Spanish nuclear data activities

D. Cano Ott - Unidad de Innovación Nuclear CIEMAT

on behalf of all the Spanish n_TOF groups IFIC, U. Pol. Cataluña, U. Santiago, U. Sevilla, U. Granada

Avda. Complutense 40, 28040 Madrid – España daniel.cano@ciemat.es

The nuclear data cycle

International leadership

- Coordination of the last 4 European Nuclear Data projects: ANDES, CHANDA, SANDA and the current APRENDE.
- Participation in different IAEA (INDEN, Delayed Neutrons, Fission Yields...) and NEA/OCDE WPEC committees.
- Participation of various groups in the JEFF project.
- Spanish Spokespersons and contact persons in different nuclear physics experiments and committees.
- Well-established international collaborations around international and national facilities: CERN, FAIR, RIKEN, SPIRAL-2...
- Main actors: CIEMAT, CSIC-IEM, CSIC-IFIC, Complutense University, Polytechnical University of Madrid, National Accelerator Centre – CAN, Material Micro Analysis Centre – CMAM, Polytechnical University of Catalonia, Santiago de Compostela University, University of Granada, University of Seville.

Nuclear data measurements

Ciemol

Energéticas Med

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

n_TOF @ CERN

The n_TOF collaboration

O. Aberle¹ V. Alcayne² S. Amaducci^{3,4} J. Andrzejewski⁵ L. Audouin⁶ V. Babiano-Suarez⁷ M. Bacak^{1,8,9} M. Barbagallo^{1,10} S. Bennett¹¹ E. Berthoumieux⁹ J. Billowes¹¹ D. Bosnar¹² A. Brown¹³ M. Busso^{10,14,15} M. Caamaño¹⁶ L. Caballero-Ontanaya⁷ F. Calviño¹⁷ M. Calviani¹ D. Cano-Ott² A. Casanovas¹⁷ F. Cerutti¹ E. Chiaveri^{1,11} N. Colonna¹⁰ G. Cortés¹⁷ M. A. Cortés-Giraldo¹⁸ L. Cosentino³ S. Cristallo^{14,19} L. A. Damone^{10,20} P. J. Davies¹¹ M. Diakaki^{21,1}

- C. Domingo-Pardo⁷ R. Dressler²³ Q. Ducasse²⁴ E. Dupont⁹ I. Durán¹⁶ Z. Eleme²⁵ B. Fernández-Domínguez¹⁶ A. Ferrari¹ P. Finocchiaro³ V. Furman²⁶ K. Göbel²⁷ R. Garq²² A. Gawlik⁵ S. Gilardoni¹ I. F. Gonçalves²⁸ E. González-Romero² C. Guerrero¹⁸ F. Gunsing⁹ H. Harada²⁹ S. Heinitz²³ J. Heyse³⁰ D. G. Jenkins¹³ A. Junghans³¹ F. Käppeler³² Y. Kadi¹ A. Kimura²⁹ I. Knapová³³ M. Kokkoris²¹ Y. Kopatch²⁶ M. Krtička³³
- D. Kurtulgil²⁷

I. Ladarescu⁷ H. Leeb⁸ S. J. Lonsdale²² D. Macina¹ A. Manna^{34,35} T. Martínez² A. Masi¹ C. Massimi^{34,35} P. Mastinu³⁶ M. Mastromarco¹ E. A. Maugeri²³ A. Mazzone^{10,37} E. Mendoza² A. Mengoni³⁸ P. M. Milazzo³⁹ F. Mingrone¹ J. Moreno-Soto⁹ A. Musumarra^{3,40} A. Negret⁴¹ R. Nolte²⁴ F. Ogállar⁴² A. Oprea⁴¹ N. Patronis²⁵ A. Pavlik⁴³ J. Perkowski⁵ L. Persanti^{10,14,19} C. Petrone⁴¹

E. Pirovano²⁴

- C. Lederer-Woods²² J. Lerendegui-Marco¹⁸ V. Michalopoulou^{21,1}
- A. Ventura³⁴ D. Vescovi^{10,14} V. Vlachoudis¹ R. Vlastou²¹ A. Wallner⁴⁷ P. J. Woods²² T. Wright¹¹ P. Žugec¹²

CIEMAT, IFIC-Valencia (CSIC), Universidad Politécnica de Cataluña, Universidad de Santiago de Compostela, Universidad de Sevilla and Universidad de Granada

Spanish institutions form **20% of the collaboration.** Important contributions to the:

- Design of the facility.
- Design and construction of instrumentation. Detectors and data acquisition system.
- Development of analysis methodologies.
- Contribution to the experimental programme. Leadership of about 20% of the experimental programme.

