508.4

Bold values indicate present data

 Report of isotopic cross sections under use of a natural sample could be stressed.

Limitations

Limitations of RAB

Ground and isomeric state information for $^{89}_{40}{\rm Zr}$

E(level) (Me	V) Jn	Mass Excess (keV)	T _{1/2}	Decay Modes
0.0	9/2+	-84878 3	78.41 h <i>12</i>	ε = 100.00%
0.5878	1/2-	-84290 3	4.161 min <i>10</i>	IT = 93.77% ε = 6.23%

- According to the current rule, M+ is used when there is no contribution from another nuclide and partial feeding via IT is not 100%.
- However, its combination with RAB is absent in the current Dictionary 236.

REACTION sums within the current rule

- Use of RAB modifier
 - : isotope production cross section for natural sample
- Subentries

```
SUBENT 30856002 20230711

BIB 4 5

REACTION (40-ZR-96(N,2N)40-ZR-95,,SIG,,SPA)

DECAY-DATA (40-ZR-95,64.032D,DG,724.19,0.4427,

DG,756.73,0.5438)

SAMPLE (40-ZR-96,NAT=0.0280)
```

(40-ZR-91, NAT=0.1122)

Chex result

** REACTION fields 5-8 not in dictionary 30856003

(40-ZR-91(N,3N)40-ZR-89-G,M+,SIG,,RAB/SPA)+ 3085600300004

* REACTION fields 5-8 not in dictionary (40-ZR-92(N,4N)40-ZR-89-G,M+,SIG,,RAB/SPA)) 30856003 3085600300005

SUBENT 30856004 20230711

BIB 4 6

REACTION ((40-ZR-90(N,3N)40-ZR-88,,SIG,,SPA)+
(40-ZR-91(N,4N)40-ZR-88,,SIG,,RAB/SPA))

DECAY-DATA (40-ZR-88,83.4D,DG,392.87,0.9729)

SAMPLE (40-ZR-90,NAT=0.5145)

Simplification

- Simplification of REACTION string without sum
- A REACTION string relevant to the RAB modifier becomes a REACTION sum.

```
REACTION ((40-ZR-90(N,2N)40-ZR-89-G,M+,SIG,,SPA)+
(40-ZR-91(N,3N)40-ZR-89-G,M+,SIG,,RAB/SPA)+
(40-ZR-92(N,4N)40-ZR-89-G,M+,SIG,,RAB/SPA))
```

Propose simplification of the REACTION sum to

```
REACTION ((40-ZR-90(N,2N)40-ZR-89-G,M+,SIG,,OTH/SPA)
```

- OTH: presence of contribution from a Zr target isotope other than ⁹⁰Zr.
- Definition of OTH could be mentioned somewhere, e.g., "not corrected for contribution of other target isotopes".

