General-purpose "EXFOR-driver": tasks, approach and implementation

by Viktor Zerkin ~ nuclear data software developer ~

Technical Meeting NRDC-2025 of the International Network of Nuclear Reaction Data Centres, Polytechnic University of Madrid, Madrid, Spain + WebEx, 17 - 20 June 2025

Before any development

Steps to go.

- 1. Understand/formulate problem and possibly task(s)
- 2. Three questions to answer:
 - a) What already exists and can be used?
 - b) What is wrong now?
 - c) What do we want to achieve? (define ideal goal)
- 3. Preparations:
 - a) discuss/define main ideas, concept and possible technologies
 - b) study and test technologies, select technology
- 4. Plan: split problem to tasks/sub-tasks, define dates
- 5. Implementation: development loop

Recent tendencies in ND

1. More Python

- 2. More JSON for data exchange, operations and storage
- 3. More "open source" for codes and data files, more Git
- 4. Many EXFOR parsers and utility-codes in Python

What is wrong now?

EXFOR code systems:

- 1. Existing codes: Fortran: 2, C: 1, Java:2, Python: 6
- 2. Fortran, C, Java codes: functioning long time, well tested, comprehensive, advanced functionality produce C5, X5, JSON, XML, X4Pro accessible via Web-GUI and API with Python-examples, but difficult to extend for new tasks by new people
- 3. Most of the systems were built for specific purposes
- 4. Systems are built independently without common approach
- 5. Some codes are very large and specialized
- 6. Python codes not yet cover all EXFOR data types and advance tasks (SG50, SG54)

Important

There is no general-purpose, low-level, simple "EXFOR-driver" which can be used as common basis for other software built on top of it

1. Translation EXFOR to JSON.

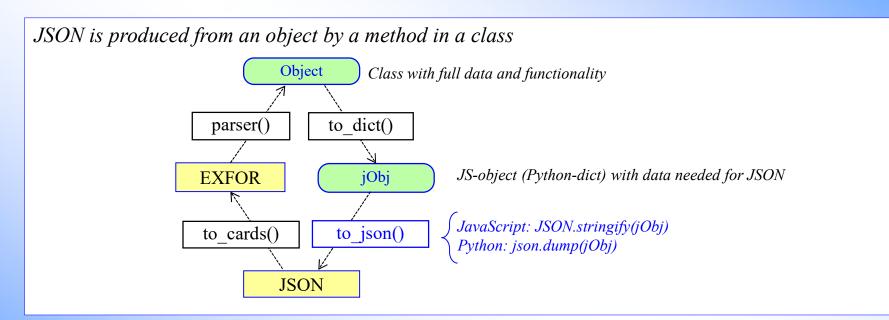
Tasks, basic principles, current limits

Tasks for EXFOR parser:

- 1. Step-1: small, general-purpose, low-level EXFOR parser (X4-Driver); not connected to Dictionaries
- 2. To be extended in near future by a new functionality
- *3. To be able translate EXFOR to JSON and back*
- 4. Should work on any EXFOR file from single ENTRY to full Master file
- 5. Should allow sequential parsing of a file and full-file parsing to DOM (document object model)
- 6. *Q*: Should work with old EXFOR files? (support VECTOR-COMMON formalism)

Basic principles:

- 1. Languages: Python and JavaScript*
- 2. Based on OOP (Object Oriented Programming), i.e. classes/objects (structures with methods)
- 3. JSON is produced from an object by a method in a class
- 4. Every class in single file with self-test


* Structures and algorithms are based on existing X4-Java codes

Current limitations:

- 1. Work on valid EXFOR file, i.e. now not oriented to work with incorrect EXFOR files
- 2. Requires ENTRY+ENDENTRY lines (Q: change to SUBENT+ENDSUBENT?)

About "basic principles" Why OOP?