Spanish groups at n_TOF

CIEMAT (4 seniors/1 postdoc/1 doctorando)

GOBIERNO DE ESPAÑA E INNOVACIÓN

Ciemat Centro de Investigaciones

Energéticas, Medioambientales

y Tecnológicas

- Daniel Cano Ott (Prof. de Investigación)
- Trino Martínez Pérez (Científico Titular)
- Emilio Mendoza Cembranos (Científico Titular)
- Víctor Alcayne Aicua (postdoc)
- Enrique González Romero (Prof. de Investigación)
- Adrián Sanchez Caballero (doctorando)

IFIC – CSIC/UV (1/4/0)

César Domingo Pardo (Científico Titular) Víctor Babiano Suarez (postdoc) Javier Balibrea Correra (Juan De la Cierva) Jorge Lerendegui Marco (Juan De la Cierva) Ion Ladarescu Palivan (Ingeniero)

Spanish groups at n_TOF

Universidad Politécnica de Cataluña (3/1/0)

Francisco Calviño Tavares (Catedrático) Guillem Cortes Rossell (Profesor Titular) Ariel Tarifeno Saldivia (Científico Titular) Adriá Casanovas (María Salas)

Universidad de Santiago de Compostela (3/0/0)

Ignacio Durán (Catedrático emérito) Beatriz Fernández Dominguez (Profesora Titular) Manuel Caamaño Fresco (Profesor Titular) UPC UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Spanish groups at n_TOF

Universidad de Sevilla (3/1/1)

José Manuel Quesada (Catedrático) Carlos Guerrero (Profesor Titular) Miguel A. Cortés (Profesor Titular) Begoña Fernández (postdoc) Pablo Pérez Maroto (doctorando)

Universidad de Granada (2/0/2)

Antonio Javier Praena Rodriguez (Profesor Titular) José Ignacio Porras Sanchez (Catedrático) Pablo Torres Sanchez (doctorando) Francisco Garcia Infantes (doctorando)

UNIVERSIDAD DE GRANADA

The n_TOF facility

The n_TOF spallation target

Y UNIVERSIDADES

The n_TOF fluence

	Ionisation Chambers					
(n f)	Micromegas (MGAS)					
(11,1)	PPACs					
	STEFF					
	Total Energy Detectors (TED)					
	TAC (+ fission tagging)					
(Π,Υ)	imaging TED (iTED)					
	Segmented TED (sTED)					
	MGAS					
(n,ch.p.)	Double Frisch Grid Ionisation Chambers (DFGIC) with switch					
	2 x Proton Recoil Telescopes					
	Si-sandwich					

MINISTERIO

	Ionisation Chambers				
(\mathbf{p},\mathbf{f})	Micromegas (MGAS)				
(11,1)	PPACs				
	STEFF				
	Total Energy Detectors (TED)				
	TAC (+ fission tagging)				
(Π,Υ)	imaging TED (iTED)				
	Segmented TED (sTED)				
	MGAS				
(n,ch.p.)	Double Frisch Grid Ionisation Chambers (DFGIC) with switch				
、 <u>·</u> ,	2 x Proton Recoil Telescopes				
	Si-sandwich				

MINISTERIO

(n,γ) detectors

Total energy detectors based on C_6D_6 liquid scintillators (CIEMAT, IFIC). New carbon fibre detectors on the way.

Monte Carlo based analysis methodology developed by IFIC.

U. Abbondano... **J.L. Taín** et al. NIMA 521 (2004) https://doi.org/10.1016/j.nima.2003.09.066

Total Absorption Calorimeter made of 40 BaF₂ crystals.

Analysis methodology developed by CIEMAT.

C. Guerrero et al., NIMA 608 (2009) https://doi.org/10.1016/j.nima.2009.07.025 C. Guerrero et al., NIMA 671 (2012) https://doi.org/10.1016/j.nima.2011.12.046

i-TED Compton imager at EAR-1

C.Domingo-Pardo, "i-TED: A novel concept for high-sensitivity (n,g) cross-section measurements" NIM-A (2016) https://doi.org/10.1016/j.nima.2016.04.002

J.Lerendegui-Marco et al., "Imaging neutron capture cross-sections: i-TED proof-of-concept and future prospects based on Machine Learning techniques" EPJ-A (2021) https://doi.org/10.1140/epja/s10050-021-00507-7

Innovative Idea: Exploit the Compton Imaging technique to reduce the neutron background and enhance capture detection sensitivity

γ -flash in the sTED detector

s-TED detector for high count rate measurements at EAR2

sTED γ-ray detector for very high counting rates (3 MBq) and suppression of the spallation flash (conditions at EAR2) V. Alcayne et al., Rad. Phys & Chemistry 117 (2024)

First use in the ${}^{94}Nb(n, \gamma)$ campaign:

 9 sTEDs @ 4.5 cm (ringconfiguration) → Main detectors for (n,γ) (~1 L6D6).

IFIC - J. Lerendegui et al.

Combined (n,y) and (n,f) for fissile isotopes

Compact fission detector inside the TAC for subtracting the γ -ray background from the fission. 1st experiments by CIEMAT on ²³⁵U with TAC + micromegas.

