Proposal for creating a new code for a new nuclear reaction channel with bound dineutron escape

Olena Gritzay

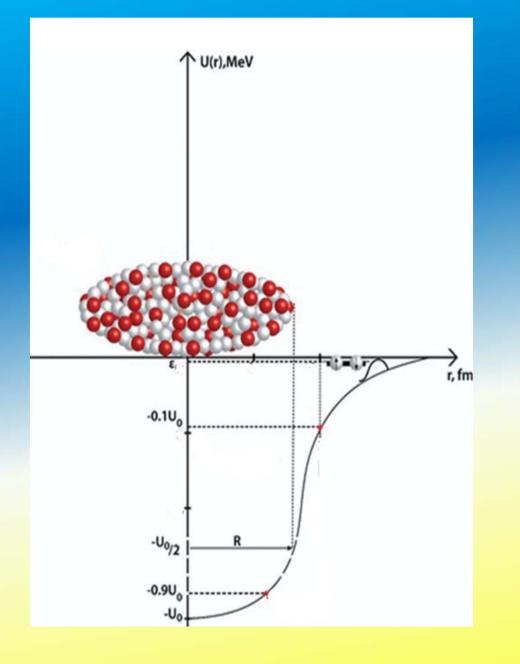

Institute for Nuclear Research Prospekt Nauky, 47, Kyiv, Ukraine, 03028

> Web: http://ukrndc.kinr.kyiv.ua/ e-mail: ogritzay@ukr.net

Search for a two nucleon system or the dineutron (n2) as a bound particle or the two nucleon nuclei without protons was raised for a first time in 1946 [1].

However, over decades such two neutron bound nuclei have been considered as non-existing due to the Pauli Exclusion Principle, which forbids the two neutrons to bind together as the dineutron in any space spot due to missing at least 66 keV, necessary for forming the potential well of interaction between them slightly deeper to establish a bound state. [2].

[1] M.Y.Colby, R.N.Little, Phys. Rev. 70, 437 (1946).
 [2] N.Dzysiuk, I.M.Kadenko, O.O.Prykhodko, Nucl. Phys. A 1041 (2024) 122767



In 1972 Arkadiy Migdal published a paper [3],

where the formation of the dineutron in a bound state was predicted

following to escape of the two paired up neutrons from compound nucleus.

[3] A.B. Migdal, Yad. Fiz. 16, 427 (1972) / Sov. J. Nucl. Phys. 16, 238 (1973).

This escape can take place for the case when the kinetic energy of the two neutrons is much less of their interaction energy and if single particle levels are formed within the potential well of the heavy nucleus but beyond its radius.

This bound state corresponds to the real level at an additional energy branch, which concludes at $\varepsilon_c \sim 0.4$ MeV. Then any single particle states are ranged within [0+0.4] MeV. The atomic masses of the massive nuclei must be within 100 and 200 µu in order to comprise a system consisting of the heavy nucleus plus the dineutron near the surface of this nucleus [4, 5].

[4] I. Kadenko, APP/B,48, 1669, 2017[5] I.M.Kadenko, B.Biro, A.Fenyvesi ,EUL,131,52001,2020

The experimental studies of the formation of a bound dineutron in the outgoing channel were done in the measurements of the ¹⁵⁹Tb (n, ²n)¹⁵⁸gTb [6, 7]; ¹⁹⁷Au (n, ²n) ^{196g}Au [5]; ¹⁷⁵Lu(n,²n)^{174g}Lu [8] nuclear reactions.

[6] Igor Kadenko, J,EUL, 114, 42001, 2016
[7] I.M.Kadenko, APP/B, 48, 1669, 2017
[8] Ihor Kadenko, Barna Biro, Mihaly Braun ett all, PL/B, 859, 139100, 2024

A traditional neutron activation technique was used to irradiate samples followed by measurements of the induced activity with HPGe spectrometer in order to detect gamma-peaks of the reaction product when the (n,2n) reaction channel is not open for incident neutron energies.