Object Oriented Programming using classes/objects having data structures with methods: preparing for further extensions beyond the task "translate EXFOR to JSON"

Every class in single file with self-test this is how I was writing X4java package, keeping tests inside class-file

General approach

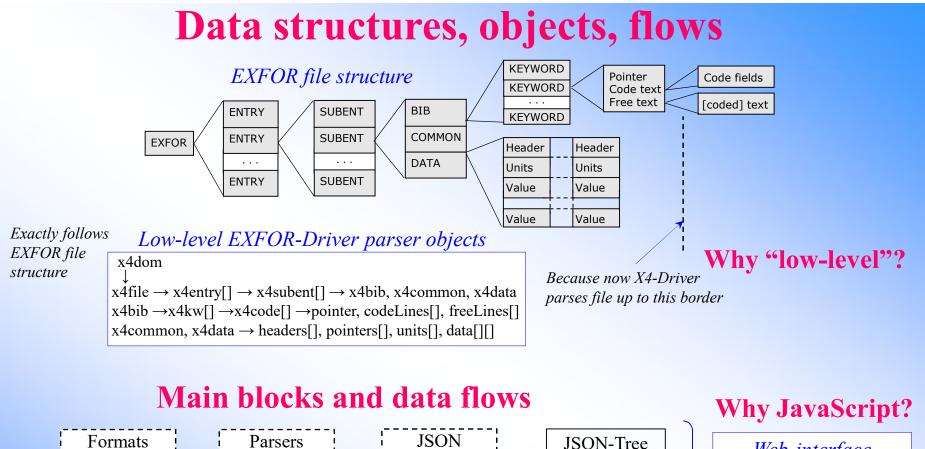
Having experience with programming EXFOR, CINDA, Dictionaries, ENDF, ENSDF-Editor in Java + JSON + JavaScript/Html, I decided to try to rewrite basic low-level part of parsers in Python and JavaScript and see how difficult it would be.

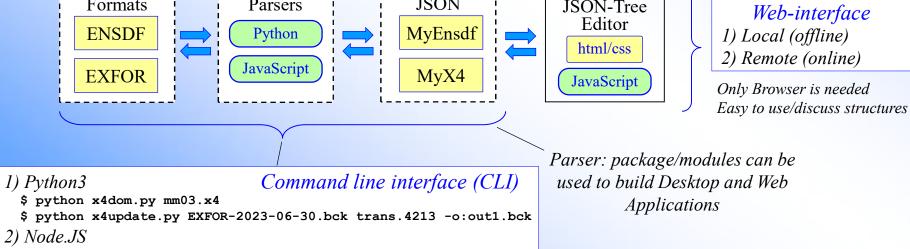
2. Technologies and current implementation

JSON-Tree Editor (2024-2025)

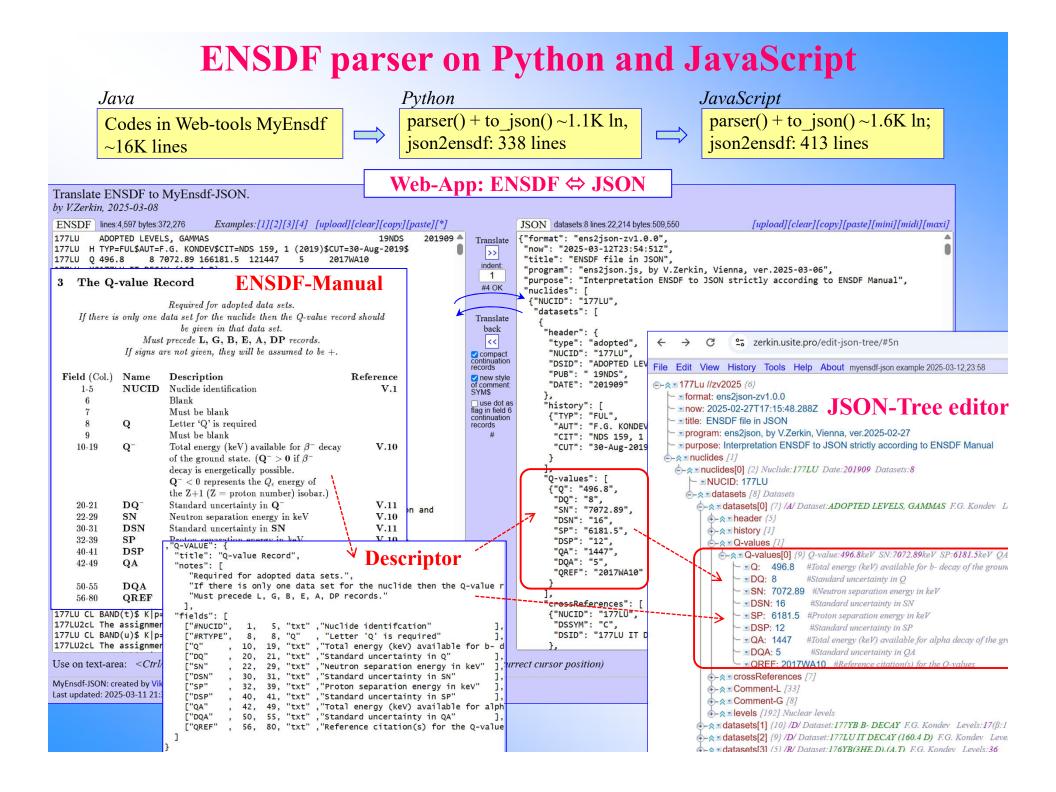
- 1. Initial main goal: develop/discuss JSON formats of nuclear data
- 2. Language: JavaScript; works in Web-Browser locally and remotely
- 3. Presents any JSON file as interactive tree
- 4. Provides specialized view for data in X5, ENDF, ENSDF, NSR, IBANDL, MyEnsdf, etc.
- 5. Provides "classic" operations: edit/delete/move/copy/paste text and nodes, new/open/save files, undo/redo, history of operations, return back to any step, etc.

