


# The Area #1 EXFOR project

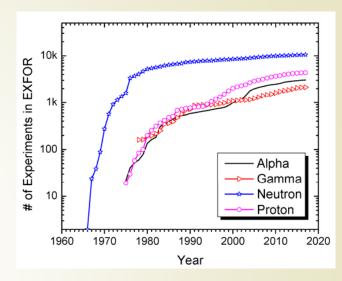
#### B. Pritychenko<sup>1</sup>,

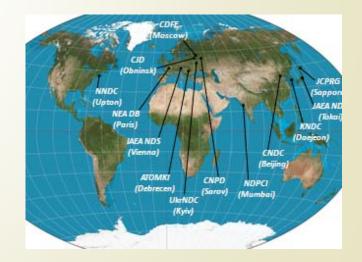
1 National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA





### Nuclear Reaction Data Compilations


- Experimental neutron reaction data compilations have been pioneered at the Metallurgical Laboratory, University of Chicago and Los Alamos National Laboratory in 1945-1947.
- Brookhaven National Laboratory hired many Manhattan Project alumni when it was founded in 1947, and the lab got involved in nuclear data.
- Donald J. Hughes (1915-1960) was behind the BNL-170 (1952); it is a precursor of BNL-325 (Atlas of Neutron Resonances).
- SCISRS (Sigma Center Information and Retrieval System) at BNL (1964) was a precursor of EXFOR.
- Other data centers were created in Paris, France (NEA-Databank), Vienna, Austria (NDS-IAEA), and Obninsk, USSR (IPPE) in 1963-1964.
- Around 1970 four neutron data centers agreed on the data interchange format (EXFOR). The four centers could store data locally in its formats. The Nuclear Data Centres Reaction (NRDC) network was founded in 1979 under the auspices of the IAEA.


### EXFOR - Experimental Nuclear Reaction Data

- The largest experimental nuclear reaction database: 25,536 experiments (multiple publications are grouped into a single measurement), 169,827 subentries, 186,485 data sets as of June 11, 2025.
- EXFOR is a starting point for Evaluated Nuclear Data File (ENDF) libraries evaluations (many evaluated but a single experimental data library), it includes the uncertainties used by evaluators.
- Presently run by the Nuclear Reaction Data Centres (NRDC) internationally.

3

**EXFOR** philosophy is to compile data as they were published (in consultation with authors) unless obvious errors are found. Published nuclear reaction data contain outliers and discrepancies.





# Area #1 FY 2024 (10/1/2023-9/30/2024) Statistics

- Team effort: B.Pritychenko (BNL), O.Schwerer, O.Gritsay (Volunteers/Contractors).
- Multiple contributions by N. Otuka improved the Area #1 compilation process and statistics.
- Software help from V. Zerkin. Former contributor: S.Hlavac.

| EXFOR                        | FY2022 | FY2023 | FY2024 |  |  |
|------------------------------|--------|--------|--------|--|--|
| New<br>Compilations          | 158    | 152    | 95     |  |  |
| Updated<br>Compilations      | 210    | 181    | 95     |  |  |
| Preliminary<br>Transmissions | 29     | 19     | 15     |  |  |
| Final<br>Transmissions       | 31     | 22     | 20     |  |  |
| Database<br>Updates          | 41     | 40     | 15     |  |  |

# The IAEA EXFOR compilation control system

- EXFOR compilation control system is one of the tools used for this co-ordination (Developed by Viktor Zerkin, IAEA, retired on October 31, 2023).
- Top panel: New entries only.

•

- Bottom panel: New and Updated entries, number of data points and transmissions.
- Overall performance of the Area #1 is very good.
- Potential issue is EXFOR maintenance or correction of existing entries.
- Area #1 has the largest number of entries 8,006. Only 5,203 (~64.9%) of entries were corrected. One calendar year ago the corrected entries number was ~61.3%.
- Total number of data points is 9,614,817.