C. Guerrero et al., EPJ A 48 (2012) 10.1140/epja/i2012-12029-2 J. Balibrea et al., Phys. Rev. C 102 (2020) 10.1103/PhysRevC.102.044615

Since the start of the n_TOF scientific programme in 2001, a total of **117 cross section measurements** have been performed for the fields of nuclear technologies, nuclear astrophysics, medical applications, fundamental science and cross section standards.

Nucl. Tech.	Astrophysics	Medical	Fundamental	Standard
69	37	8	1	2

The table below shows the different types of cross sections performed:

	(n,f)			(n,ch.p.)	(n,γ)		
(n,f)	(n,f) FF (n,f) FFAD		(n,p)	(n,d)	(n,α)	(n,γ)	(n,γ/f)
28	1	3	6	1	5	69	4
	32			12		7	3

Measurements of the same isotopes with different detectors: identification of systematic uncertainties and improved accuracy.

C. Paradela et al., PHYSICAL REVIEW C 82 (2010)

113 resonances have been analysed with SAMMY between 1 eV and 100 keV. 15 resonances were previously known from transmission. No previously available capture data from time-of-flight measurements.

The analysis has been finalised by V. Babiano et al. (PhD thesis, paper in preparation), EPJ Web Conf. Volume 260

^{203, 204, 205} TI(n, γ) with C₆D₆ detectors

Measurements of great astrophysical interest to determine the production of isotopes from the ^{204,205}Pb processes. First high-precision measurement at low energies of ²⁰³Tl and first measurement of the resonances of ²⁰⁴Tl. Extremely challenging experiment due to the significant background contribution.

Thesis of A. Casanovas (UPC) y A. Casanovas et al., 2020 J. Phys.: Conf. Ser. 1668 012005 (2020)

$^{244,246,248}Cm(n,\gamma)$ with C₆D₆ detectors and TAC

²⁴⁴Cm (20 resonances), ²⁴⁶Cm (14 resonances) and ²⁴⁸Cm (5 resonances). The data will be sent to EXFOR in 2022.

PhD thesis of V. Alcayne (CIEMAT, 2022), Eur. Phys. Jou.

Ciemol

Samples: 0.5 mg of ²⁴⁴Cm 0.8 mg of ²⁴⁶Cm 0.2 mg of ²⁴⁸Cm

The TAC in EAR-1 was used for a normalisation measurement and for obtaining spectroscopic information of the γ -ray cascades.

Combined $^{235}U(n,\gamma)$ and (n,f) with TAC and micromegas

Simultaneous measurement of the (n,γ) and (n,f) cross sections on ²³⁵U (30 mg).

Actinide $\sigma(n,\gamma)$ cross section data measured after year 2000 – 2022 (EXFOR)

