
NSR Modernization

NRDC, Madrid Spain,
19 June 2025

David Brown, Ben Shu, Ramon Arcilla, Boris Pritychenko
National Nuclear Data Center,
Brookhaven National Laboratory, Upton NY, USA

2

NSR Workflow

Ben Shu

Changes
reviewed
internally

• All steps handled by human beings
• But we have no more contractors as of April 2025

Previous Workflow

3

Research article
published

Citations manually
scraped from

journal website

Keywords
assigned by

compiler

New entries
inserted into

internal database

Updates deployed
to public website

Changes
reviewed
internally

• Blue steps are rate determining; are the target for improvements
• Legacy process must be carefully documented

Previous Workflow

4

Research article
published

Citations manually
scraped from

journal website

Keywords
assigned by

compiler

New entries
inserted into

internal database

Updates deployed
to public website

Web scraping
• Article citations formerly obtained

by people searching in websites

• Ex. Physical Review C (PRC)
• Click on one article, download BibTeX
• Rinse and repeat for an entire issue
• Vol 11, Issue 3 – 85 articles added

• This can be automated by
web scraping tools

5

Web scraping
• Article citations formerly obtained

by people searching in websites

• Ex. Physical Review C (PRC)
• Click on one article, download BibTeX
• Rinse and repeat for an entire issue
• Vol 11, Issue 3 – 85 articles added

• This can be automated by
web scraping tools

6

We now have RIS & Bibtex
translators and web scrapers

for several journals

(thank you Ben and Boris!)

Changes
reviewed
internally

• Simple scrapers have sped up ingest from 1 week to 1 hour
• We’ve sped up article ingest, but we can go faster!

Slightly Improved Workflow

7

Research article
published

Citations
automatically

scraped from journal
website

Keywords
assigned by

compiler

New entries
inserted into

internal database

Updates deployed
to public website

Development Workflow
• scrape-from-prc

• Automatically scrapes and processes PRC articles
• Connects to PRC website to obtain articles
• Downloads BibTeX, converts to NSR "exchange"

9

Development Workflow (contd.)
• update-prc-errata

• Checks for updates to existing NSR entries
• Preserves key number, title, keywords, selectors, etc.

10

Erratum scraped from PRC

Updated NSR entry

Development Workflow (contd.)
• save-sql-backup

• Saves a copy of NSR using mariadb-dump

• Runs before any database changes

• Can be used as a restore point, just in case

11

Development Workflow (contd.)
• nsrprep

• Based on legacy web app used by compilers
• Performs format/validation checks
• Looks for unknown author names

• Generates selectors used for NSR website searching
• Only generates these for keyworded entries

• If an entry is not keyworded, it cannot be found with:
• Quick Search: Nuclide, Reaction
• Indexed Search: Nuclide, Subject, Reaction, Z, A

12

Development Workflow (contd.)
• update-database

• Makes changes to nsr_automated
• Internal only – not deployed to NSR website

• Inserts new entries for standard PRC articles
• Updates existing entries for PRC errata

• Issue: Currently no way to fix errors before insertion
• i.e. format errors, PRC typos
• Fixes require direct SQL changes or restarting pipeline

13

Development Workflow (contd.)

• Pipeline functional as of April 3rd, 2025
• No setup/installation - only GitLab access required
• Click a few buttons, go do something else

14

Changes
reviewed
internally

• Full pipeline takes minutes to run
• We are not taking advantage of the full power of gitlab

A Much Faster Workflow

15

Research article
published

NSR pipeline
started from

GitLab

Keywords
assigned by

compiler

Updates deployed
to public website

Entries inserted by
GitLab runner

• The current NSR "exchange" format...

NSR Exchange format can be
modernized

16

<KEYNO > 2023WIZZ Unique ID
<HISTORY > A20230605 Entry/modification dates
<CODEN > CONF Sacramento... Source type and information
<REFRENCE> Proc.15th.Intern... Citation information
<AUTHORS > D.Wiarda, ... List of authors
<TITLE > Modernization... Formatted title
<KEYWORDS> [N/A] Sentences about content
<SELECTRS> [N/A] Structured search keys

NSR Exchange format can be
modernized
• ...can be translated into JSON...