 $\leftarrow \rightarrow C$ 

O A https://www-nds.iaea.org/public/exfor/x4compil/exfor\_input.htm

🌣 Most Visited 🥮 Getting Started 🕀 AAPPS Bulletin

| Full EXFOR  | Compilation  | Statistics | (based on  | HISTORY) |
|-------------|--------------|------------|------------|----------|
| Information | n updated: 1 | 1-Jun-202  | 5, 13:24:4 | 0        |

|    |      | NNDC | NEA-DB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NDS | CJD | ATOMKI | CDFE | CNDC | CNPD | JCPRG | UkrNDC | NDPCI | KNDC | KAZMON | CAJaD | KCPDG | RIKEN |     |                                        |
|----|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------|------|------|------|-------|--------|-------|------|--------|-------|-------|-------|-----|----------------------------------------|
| #. | Year |      | a construction of the cons | ۲   |     | =      |      |      |      | •     | -      | -     | :    | •      | -     | -     | •     | Sum |                                        |
| 55 | 2025 | 41   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1   | 2      | 5    |      | 12   |       | 10     | 21    |      | 4      |       |       |       | 96  | IIII -166                              |
| 54 | 2024 | 98   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 8   | 6      | 5    | 35   | 22   | 24    | 14     | 17    | 1    | 28     |       |       |       | 262 | -77                                    |
| 53 | 2023 | 75   | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26  | 15  | 4      | 7    | 33   | 20   | 27    | 8      | 43    | 9    | 16     |       |       |       | 339 |                                        |
| 52 | 2022 | 207  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35  | 9   | 9      | 5    | 20   | 19   | 19    | 7      | 43    | 9    | 11     |       |       |       | 433 | -92                                    |
| 51 | 2021 | 181  | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42  | 23  | 5      | 12   | 29   | 18   | 36    | 15     | 38    | 10   | 12     |       |       |       | 525 |                                        |
| 50 | 2020 | 219  | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77  | 40  | 10     | 12   | 31   | 29   | 41    | 11     | 35    | 3    | 23     |       |       |       | 665 | ······································ |