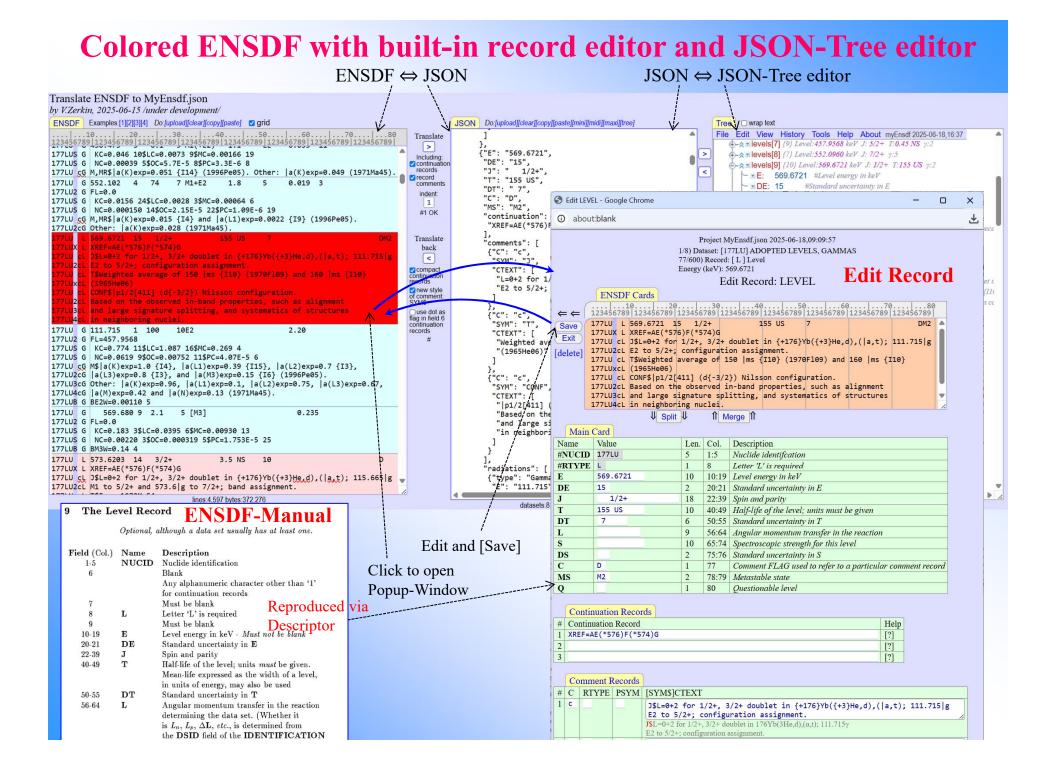
EXFOR-CINDA-X4TOC5 Dictionary parser (2024)