Isotope	Facility	Detector	E _{low} (eV)	E _{high} (eV)	EXFOR	Publication
U-233	n TOF-1	TAC	0.7	1000	Yes	E. Berthoumieux et al., Conf. on Nuclear Data for Science and Technology,
			- , -			Nice 2007, p.571 (2007)
<u> </u>	<u>n_TOF-1</u>	TAC	?	?	No	M. Bacak et al., ND2016, EPJ Conf. 146, 03027 (2017)
U-235	LANSCE	TAC + PPAC	4	1,00E+06	Yes	M. Jandel et al., Phys. Rev. Lett. 109, 202506 (2012)
U-235	n_TOF-1	TAC + MGAS	1	22	Yes	C. Guerrero et al., Eur. Phys. Jour. A 48, 29 (2012)
U-235	n_TOF-1	TAC + MGAS	0,2	200	No	J. Balibrea et al., Nucl. Data Sheets 119, 10 (2014)
U-235	RPI	Nal - TAC	0,02	3000	No	Y. Danon, et al., Nucl. Sci. and Eng. 187, 191 (2017)
U-236	LANSCE	TAC	10	11e+03	Yes	B. Baramsai et al. Phys. Rev. C 96, 024619 (2017)
U-238	LANSCE	TAC	1	6,30E+05	Yes	J.L. Ullmann et al., Phys. Rev. C 89, 034603 (2014)
U-238	GELINA	C ₆ D ₆ TED	3,5	1200	Yes	H.I. Kim et al., Eur. Phys. Jour. A 52, 170 (2016)
U-238	n_TOF-1	C ₆ D ₆ TED	1	700	Yes	F. Mingrone et al., Phys. Rev. C 95, 034604 (2017)
U-238	n TOF-1	TAC	1	8,00E+04	Yes	T. Wright et al., Phys. Rev. C 96, 064601 (2017)
Np-237	KURRI	C ₆ D ₆ - TED	0.005	1,00E+04	Yes	K. Kobayashi et al., Jour. Nucl. Sci. Tech. 39, 111 (2002)
Np-237	KURRI	BGO - TED	0,02	100	Yes	O. Shcherbakov et al., Jour. Nucl. Sci. Tech. 42, 135 (2005)
Np 227		Co	0.02	11	Vee	M. Mizumoto et al., Conf. on Nuclear Data for Science and Technology,
Np-237	RUKKI	Ge	0,02	14	res	Nice 2007
Np-237	LANSCE	TAC	0,02	5,00E+05	Yes	E.I. Esch et al., Phys. Rev. C 77, 034309 (2008)
Np-237	n_TOF-1	TAC	0,7	2000	Yes	C. Guerrero et al., Phys. Rev. C 85, 044616 (2012)
Np-237	J-PARC	Nal - TED	0,01	1000	Yes	K.Hirose et al., Jour. Nucl. Sci. Tech. 50, 188 (2013)
Pu-238	LANSCE	TAC	0,025	3,00E+04	Yes	A. Chyzh et al., Phys. Rev. C 88, 044607 (2013)
Pu-239	LANSCE	TAC	10	1000	Yes	S. Mosby et al., Phys. Rev. C 89, 034610 (2014)
Pu-240	n_TOF-1	TAC	0,7	2000	No	C. Guerrero et al., Conf. on Nuclear Data for Science and Technology, Nice 2007
Pu-242	LANSCE	TAC + PPAC	0,027	3,60E+04	Yes	M.Q. Buckner et al., Phys. Rev. C 93, 044613 (2016)
Pu-242	n TOF-1	C ₆ D ₆ - TED	2	4000	Yes	J. Lerendegui-Marco et al., Phys. Rev.C 97, 024605 (2018)
Am-241	LANSCE	TAC	0,02	3,20E+05	Yes	M. Jandel et al., Phys. Rev.C 78, 034609 (2008)
Am-241	GELINA	C ₆ D ₆ - TED	0,025	110	No	C. Lampoudis et al., Eur. Phys. J. Plus 128, 86 (2013)
Am-241	J-PARC	Ge	0,01	10	Yes	H. Harada et al., Nucl. Data Sheets 119, 61 (2014)
Am-241	n TOF-1	C ₆ D ₆ TED	0.026	1,50E+05	Yes	K. Fraval et al., Phys. Rev.C 89, 044609 (2014)
Am-241	J-PARC	C ₆ D ₆ TED	0,1	2,00E+04	Yes	K. Hirose et al., Nucl. Instr. Meth. A 856, 133 (2017)
Am-241	n TOF-1	TAC	0.2	1.00E+04	Yes	E. Mendoza et al., Phys. Rev.C 97, 054616 (2018)
Am-241	J-PARC	C ₆ D ₆ TED	0.025	100	No	K. Terada et al., Jour. Nucl. Sci. Tech. 55, 1198 (2018)
Am-242m	LANSCE	TAC + PPAC	0,1	8000	Yes	M.Q.Buckner et al., Phys. Rev. C 95, 061602 (2017)
Am-243	n TOF-1	TAC	0,7	2500	Yes	E. Mendoza et al., Phys. Rev. C 90, 034608 (2014)
Cm-244	J-PARC	Ge	2	300	Yes	A. Kimura et al., Jour. Nucl. Sci. Tech. 49, 708 (2012)
Cm-244	n TOF-2	C ₆ D ₆ TED	1	300	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018
Cm-244	n TOF-1	TAC	1	50	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018
Cm-246	J-PARC	Ge	2	300	Yes	A. Kimura et al., Jour. Nucl. Sci. Tech. 49, 708 (2012)
Cm-246	n_TOF-2	C ₆ D ₆ TED	1	300	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018