#### EXFOR Compilation Statistics based on N2 and EXFOR archive.

Information updated: 11-Jun-2025, 13:24:40

| Information updated: 11-Jun-2025, 13:24:40 |           |           |         |         |        |         |        |         |         |        |         |        |        |         |        |       |            |                     |
|--------------------------------------------|-----------|-----------|---------|---------|--------|---------|--------|---------|---------|--------|---------|--------|--------|---------|--------|-------|------------|---------------------|
|                                            | NNDC      | NEA-DB    | NDS     | CJD     | ATOMKI | CDFE    | CNDC   | CNPD    | JCPRG   | UkrNDC | NDPCI   | KNDC   | KAZMON | CAJaD   | KCPDG  | RIKEN | Sum        |                     |
| 2025                                       | 42        |           |         | 1       | 2      | 5       |        | 12      |         | 12     | 26      |        | 4      |         |        |       | 104        |                     |
|                                            | 6         |           | 6       | 49      | 24     | 28      | 13     |         |         | 2      | 3       |        | 1      |         | 1      |       | 136        |                     |
|                                            | 43,435    |           | -49     | 21      | 241    | 905     | -5     | 3,410   |         | 911    | 2,759   |        | 3,755  |         | -1     |       | 55,382     |                     |
|                                            | 8         |           | 5       | 4       | 4      | 3       | 3      | 1       |         | 5      | 8       |        | 3      |         | 1      |       |            | •••••               |
| 2024                                       |           | 5         |         | 8       | 6      | 5       | 35     | 22      | 31      | 12     | 13      | 1      | 28     |         |        |       | 266        |                     |
|                                            | 301       | 4         | 37      | 115     |        | 50      |        | 201     | 73      |        | 9       |        | 1      | 139     |        | 10    |            | •••••               |
|                                            | 48,327    | 1,292     | 15      | 1,689   | 440    | 285     | 19,903 | 18,859  | 5,215   | 649    | 617     | 142    | 6,133  | 7,344   |        | 144   | 111,114    |                     |
|                                            | 30        | 4         | 8       | 5       | 3      | 8       | 5      | 19      | 12      | 8      | 8       | 4      | 4      | 16      | 1      | 1     |            | ••••••              |
| 2023                                       |           | 59        | 27      | 15      | 4      | 7       | 34     | 20      | 35      |        | 47      | 9      | 17     |         |        |       | 358        |                     |
|                                            | 121       | 284       | 60      |         | 32     | 36      |        | 14      | 46      |        | 12      | 13     |        | 50      |        |       | 0.0        | • • • • • • • • • • |
|                                            | 23,946    |           | 23,510  | 1,822   | 462    | 333     | 9,425  | 1,435   | 4,501   | 3,694  | 11,800  | 1,249  | 10,738 | 380     | -41    |       | 439,594    |                     |
|                                            | 20        | 13        | 7       | 7       | 2      | 6       | 3      | 3       | 5       | 4      | 6       | 4      | 2      |         | 2      |       |            | •••••               |
| 2022                                       |           | 40        | 41      | 9       | 9      | 6       | 21     | 19      | 48      |        | 38      | 9      | 11     |         |        |       | 463        |                     |
|                                            | 219       | 410       |         |         | 38     | 86      |        | 164     | 5       | 16     | 28      | 6      |        | 135     |        |       |            | •••••••••••         |
|                                            | 379,963   | 123,109   | 31,703  | 1,729   | 1,031  | 867     | 7,432  | 4,907   | 10,992  | 262    | 3,296   | 840    | 3,378  | -614    | 100    |       | 568,995    |                     |
|                                            | 28        | 14        | 7       | 7       | 2      | 5       | 4      | 9       | 5       | 4      | 8       | 5      | 2      | 5       | 2      |       |            | •••••               |
| 2021                                       | 183       | 105       |         |         | 5      | 11      | 27     | 18      | 19      |        | 41      | 10     | 12     |         |        |       | 505        |                     |
|                                            | 272       | 160       | 130     |         | 39     | 45      |        | 140     |         | 12     | 34      | 2      | 1      | 63      |        |       |            | *****               |
|                                            | 108,438   |           | 12,734  | 3,235   | -3,761 | 1,168   | 1,526  | 7,337   | 17,001  | 2,789  | 11,469  | 320    | 1,458  | -243    | -54    |       | 485,760    |                     |
|                                            | 27        | 18        | 14      | 10      | 4      | 6       | 6      | 12      | 2       | 7      | 9       | 5      | 3      | 3       | 2      |       | 128        | •••••••             |
| Total                                      | 8066      | 6108      | 2608    | 1775    | 423    | 1047    | 517    | 2241    | 1432    | 367    | 698     | 127    | 99     | 878     | 180    | 52    | 26618      |                     |
|                                            | 5203      | 5675      | 3150    | 2877    | 484    | 1263    | 334    | 1541    | 700     | 321    | 238     | 58     | 9      | 1285    | 120    | 90    | 23348      |                     |
|                                            | 9,614,817 | 6,811,246 | 855,027 | 290,700 | 62,626 | 166,165 | 72,052 | 830,088 | 657,451 | 46,425 | 104,053 | 18,443 | 52,991 | 155,704 | 12,277 | 4,693 | 19,754,758 |                     |
|                                            | 579       | 286       | 416     | 221     | 102    | 127     | 130    | 221     | 180     | 163    | 163     | 80     | 18     | 102     | 28     | 29    | 2845       |                     |
|                                            | NNDC      | NEA-DB    | NDS     | CJD     | ATOMKI | CDFE    | CNDC   | CNPD    | JCPRG   | UkrNDC | NDPCI   | KNDC   | KAZMON | CAJaD   | KCPDG  | RIKEN | Sum        |                     |

Legend: New Entries

Added data points

Number of TRANS

Note. Year is defined from N2, i.e. it is the date when ENTRY/SUBENT has been finalized