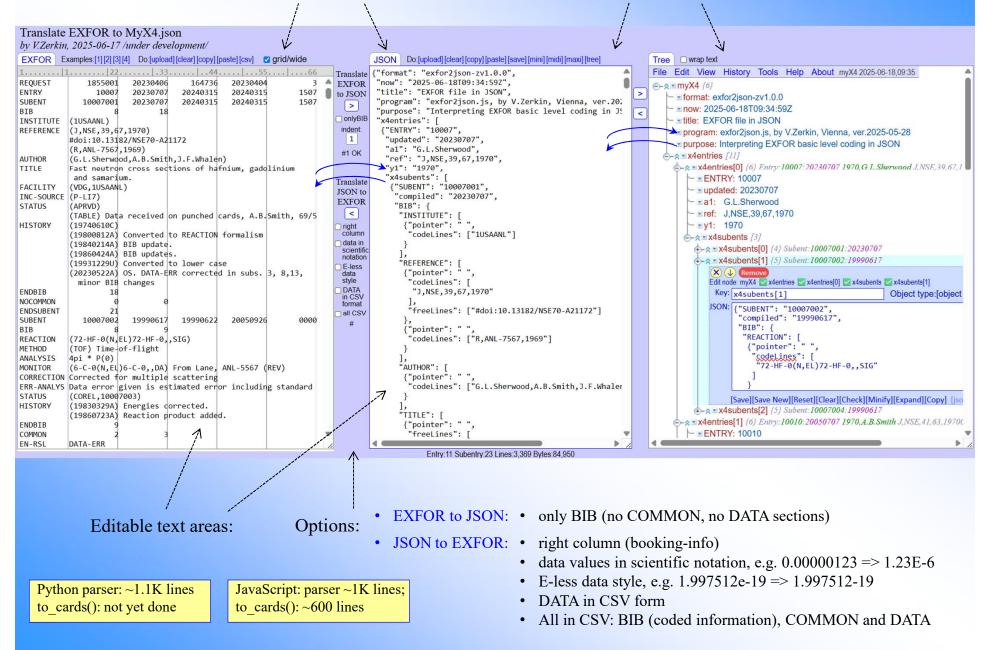

- 1. Language: Python
- 2. Using elements of meta-programming describing input format
- *3. Parsing Dictionaries to classes/objects (~clone of x4dicts.java reproducing functionality)*
- 4. Production of JSON file for whole Dictionary release + internal X4toC5 Dictionaries


ENSDF parser (2024)

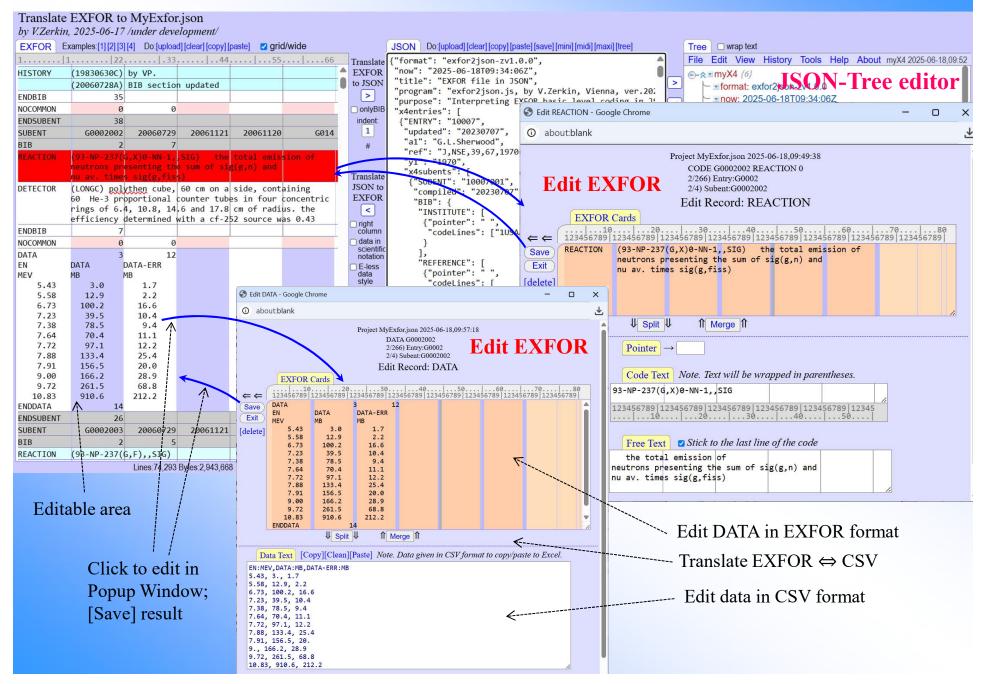
- 1. Languages: Python and JavaScript using myMeta-programming approach
- 2. Translating ENSDF file to JSON strictly according to ENSDF-Manual
- 3. Translating JSON to ENSDF and comparison with original
- 4. Web interface (JS only): ENSDF <=> JSON => JSON-Tree Editor
- 5. Command line interface (CLI): Python only