Contribution of n_TOF

Isotope	Facility	Detector	E _{low} (eV)	E _{high} (eV)	EXFOR	Publication			
U-233	n_TOF-1	TAC	0,7	1000	Yes	E. Berthoumieux et al., Conf. on Nuclear Data for Science and Technology, Nice 2007, p.571 (2007)			
U-233	n TOF-1	TAC	?	?	No	M. Bacak et al., ND2016, EPJ Conf. 146, 03027 (2017)			
U-235	LANSCE	TAC + PPAC	4	1,00E+06	Yes	M. Jandel et al., Phys. Rev. Lett. 109, 202506 (2012)			
U-235	n TOF-1	TAC + MGAS	1	22	Yes	C. Guerrero et al., Eur. Phys. Jour. A 48, 29 (2012)			
U-235	n TOF-1	TAC + MGAS	0,2	200	No	J. Balibrea et al., Nucl. Data Sheets 119, 10 (2014)			
U-235	RPI	Nal - TAC	0,02	3000	No	Y. Danon, et al., Nucl. Sci. and Eng. 187, 191 (2017)			
U-236	LANSCE	TAC	10	11e+03	Yes	B. Baramsai et al. Phys. Rev. C 96, 024619 (2017)			
U-238	LANSCE	TAC	1	6,30E+05	Yes	J.L. Ullmann et al., Phys. Rev. C 89, 034603 (2014)			
U-238	GELINA	C ₆ D ₆ TED	3,5	1200	Yes	H.I. Kim et al., Eur. Phys. Jour. A 52, 170 (2016)			
U-238	n_TOF-1	C ₆ D ₆ - TED	1	700	Yes	F. Mingrone et al., Phys. Rev. C 95, 034604 (2017)			
U-238	n_TOF-1	TAC	1	8,00E+04	Yes	T. Wright et al., Phys. Rev. C 96, 064601 (2017)			
Np-237	KURRI	C ₆ D ₆ - TED	0.005	1,00E+04	Yes	K. Kobayashi et al., Jour. Nucl. Sci. Tech. 39, 111 (2002)			
Np-237	KURRI	BGO - TED	0,02	100	Yes	O. Shcherbakov et al., Jour. Nucl. Sci. Tech. 42, 135 (2005)			
Np-237	KURRI	Ge	0,02	14	Yes	M. Mizumoto et al., Conf. on Nuclear Data for Science and Technolog Nice 2007			
Np-237	LANSCE	TAC	0,02	5,00E+05	Yes	E.I. Esch et al., Phys. Rev. C 77, 034309 (2008)			
Np-237	n_TOF-1	TAC	0,7	2000	Yes	C. Guerrero et al., Phys. Rev. C 85, 044616 (2012)			
Np-237	J-PARC	Nal - TED	0,01	1000	Yes	K.Hirose et al., Jour. Nucl. Sci. Tech. 50, 188 (2013)			
Pu-238	LANSCE	TAC	0,025	3,00E+04	Yes	A. Chyzh et al., Phys. Rev. C 88, 044607 (2013)			
Pu-239	LANSCE	TAC	10	1000	Yes	S. Mosby et al., Phys. Rev. C 89, 034610 (2014)			
Pu-240	n_TOF-1	TAC	0,7	2000	No	C. Guerrero et al., Conf. on Nuclear Data for Science and Technology, Nice 2007			
Pu-242	LANSCE	TAC + PPAC	0,027	3,60E+04	Yes	M.Q. Buckner et al., Phys. Rev. C 93, 044613 (2016)			
Pu-242	n_TOF-1	C ₆ D ₆ - TED	2	4000	Yes	J. Lerendegui-Marco et al., Phys. Rev.C 97, 024605 (2018)			
Am-241	LANSCE	TAC	0,02	3,20E+05	Yes	M. Jandel et al., Phys. Rev.C 78, 034609 (2008)			
Am-241	GELINA	C ₆ D ₆ - TED	0,025	110	No	C. Lampoudis et al., Eur. Phys. J. Plus 128, 86 (2013)			
Am-241	J-PARC	Ge	0,01	10	Yes	H. Harada et al., Nucl. Data Sheets 119, 61 (2014)			
Am-241	n_TOF-1	C ₆ D ₆ TED	0,026	1,50E+05	Yes	K. Fraval et al., Phys. Rev.C 89, 044609 (2014)			
Am-241	J-PARC	C ₆ D ₆ TED	0,1	2,00E+04	Yes	K. Hirose et al., Nucl. Instr. Meth. A 856, 133 (2017)			
Am-241	n_TOF-1	TAC	0,2	1,00E+04	Yes	E. Mendoza et al., Phys. Rev.C 97, 054616 (2018)			
Am-241	J-PARC	C ₆ D ₆ TED	0,025	100	No	K. Terada et al., Jour. Nucl. Sci. Tech. 55, 1198 (2018)			
Am-242m	LANSCE	TAC + PPAC	0,1	8000	Yes	M.Q.Buckner et al., Phys. Rev. C 95, 061602 (2017)			
Am-243	n_TOF-1	TAC	0,7	2500	Yes	E. Mendoza et al., Phys. Rev. C 90, 034608 (2014)			
Cm-244	J-PARC	Ge	2	300	Yes	A. Kimura et al., Jour. Nucl. Sci. Tech. 49, 708 (2012)			
Cm-244	n_TOF-2	C ₆ D ₆ TED	1	300	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018			
Cm-244	n_TOF-1	TAC	1	50	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018			
Cm-246	J-PARC	Ge	2	300	Yes	A. Kimura et al., Jour. Nucl. Sci. Tech. 49, 708 (2012) 28			
Cm-246	n TOF-2	C ₆ D ₆ TED	1	300	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018			

Contribution of Spanish institutions (11 out of 36 – 30%)