EXFOR Database and Web programming: Viktor Zerkin, IAEA-NDS, 1999-2023 Data Source: Network of Nuclear Reaction Data Centers (NRDC), 1970-2023

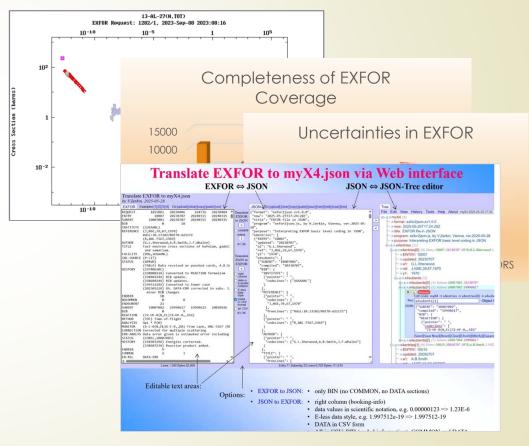
# **Recent EXFOR entries**

|   |                                                                                                                                         | ENTRY<br>SUBENT<br>BIB<br>TITLE                            | 14847 20250325 20250605 20250605 1518<br>14847001 20250325 20250605 20250605 1518<br>11 50<br>Discovery of the Origin of the Enormous 88Zr<br>Neutron-Capture Cross Section and Quantifying Its                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | #14847: A. Stamatopoulos et al., Dis<br>Neutron-Capture Cross Section and                                                               |                                                            | <pre>Impact on Applications (A.Stamatopoulos,P.E.Koehler,B.Digiovine,V.Mocko, A.Matyskin,Ch.Vermeulen,A.Couture,A.Cooper,J.Morrell, E.O'Brien)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | <ul> <li>Our data reveal a resonance at 0.1<br/>section of 771 000±31 000 b, in good<br/>contrast, the neutron-capture reson</li> </ul> |                                                            | (J,PRL,134,112702,2025) Main reference.<br>#doi:10.1103/PhysRevLett.134.112702<br>(J,PR/C,111,034613,2025) Experimental details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 15210±670 b and is roughly a facto                                                                                                      | ENTRY<br>SUBENT                                            | 14836 20250206 20250605 20250605 1518<br>14836001 20250206 20250605 20250605 1518<br>13 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | #14836: J.M. Brown et al., New Med<br>Evaluated Model Parameters of 181                                                                 | TITLE                                                      | New Measurements to Resolve Discrepancies in<br>Evaluated Model Parameters of 181Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | To resolve discrepancies in evaluate<br>libraries, energy-differential neutron<br>were measured from 0.15 to 100 ke                     | REFERENCE                                                  | #doi:10.1080/00295639.2023.2249786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - | #14782: A. Daskalakis, D. Barry, Tran<br>Isotopes                                                                                       | BIB<br>TITLE                                               | 1519       20250515       1000000       0         14782       20250424       14782000       1         14782001       20250424       14782001       1         11       23       14782001       2         Transmission Measurements for Mo-92 and Mo-94       Isotopes       14782001       3                                                                                                                                                                                                                                                                                                      |
|   | ~200,000 lines of data, 12.5 MB                                                                                                         | AUTHOR<br>REFERENCE<br>INSTITUTE<br>FACILITY<br>INC-SOURCE | (D.Barry)       14782001       4         (W,BARRY,20250424)       14782001       5         (1USAKAP)       14782001       6         (LINAC,1USARPI)       14782001       7         (PHOTO) Neutrons were produced by ~50 MeV electron       14782001       8         beam impinging on tantalum target. Repetition frequency14782001       9         was 400 Hz and pulse width 10-13 ns. Water moderator       14782001       10         with diameter of 22.54 cm and thickness of 2.54 cm       14782001       11         was used. Nominal beam power was 600-900 W.       14782001       12 |