17

NSR Exchange format can be
modernized
• ...but the exchange files don't tell the full story
• NSR's SQL database has supporting tables:

18

Author names and
alternate spellings,

search by author

Search by Z, A
Journal codes

Links to XUNDL
Exchange text

All nuclei in NSR,
search by nuclide Exchange

encodings for
particles

Reaction codes
and spellings,

search by reaction

NSR entry
metadata from
exchange files

Subjects and
alternate spellings,
search by subject

Used
for adding new
author namesSearch by

"major" topic
Text Search

What does this get us?
A JSON format enables:
• A JSON-schema
• Format and correctness checkers
• An editor
• Better NSR archive option
• An AI/ML-friendly format!

Even without these, with gitlab we have
• Version control
• Built in review step (branch merge process)
• We use this to great effect in ENDF & JEFF

19

Future work
for a summer
student?

https://www.nndc.bnl.gov/nsrarchivals/

• With a QA process in hand, and an automated workflow, now we
can target the hardest step

With Gitlab, we can ensure quality while
getting speed

20

Research article
published

NSR pipeline
started from

GitLab

Keywords
assigned by

compiler

Entries inserted by
GitLab runner

Changes visible
on internal NSR

website

Updates deployed
to public website

Keywording
Currently a compiler must produce
keyworded abstract – time consuming and
requires somewhat special skills

As of FY25, NNDC has no contractors

Options:
• Teach more people to do it (ENSDF/ENDF

evaluators, students, NNDC staff?)
• Automate it?

21

Generated by GPT Image on 6/11/25 by R. Arcilla

Nuclear Science References Coding Manual

D.F. Winchell
National Nuclear Data Center

Brookhaven National Laboratory
Upton, New York, USA

May 24, 2007

https://www.nndc.bnl.gov/nsr/docs/nsr-coding-manual.pdf

Future Workflow

22

• Need to fill in missing steps
• Keyword assignment via chatNSR
• Tools for human reviewers to make edits

Research article
published

NSR pipeline
started from

GitLab

Entries inserted by
GitLab runner

Updates deployed
to public website

Automatic
keywording for

articles

Changes visible
on internal NSR

website

23

chatNSR: An AI-Enhanced Nuclear
Science References Knowledge Base

Ramon Arcilla

Motivation
Why automate keyword abstract generation?
Volume Challenge
• Growing nuclear science literature (~5,000+ annually) strains

current manual keywording capacity.
Time Intensive
• Manual keywording requires ~3.5 hours (average) per article.
Limited Coverage
• Manual keywording limits timeliness and breadth of NSR

knowledge base content.
Discovery Issues
• Inconsistent keywording limits paper discoverability.
Cost Inefficiency
• Manual keywording demands significant resources.

Generated by Recraft on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

The chatNSR Project
Current Focus:
• Keywording, the most tedious and costly activity

Key AI Technologies in Use
• Open-Source Large Language Models (LLMs)

• Understand user queries/instructions and generate keyword abstract
• Cache-Augmented Generation (CAG)

• Loads entire article into LLM's extended context window (Knowledge
Cache) for efficiency, more accurate keywording

• Retrieval-Augmented Generation (RAG)
• Finds contextually relevant parts of article in vector DB for LLM’s use

in keywording
• System Prompt Engineering (SYSPROMPT)

• User instructions to guide LLMs for consistent, accurate keywording

Generated by Recraft on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/10/25 by R. Arcilla

The chatNSR Project

Architectural Overview: Two-Path
Automation Workflow

• Document Input
• Article enters the automation pipeline

• Size Assessment
• System determines article’s token count

• Path Selection
• CAG for smaller articles (≤100k tokens = 100 pages), RAG

for larger ones (>100k tokens)
• Keyword Output

• Keyword abstracts generated via optimal path

Generated by Recraft on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/10/25 by R. Arcilla

Article
Input

Article
Size

?

e-PDFs

RAGCAG

Keyword
Abstract

Keyword
Abstract

≤ 100k >100k

User
Query

Cache-Augmented Generation (CAG)
Workflow
• PDF Ingestion

• Article enters system and undergoes initial parsing

• Markdown Conversion
• Content structure preserved in clean Markdown format

• Context Preloading
• Full article loaded with Knowledge Cache creation

• System Prompt Processing
• LLM guided by engineered instructions

• Response Output
• Keyword abstracts delivered to user

Generated by Recraft on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/10/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

PDF
Ingestion

e-PDFs

Context
Preloading

Sysprompt
Processing

User
Query

Markdown
Conversion

Keyword
Abstract

LLM
Knowledge
Cache

User
QueryMarkdown

Database

Retrieval-Augmented Generation (RAG)
Workflow
• Document Processing

• PDF ingestion and conversion to markdown format.
• Chunking & Embedding

• Document segmentation and vector representation
creation.