¹⁵⁹Tb (ACCEL,2FR CAD) Cadarache

¹⁹⁷Au (CYCLO,3HUNDEB) Debrecen

¹⁷⁵Lu (CYCLO,3HUNDEB) Debrecen

Target	Product	E _n (MeV)	T _{1/2}	E _{th} (n,2n) (MeV)
¹⁵⁹ Tb	¹⁵⁸ Tb	6.85	180.YR	8.18
¹⁹⁷ Au	¹⁹⁶ Au	6.09÷6.39 6.18÷6.46	6.183D	8.11
¹⁷⁵ Lu	¹⁷⁴ Lu	5.51÷6.00	3.31YR	7.71

Reaction	E _n (MeV)	σ (mb)	Entry
¹⁹⁷ Au(n, ² n) ^{196g} Au	6.09÷6.39 6.18÷6.46	0.18±0.06 0.037±0.008	32251
¹⁷⁵ Lu(n, ² n) ^{174g} Lu	5.51÷6.00	$33.5^{+7.0}_{-6.7}$	32253
¹⁵⁹ Tb(n, ² n) ^{158g} Lu	6.85	75. ± 30.	32255

In 32251 REACTION (79-AU-197(N,X)79-AU-196,,SIG,,MSC/SPA) X = a bound dineutron in 32253 **REACTION** (71-LU-175(N,X)71-LU-174,,SIG,,SPA) X = a bound dineutron I propose to use in REACTION SF3=N2 for a bound dineutron. Therefore, the reactions should be written as in 32251 (79-AU-197(N,N2)79-AU-196,,SIG,, SPA) REACTION in 32253

REACTION (71-LU-175(N,N2)71-LU-174,,SIG,,SPA)

The data for the ¹⁵⁹Tb(n,²n)¹⁵⁸Tb reaction was not compiled as in the article published in 2016 the cross section value was not determined through low statistic. Only now when I prepared this paper I find that the measurements were continued and the ¹⁵⁹Tb(n,²n)¹⁵⁸Tb cross section value was determined. So if we use a new SF3=N2 for a bound dineutron the reaction in the new entry 32255 should be written as REACTION (65-TB-159 (N,N2) 65-TB-158,,SIG,, SPA) and the entry 32255 can be compiled as follows.

ENTRY	32255	20250604	32255	0	1
SUBENT	32255001	20250604	32255	1	1
BIB	12	24	32255	1	2
TITLE	New direction	in nuclear physics originated from the	32255	1	3
	neutron activation technique application			1	4
AUTHOR	(I.M.Kadenko)		32255	1	5
INSTITUTE	(4UKRKGU)			1	6
REFERENCE	(J,APP/B,48,1669,2017)		32255	1	7
	#doi:10.5506/APhysPolB.48.1669			1	8
REL-REF	(I,,Igor Kadenko,J,EUL,114,42001,2016)			1	9
	(M,23255001,N.Dzysiuk+,J,NP/A,936,6,2015)			1	10
FACILITY	(ACCEL, 2FR CAD) The AMANDE facility (the Institute for			1	11
	Radiation Protection and Nuclear Safety, Cadarache),			1	12
	which is base	d on a HVEE 2 MV Tandetron accelerator	32255	1	13
	system.		32255	1	14

INC-SOURCE	(D-D) Neutrons were generated using the nuclear	32255	1	15	
	reaction between accelerated deuterons and a thin	32255	1	16	
	deuterated target composed of a titanium layer	32255	1	17	
	saturated by deuterium attached to 0.5 mm thick silver	32255	1	18	
	backing.	32255	1	19	
DETECTOR	(HPGE) The coaxial HPGe detector GC2020. The detector	32255	1	20	
	was properly shielded with a lead housing.	32255	1	21	
SAMPLE	One Tb sample used in a shape of a cylinder of 30 mm	32255	1	22	
	diameter with 5 mm thickness (total mass of 28.9 g).	32255	1	23	
METHOD	(ACTIV)	32255	1	24	
STATUS	(APRVD) Approved by I.Kadenko, 4 June 2025.	32255	1	25	
HISTORY	(20250604C) UkrNDC	32255	1	26	
ENDBIB	24 0	32255	1	27	
NOCOMMON	0 0	32255	1	28	
ENDSUBENT	27 0	32255	199	999	
SUBENT	32255002 20250604	32255	2	1	
BIB	4 6	32255	2	2	
REACTION	(65-TB-159(N,N2)65-TB-158,,SIG,,SPA)	32255	2	3	
DECAY-DATA	(65-TB-158-G, 180.YR, DG, 944.2)	32255	2	4	
ERR-ANALYS	(DATA-ERR) Statistical contribution is major to the	32255	2	5	
	total uncertainty.	32255	2	6	
STATUS	(TABLE,,I.Kadenko,J,APP/B,48,1669,2017) Text on p.1673.	. 32255	2	7	
	(SUPPL, 32255003) Calculated neutron spectrum	32255	2	8	

NRDC-2025 Technical Meeting (17-20 June, 2025, Madrid, Spain)

...

for your attention!

e-mail: <u>ogritzay@ukr.net</u>