6

# Not Recent Experiments

- #14848: Total Neutron Cross Section Measurements of 10B and 11B
- I was recently contacted by Allan Carlson, who provided data from a 1994 publication.
- It was released as TRANS.1518.
- 2003 publication of J. Blackmon et al., C1138. It is digitized in EXFOR because the compiler failed to obtain data from the author.
- While working on the C3072 compilation, it was discovered that the LSU group re-analyzed C1138 and extracted resonance parameters.
- I contacted the group and secured a commitment to provide the 2003 data.
- Sometimes it is possible to recover 20-30-year-old data.


|                  | ENTR<br>SUBE     |                        | 148                       | 14848<br>348001<br>10                                                                                                                                           | 2025041<br>2025041<br>2                | B 202              | 250605<br>250605     | 2025060<br>2025060 |       | 151<br>151 |  |  |  |  |
|------------------|------------------|------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|----------------------|--------------------|-------|------------|--|--|--|--|
|                  | TITL             |                        | Total<br>(0.A.W<br>N.W.Hi | 10B a<br>vey,                                                                                                                                                   | nd 11                                  |                    |                      |                    |       |            |  |  |  |  |
|                  |                  | RENCE<br>ITUTE<br>LITY | (C,940<br>(1USAN          | (C,946ATLIN,1,50,1994)<br>(IUSANIS,1USAORL)<br>(LINAC,1USAORL) The Oak Ridge Electron Linear                                                                    |                                        |                    |                      |                    |       |            |  |  |  |  |
|                  |                  | SPECT                  | Accelerator (ORELA).      |                                                                                                                                                                 |                                        |                    |                      |                    |       |            |  |  |  |  |
|                  |                  |                        | collim<br>target          | nated to<br>t in ord                                                                                                                                            | 3 cm dia<br>origina<br>ler to re       | te from<br>duce tl | m tantal<br>he gamma | um porti           | on of |            |  |  |  |  |
|                  | DETE             |                        | (SCIN)<br>thick           | produced in the water moderator.<br>(SCIN) The neutron detector consisted of a 2.5 cm<br>thick NE110 plastic scintillator.<br>Two samples were contained in 3.2 |                                        |                    |                      |                    |       |            |  |  |  |  |
|                  |                  |                        | tantal<br>10B (0          | lum end                                                                                                                                                         | ylindric<br>caps. The<br>nd 0.234<br>d | e thic             | kness in             | each sa            |       |            |  |  |  |  |
| ENTRY<br>SUBEN   | г                | C11                    | C1138                     | 200501<br>200501                                                                                                                                                |                                        |                    | 200509               |                    | 0000  | ,<br>of    |  |  |  |  |
| BIB<br>INSTI     |                  | (1USAC                 | 8<br>RL,1US               |                                                                                                                                                                 | 17<br>SAYAL,1US                        |                    | CANSFU,2             | UK EDG,            |       |            |  |  |  |  |
|                  |                  | +Joir                  | t Inst                    | . for He                                                                                                                                                        | wha Woman<br>avy Ion I                 |                    |                      |                    |       |            |  |  |  |  |
| REFERI<br>AUTHOI |                  | (J,NP/                 | A,718,                    | ege, Hir<br>127,2003                                                                                                                                            | 3)                                     | Bradfi             | old_Smi              | + h                |       | 151        |  |  |  |  |
| Author           | N N              | R.Bru                  | ımmitt,                   | lackmon,D.W.Bardayan,W.Bradfield-Smith,<br>mmitt,A.E.Champagne,A.A.Chen,T.Davinson,<br>sieux,M.W.Guidry,K.I.Hahn,G.M.Hale,W.R.Hix,                              |                                        |                    |                      |                    |       |            |  |  |  |  |
|                  |                  | R.L.K                  | (ozub,Z                   | .Ma,P.D.                                                                                                                                                        | Parker,G                               | Rajbai             | idya,R.C             | .Runkle,           |       | d          |  |  |  |  |
| TITLE            |                  | D.W.V                  | isser,                    | P.J.Wood                                                                                                                                                        |                                        |                    |                      | or mer <b>,</b>    |       |            |  |  |  |  |
| FACIL            |                  | Holifi                 | eld Ra                    | dioactiv                                                                                                                                                        | e Ion Beargets,                        | am Faci            |                      |                    |       |            |  |  |  |  |
| DETEC            |                  | (TELES                 |                           |                                                                                                                                                                 | ition se                               |                    |                      | n strip            |       |            |  |  |  |  |
| HISTO<br>ENDBI   |                  | (20050                 | 118C)  <br>17             | DR                                                                                                                                                              |                                        |                    |                      |                    |       | ge         |  |  |  |  |
| NOCOM            | 10N              |                        | 0                         |                                                                                                                                                                 | 0                                      |                    |                      |                    |       |            |  |  |  |  |