Isotope	Facility	Detector	E _{low} (eV)	E _{high} (eV)	EXFOR	Publication
U-233	n_TOF-1	TAC	0,7	1000	Yes	E. Berthoumieux et al., Conf. on Nuclear Data for Science and Technology, Nice 2007, p.571 (2007)
U-233	n_TOF-1	TAC	?	?	No	M. Bacak et al., ND2016, EPJ Conf. 146, 03027 (2017)
U-235	LANSCE	TAC + PPAC	4	1,00E+06	Yes	M. Jandel et al., Phys. Rev. Lett. 109, 202506 (2012)
U-235	n_TOF-1	TAC + MGAS	1	22	Yes	C. Guerrero et al., Eur. Phys. Jour. A 48, 29 (2012)
U-235	n_TOF-1	TAC + MGAS	0,2	200	No	J. Balibrea et al., Nucl. Data Sheets 119, 10 (2014)
U-235	RPI	Nal - TAC	0,02	3000	No	Y. Danon, et al., Nucl. Sci. and Eng. 187, 191 (2017)
U-236	LANSCE	TAC	10	11e+03	Yes	B. Baramsai et al. Phys. Rev. C 96, 024619 (2017)
U-238	LANSCE	TAC	1	6,30E+05	Yes	J.L. Ullmann et al., Phys. Rev. C 89, 034603 (2014)
U-238	GELINA	C ₆ D ₆ TED	3,5	1200	Yes	H.I. Kim et al., Eur. Phys. Jour. A 52, 170 (2016)
U-238	n_TOF-1	C ₆ D ₆ TED	1	700	Yes	F. Mingrone et al., Phys. Rev. C 95, 034604 (2017)
U-238	n_TOF-1	TAC		8,00E+04	Yes	T. Wright et al., Phys. Rev. C 96, 064601 (2017)
Np-237	KURRI	C ₆ D ₆ - TED	0.005	1,00E+04	Yes	K. Kobayashi et al., Jour. Nucl. Sci. Tech. 39, 111 (2002)
Np-237	KURRI	BGO - TED	0,02	100	Yes	O. Shcherbakov et al., Jour. Nucl. Sci. Tech. 42, 135 (2005)
Np-237	KURRI	Ge	0,02	14	Yes	M. Mizumoto et al., Conf. on Nuclear Data for Science and Technology, Nice 2007
Np-237	LANSCE	TAC	0,02	5,00E+05	Yes	E.I. Esch et al., Phys. Rev. C 77, 034309 (2008)
Np-237	n TOF-1	TAC	0,7	2000	Yes	C. Guerrero et al., Phys. Rev. C 85, 044616 (2012)
Np-237	J-PARC	Nal - TED	0,01	1000	Yes	K.Hirose et al., Jour. Nucl. Sci. Tech. 50, 188 (2013)
Pu-238	LANSCE	TAC	0,025	3,00E+04	Yes	A. Chyzh et al., Phys. Rev. C 88, 044607 (2013)
Pu-239	LANSCE	TAC	10	1000	Yes	S. Mosby et al., Phys. Rev. C 89, 034610 (2014)
Pu-240	n_TOF-1	TAC	0,7	2000	No	C. Guerrero et al., Conf. on Nuclear Data for Science and Technology, Nice 2007
Pu-242	LANSCE	TAC + PPAC	0,027	3,60E+04	Yes	M.Q. Buckner et al., Phys. Rev. C 93, 044613 (2016)
Pu-242	n_TOF-1	C ₆ D ₆ - TED	2	4000	Yes	J. Lerendegui-Marco et al., Phys. Rev.C 97, 024605 (2018)
Am-241	LANSCE	TAC	0,02	3,20E+05	Yes	M. Jandel et al., Phys. Rev.C 78, 034609 (2008)
Am-241	GELINA	C ₆ D ₆ - TED	0,025	110	No	C. Lampoudis et al., Eur. Phys. J. Plus 128, 86 (2013)
Am-241	J-PARC	Ge	0,01	10	Yes	H. Harada et al., Nucl. Data Sheets 119, 61 (2014)
Am-241	n_TOF-1	C ₆ D ₆ TED	0,026	1,50E+05	Yes	K. Fraval et al., Phys. Rev.C 89, 044609 (2014)
Am-241	J-PARC	C ₆ D ₆ TED	0,1	2,00E+04	Yes	K. Hirose et al., Nucl. Instr. Meth. A 856, 133 (2017)
Am-241	n_TOF-1	TAC	0,2	1,00E+04	Yes	E. Mendoza et al., Phys. Rev.C 97, 054616 (2018)
Am-241	J-PARC	C ₆ D ₆ TED	0,025	100	No	K. Terada et al., Jour. Nucl. Sci. Tech. 55, 1198 (2018)
Am-242m	LANSCE	TAC + PPAC	0,1	8000	Yes	M.Q.Buckner et al., Phys. Rev. C 95, 061602 (2017)
Am-243	n_TOF-1	TAC	0,7	2500	Yes	E. Mendoza et al., Phys. Rev. C 90, 034608 (2014)
Cm-244	J-PARC	Ge	2	300	Yes	A. Kimura et al., Jour. Nucl. Sci. Tech. 49, 708 (2012)
Cm-244	n_TOF-2	C ₆ D ₆ TED	1	300	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018
Cm-244	n_TOF-1	TAC	1	50	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018
Cm-246	J-PARC	Ge	2	300	Yes	A. Kimura et al., Jour. Nucl. Sci. Tech. 49, 708 (2012) 29
Cm-246	n TOF-2	C ₆ D ₆ TED	1	300	No	V. Alcayne et al., WONDER-2018, Aix-en-Provence France, October 2018