• Retrieval Mechanism
• Query-based selection of relevant document sections.

• Generation with Prompting
• LLM processes retrieved chunks with specialized

instructions.
• Output Delivery

• Keyword abstract returned to requesting user.

Generated by Recraft on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

Generated by GPT Image on 6/10/25 by R. Arcilla

Generated by GPT Image on 6/11/25 by R. Arcilla

PDF
Ingestion

e-PDFs

Chunking/
Embedding

Sysprompt
Processing

User
Query

Markdown
Conversion

Keyword
Abstract

Vector DB

LLM
User Query

Retrieval

Output

Advantages of the Two-Path Automation
Approach
Universal Scalability

• System handles articles of any length.
• Processing adapts to content size automatically.

Consistent Quality
• Keyword abstract coherence maintained across both

workflows.
• Keyword abstract remains relevant regardless of article

size.
Resource Efficiency

• Computational resources allocated based on article needs.
• Simpler approach (CAG) used when possible.

Workflow Integration
• Unified API endpoint despite dual backend systems.
• Seamless integration with existing document processes.

Generated by Recraft on 6/11/25 by R. Arcilla

Generated by Recraft on 6/11/25 by R.
Arcilla

COMPILATION ⁹⁰ ⁹¹ ⁹² ⁹³ ⁹⁴ ⁹⁵ ⁹⁶Zr(n,x), E=0-20 MeV; calculated,
evaluated σ, σ(θ) including resonance region using EMPIRE-
3.1 code. Compared with available experimental data and
evaluated databases (ENDF/B-VII.1, JENDL-4. 0).

COMPILATION 90, 91, 92, 93, 94, 95, 96Zr(n, x), E=0=20 MeV;
calculated, evaluated σ, σ(θ) including resonance
region using EMPIRE-3.1 code. Compared with
available data and evaluated databases.

chatNSR-Generated

Human-Generated

EXAMPLE: Keywording D.A. Brown’s article “Zirconium
Evaluations for ENDF/ B-VII.2 for the Fast Region”

Current Status
Testing

• Dozen open-source LLM’s tested
• Dozens of articles (different topics) for LLM training
• Perplexity AI’s r1-1776:70b LLM has highest accuracy

Accuracy
• 80-85% accuracy for articles ≤ 10 pages
• More work needed for articles > 10 pages

Methods and Tools in Use
• Continuous human feedback to LLM
• AI-assisted coding and innovative prompt engineering
• PhysBERT (LBNL) model for embedding and retrieval
• IBM Docling software for PDF-to-Markdown conversion
• Perplexity AI’s r1-1776 LLM for keyword generation

Generated by DALL·E 3 on 5/19/25 by R. Arcilla

Summary and Conclusion
Keywording Automation

• Continuous human feedback improves LLM’s accuracy.
• Article (varied topics) high-volume ingestion and training

enhances LLM’s performance.
• CAG, RAG, System Prompts minimize/prevent LLM

hallucination.
• 90% time reduction in keyword abstract generation
• PDF-to-Markdown conversion improves LLM’s article

understanding
On-premise Keywording

• Open-source LLMs and AI tools demonstrate cost-free,
flexible, adaptable keywording

• More secure environment behind BNL FireWall
• Compliant with DOE rules and copyright laws

Generated by Recraft on 6/11/25 by R. Arcilla
Generated by DALL·E 3 on 5/19/25 by R. Arcilla

Future Direction
LLM capability and size

• Move to more advanced LLMs with > 70 billion
parameters for higher accuracy.

Article Ingestion
• Massive article ingestion with one line command:
>>> genabs articles-directory/ keywords-directory/

Multi-modal support
• Processing of article’s tables, figures, and

equations

Computational resources
• Upgrade of computational resources to meet

increased processing needs.
Generated by Recraft on 6/11/25 by R. Arcilla

Generated by DALL·E 3 on 5/19/25 by R. ArcillaGenerated by Recraft on 6/11/25 by R. Arcilla
Generated by DALL·E 3 on 5/19/25 by R. Arcilla

34

If we can (nearly) fully
automate NSR, then both
XUNDL and EXFOR
should be possible

35

Thank you so much for your attention!

This work is sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under
Contract No. DE-SC0012704 with Brookhaven Science Associates, LLC.