| ENDSUI<br>SUBEN  |                  | C11                    | 20<br>38002               | 200501                                                                                                                                                          | 18                                     |                    | 200509               | 26                 | 0000  |            |  |  |  |  |
| BIB              |                  |                        | 4                         |                                                                                                                                                                 | 5                                      | CTC)               |                      |                    |       |            |  |  |  |  |
| REACT            | LON              |                        |                           |                                                                                                                                                                 | -H-1,PAR<br>,PAR,SIG                   |                    |                      |                    |       |            |  |  |  |  |
|                  |                  | (DATA-                 | -ERR) N                   | o inform                                                                                                                                                        | SPIN=0.5                               | ven                | (1)                  |                    |       |            |  |  |  |  |
| STATU            |                  |                        |                           | rom Fig.                                                                                                                                                        |                                        | , FARITI           | _+1.)                |                    |       |            |  |  |  |  |
| ENDBI<br>COMMO   |                  |                        | 5<br>1                    |                                                                                                                                                                 | 3                                      |                    |                      |                    |       |            |  |  |  |  |
| E-EXC<br>MEV     | N                |                        | 1                         |                                                                                                                                                                 | 5                                      |                    |                      |                    |       |            |  |  |  |  |
| 0.495<br>ENDCO   | MON              |                        | 3                         |                                                                                                                                                                 |                                        |                    |                      |                    |       |            |  |  |  |  |
| DATA             | INUN             |                        | 3                         |                                                                                                                                                                 | 10                                     |                    |                      |                    |       |            |  |  |  |  |
| EN-CM<br>KEV     |                  | DATA<br>MB             | M                         | ATA-ERR<br>B                                                                                                                                                    |                                        |                    |                      |                    |       |            |  |  |  |  |
|                  |                  | 3.33<br>3 1.08         |                           | 7.206E-                                                                                                                                                         | -01                                    |                    |                      |                    |       |            |  |  |  |  |
|                  |                  |                        |                           | 1.261E+                                                                                                                                                         |                                        |                    |                      |                    |       |            |  |  |  |  |
|                  | 86E+03<br>03E+03 |                        |                           | 2.342E+<br>3.423E+                                                                                                                                              |                                        |                    |                      |                    |       |            |  |  |  |  |
| 2.2              | 27E+03           | 5.92                   | 1E+01                     | 3.423E+                                                                                                                                                         | -00                                    |                    |                      |                    |       |            |  |  |  |  |
|                  |                  |                        |                           | 2.342E+<br>2.161E+                                                                                                                                              |                                        |                    |                      |                    |       |            |  |  |  |  |
| 2.4              | 00E+03           | 3 2.91                 | 8E+00                     |                                                                                                                                                                 |                                        |                    |                      |                    |       |            |  |  |  |  |
|                  |                  |                        |                           | 1.981E+                                                                                                                                                         | -00                                    |                    |                      |                    |       |            |  |  |  |  |
| 2.100A           |                  |                        | ,                         |                                                                                                                                                                 | TUJJIL U                               | •                  |                      |                    |       |            |  |  |  |  |

# **EXFOR** Database Modernization

- EXFOR is 75-year-old: It has to capitalize on modern computer technologies: Automatization of the EXFOR life and production cycle
- NEA WPEC SG54: Curated EXFOR: developing a machine-readable, comprehensive, and corrected by evaluators experimental nuclear reaction database
- New data formats: JSON (JavaScript Object Notation) lightweight data interchange format for EXFOR is now in progress at the SG54 (N.Otuka, V.Zerkin).
  - Fyture compilation of corrected EXFOR data sets.