Recent experiments 2022 ->

Experiments proposed in the recent years

Measurements proposed by the Spanish scientists at n_TOF: CIEMAT, IFIC, USC

(n, γ) on ⁵⁰Cr and ⁵³Cr for criticality safety applications

NEA Nuclear Data High Priority Request List

ID V	View	Target	Reaction	Quantity	Energy range	Sec.E/Angle	Accuracy	Cov Field	Date	
97H	1	24-CR-50	(n,g)	SIG	1 keV-100 keV		8-10	Y Fission	05-FEB-18	
98H	1	24-CR-53	(n,g)	SIG	1 keV-100 keV		8-10	Y Fission	05-FEB-18	

High-purity samples of ^{50,53}Cr Sample thickness optimized compared to previous experiments Experiment: July 11 to August 22, 2022 Complementary measurements in 2023:

- Transmission at JRC-GELINA
- Activation at CNA-HISPANOS

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

The ²³⁹Pu(n,γ) and (n,f) mesurement

High priority measurement with two sets of samples for reaching a high accuracy:

- 10 samples with a total mass of 10 mg
- One sample with 100 mg

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

²³⁹Pu(n,f)

Excellent pileup reconstruction (2 MBq alpha activity per mg) with a new pulse shape analysis routine (A. Sánchez et al., to be submitted to Phys. Lett. B)

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

GOBIERNO

MINISTERIO

DE CIENCIA, INNOVACIÓN UNIVERSIDADES

Energéticas, Medioar **Tecnológicas**

²³⁹Pu(n,f)

Fission yield **normalized** to the recommended value for fissile targets in: *Durán, I., Capote, R., & Cabanelas, P. (2024).* Normalization of ToF (n, f) Measurements in Fissile Targets: Microscopic cross-section integrals. *Nuclear Data Sheets, 193, 95-104.*

International Network of Nuclear Reaction Data Centres, June $17^{th} - 20^{th}$, Madrid

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

OBIERNO MINISTERIO DE ESPAÑA DE CIENCIA Y UNIVERSI

The MANY collaboration

The Measurments of (α, n) Yields and spectra – MANY collaboration is formed by:

- Centro de Microanálisis de Materiales CMAM
- Centro Nacional de Aceleradores CNA
- CIEMAT
- CSIC IEM
- CSIC IFIC
- Universidad Complutense de Madrid
- Universidad Politécnica de Cataluña
- Universidad de Sevilla

The purpose is to measure (α,n) reactions of relevance to nuclear technologies (fission and fusion), medical applications, astro-particle physics, nuclear astrophysics and fundamental science.

The MANY collaboration

MINISTERIO

Y UNIVERSIDADES

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

²⁷Al(α,n)³⁰P reaction @ CNA

MONSTER module placed at various angles. Thick (300 μ m) ²⁷Al (99 % purity) target E_{α} = 5.5, 7, and 8.25 MeV

UNIVERSIDADES

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

Typical data:

- Half lives T_{1/2}
- Q-values
- γ-ray energies and transition probabilities
- β-decay probabilities
- Delayed neutron emission probabilities and spectra

Ciemot

Energéticas, Medioam y Tecnológica

Very high efficiency neutron counter: BRIKEN

AIDA: Advanced Implant Detector Array

- Stack of 6 Stack Si DSSSD
- Size: 1 mm thick and 72×72mm²
- Granularity: 128×128 pixels (510 μ m strips)
- \bullet Low (implant) and high gain ($\beta^{\text{-}}$) preamps
- Channels: 1536

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

BELEN-174 neutron counter

- 1 m₃ PE moderator
- 7 concentric rings
- 174 ³He neutron counters (world record)
- Flat efficiency
- High efficiency (80% for 1n,)

Neutron spectrometry: MONSTER

The MOdular Neutron SpectromeTER has been designed and built by CIEMAT, in collaboration with VECC-Calcatta, IFIC, UPC and JYFL.

- 54 BC501A liquid scintillators.
- High efficiency and energy resolution.