SG54 collaboration: BNL, IAEA, LBNL, NEA-DB, Los Alamos, LLNL, ORNL, ...

BNL/ORNL/LANL Proposal: From measurement to oiscovery: an automated nuclear data workflow.



# Update on NRDC Actions

A9: Continued

9

- A14: Continued
- A15: Finished
- A16: Lanier not original data.
- A16-A24 finished
- A26 Continued

Nuclear Data Newsletter No. 77, August 2024

#### In Memoriam

#### Stanislav Hlavac



On 12 July 2024 Stanislav Hlaváč, gifted experimental physicist and recognized EXFOR compiler, passed away at the age of 77. Stanislav was born experimentalist, mastered nanosecond fast timing techniques and performed first timeof-flight experiments with fast neutrons in the then Czechoslovakia. Considerable recognition brought him also the EU project DIAMINE for detection and imaging of antipersonal landmines by neutron backscattering. His expertise in neutron-induced reactions was appreciated by the National Nuclear Data Center, USA and since 2006 used for numerous US contributions to the experimental cross section data library EXFOR. Stanislav hosted the NRDC 2014 meeting (https://nds.iaea.org/nrdc/nrdc 2014/) in Smolenice, allowing to discuss EXFOR compilations in the beautiful castle owned by the SAS and known as famous venue for nuclear data events. Over a quarter of century, Stanislav collaborated with the Society for Heavy Ion Research (GSI) in Darmstadt and Max Planck Institute in Heidelberg. Stanislav contributed to development and use of the ultimate gamma-ray detector Crystal Ball, Two Arms Photon Spectrometer (TAPS) and the High Acceptance Di-Electron Spectrometer (HADES). Stanislav inspired young generation of physicists, loved sport and excelled in swimming. The international nuclear data community will miss his truly professional approach to neutron data compilation, deep sense for co-operation, his modest and friendly personality.

(written by Pavel Oblozinsky, July 2024)

Outlook

10

- NNDC EXFOR compilation efforts are complex and well-organized: B. Pritychenko (BNL), S. Gritzay (Former contractor) O. Schwerer, N.Otuka, V. Zerkin (IAEA).
- EXFOR modernization is needed.
- We should contribute to SG54.
- Finalize JSON format, explore free text to JSON conversion, work on JSON conversion quality assurance (QA).
- Collect curated EXFOR data sets.
- People is the most important resource in nuclear data; we lost Dr. Stanislav Hlavac.



Technical Meeting on International Network of Nuclear Reaction Data Centres IAEA Headquarters, Vienna, Austria, 9 – 12 May 2023

#### International Network of Nuclear Reaction Data Centres (NRDC)

The International Network of Nuclear Reaction Data Centres (NRDC) constitutes a worldwide cooperation of nuclear data centres under the auspices of the International Atomic Energy Agency. The Network was established to coordinate the world-wide collection, compilation and dissemination of nuclear reaction data.

## The International Atomic Energy Agency: (https://www.iaea.org/about/mission)

- is an independent intergovernmental, science and technology-based organization, in the United Nations family, that serves as the global focal point for nuclear cooperation;
- assists its Member States, in the context of social and economic goals, in planning for and using nuclear science and technology for various peaceful purposes, including the generation of electricity, and facilitates the transfer of such technology and knowledge in a sustainable manner to developing Member States;
- develops nuclear safety standards and, based on these standards, promotes the achievement and maintenance of high levels of safety in applications of nuclear energy, as well as the protection of human health and the environment against ionizing radiation;
- verifies through its inspection system that States comply with their commitments, under the Non-Proliferation Treaty and other non-proliferation agreements, to use nuclear material and facilities only for peaceful purposes.