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

Total Absorption Gamma-ray Spectrometry: TAGS

NuDEX: Modeling of nuclear de-excitations. Based on RIPL + CapGam data libraries. Widely used at n_TOF and requested by Lawrence Livermore National Laboratory. Publicly distributed through the group's GitHub: <u>https://github.com/UIN-CIEMAT/NuDEX</u>

SaG4n: Simulation of (α,n) reactions using Geant4 physics. In-house development coupled to TENDL libraries. Used by the DarkSide collaboration and other international centers. Publicly distributed through the group's GitHub: <u>https://github.com/UIN-CIEMAT/SaG4n</u>

Geant4 collaboration:

- New databases for Geant4 (CENDL-3.2 and JENDL-5.0), which will soon be available at the IAEA: <u>https://www-nds.iaea.org/geant4/</u>
- Integration of NuDEX into Geant4. It will be available in the next Geant4 release, scheduled for December 2024.

Main actors in Spain: CIEMAT and the Universidad Politécnica de Madrid:

- Participation in international benchmarks (NEA/OCDE, IAEA, SKB, project related like MYRTE, FREYA, CHANDA, SANDA).
- S/U analyses of fast nuclear systems funded by CHANDA, SANDA, ESFR-SMART: MYRRHA, ESFR, ALFRED & ASTRID.
- S/U analyses of nuclear fuel cycles.
- Validation of nuclear data libraries: JEFF-3.3 & 4, ENDF/B-VIII.0, JENDL-5

Development of different tools for the propagation of uncertainties due to nuclear data: SUMMON

Participation in integral experiments (mainly CIEMAT) related to advanced metal-cooled reactors:

- MUSE-IV. Na-cooled & Pb-cooled fast reactor mockup.
- YALINA Booster. Thermal/fast subcritical assembly coupled to a high intensity D-T neutron source.
- GUINEVERE / FREYA + MYRTE. Experiments at the Venus-F fast reactor at SCK·CEN (Belgium), related to Pb-cooled reactors.

Reactivity monitoring of a

International Network of Nuclear Reaction Data Centres, June 17th – 20th, Madrid

DEMO Oriented Neutron Source

One of the most powerful accelerators in the world:

- 40 MeV deuterons.
- Broad beam profile: 20 cm x 5 cm.

Accelerator construction just launched.

Possible neutron TOF in Spain: TOF-DONES

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES Ciemat

Energéticas, Medioam y Tecnológica

Possible neutron TOF in Spain: TOF-DONES

neutrons /(cm²·s·∆LnE) 175 kHz 175 kHz 10 m 0 88 kHz - 23° 30 m – 34° 58 kHz 50 m – 0° 175 kHz 10⁶ 10⁵ Fusior Fast fission reacted **10**⁴ Astrophysics 10³ Thermal fission reactors 10² **10⁻²** 10^{-3} **10⁻¹** 10² 10 Neutron energy (MeV)

Ciemol

Energéticas, Medioa

MINISTERIO

The work presented has been partially funded by the EC via several nuclear data and transnational access projects:

- CHANDA Solving Challenges in Nuclear Data, EC 7th FP
- ARIEL Accelerator and Research reactor Infrastructures for Education and Learning, H2020
- **SANDA** Supplying Accurate Nuclear Data for energy and non-energy Applications, **H2020**
- **APRENDE** Addressing PRiorities of Evaluated Nuclear Data in Europe, Horizon Europe, **Horizon Europe**

The Plan de Recuperación, Transformación y Resiliencia and the various projects of the Ministry of Science, Innovation and Universities since 2001.

Several developments have favoured the technology transfer to the **Spanish nuclear industry**. Various contracts with ENRESA, ENUSA and developments of medical applications (CIEMAT, IFIC, USE, UPC)

Next week, from June 22nd to 27th, Madrid will host 16th Nuclear Data for Science and Technology Conference (ND2025) at the NH Collection Eurobuilding hotel, well located in Madrid's financial district. This is a great success of the Spanish nuclear data community and shows its international strength.

Over 440 participantes from countries all over the world (Europe, America, Asia and Oceania).

Summary and conclusions

We have a solid and successful nuclear community in Spain doing first class science at international facilities and making important contributions to the international nuclear databases.

High visibility and expertise in:

- Design and construction of neutron facilities.
- Design and development of innovative detectors and data acquisition systems.
- Development of new analysis methodologies.
- Realisation of very challenging and state of art experiments.
- Validation, benchmarking and S/U analyses.
- Coordination of nuclear data projects.

We are ready for a nuclear data facility in Spain!

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Equipment for the NEAR station

New neutron line available: nTOF-NEAR. First characterization using passive detectors: **ANTILoPE: A NeuTron multi-folL sPEctrometer**

- Based on neutron moderation and capture
- Designed for neutron "beams"
- Sensitivity: 1 eV to ~300 MeV
- Irradiations at NEAR: Nov 2021
- Irradiations at HISPANOS: May 2022

flight path L

Centro de Investigad

y Tecnológicas

flight path L

Centro de Investigad

y Tecnológicas

flight path L

Centro de Investigad

y Tecnológicas

Ciemat

Centro de Investiga

Energéticas, Medioambie y Tecnológicas