Low-level EXFOR parser: x4py, x4js (2025)


- 1. Implemented on Python and JavaScript
 - 1) Python3. Package x4py: 1.1K lines (10 files, 70-200 lines each)
 - 2) JavaScript-ES5. Module x4dom.js (1K lines), json2x4cards/csv (600 lines)
- 2. Translating EXFOR text to JSON
- 3. Translating JSON to EXFOR and CSV
- 4. Web interface via Web-browser (online, offline): EXFOR <=> JSON => JSON-Tree Editor
- 5. Command line interface (CLI): Python and Node.JS



\$ node x4tojs1 mm03.x4



Translate EXFOR to MyX4.json via Web interface EXFOR ⇔ JSON → JSON ⇔ JSON-Tree editor

Colored EXFOR with built-in editors

Why CSV for DATA inside EXFOR?

Original EXFOR: 3 lines per data point

			1	-						
STATUS	(TABLE) Table V of Phys.Rev.C81(2010)064604, 23114002									
	Appendix B of Sage's thesis (micro correlation) HISTORY (20130924A) On. ERR-ANALYS, COVARIANCE etc.									
HISTORY		23114002	83							
ENDBIB		81				23114002	84			
COMMON		4	3 ERR-6			23114002	85			
ERR-3	RR-3 ERR-4 ERR-5					23114002	86			
PER-CENT	PER-CENT	PER-CENT	PER-CENT			23114002	87			
1.2	0.1	0.3	3.			23114002	88			
ENDCOMMON		3	0			23114002	89			
DATA		13	9			23114002	90			
EN	EN-ERR	DATA	ERR-T	MONIT-ERR	ERR-1	23114002	91			
ERR-2	ERR-7	ERR-8	MISC1	MISC2	MISC3	23114002	92			
MISC4						23114002	93			
MEV	MEV	MB	PER-CENT	PER-CENT	PER-CENT	23114002	94			
PER-CENT	PER-CENT	PER-CENT	NO-DIM	NO-DIM	NO-DIM	23114002	95			
NO-DIM						23114002	96			
8.34	0.15	96.8	6.5	1.9	5.	23114002	97			
1.	0.9		0.9974	0.9925	1.	23114002	98			
1.						23114002	99			
9.15	0.15	162.9	5.7	1.9	4.	23114002	100			
1.	0.6		1.0731	1.3117	1.	23114002	101			
1.						23114002	102			
13.33	0.15	241.8	4.6	1.6	2.5	23114002	103			
1.	0.4	0.3	0.9168	0.8288	1.	23114002	104			
1.						23114002	105			
16.1	0.15	152.4	4.6	2.	2.1	23114002	106			
1.	0.6	0.3	1.0749	1.2335	1.	23114002	107			
1.						23114002	108			
17.16	0.03	116.1	4.4	2.	1.5	23114002	109			
1.	0.6	0.3	0.9987	0.9878	0.998	23114002	110			
0.997		0.0			0.000	23114002	111			
17.9	0.1	105.7	4.4	2.2	1.3	23114002	112			
0.7	0.7	0.3	0.969	0.933	0.998	23114002	113			
0.997	•••	0.0	0.000	0.000	0.000	23114002	114			
19.36	0.15	89.5	8.2	3.1	6.3	23114002	115			
2.	0.6	1.3	1.0061	1.0157	0.941	23114002	116			
0.926	0.0	1.5	1.0001	1.0157	0.341	23114002	117			
19.95	0.07	102.1	5.8	4.1	1.4	23114002	118			
1.	0.6	1.4	0.9822	0.9433	0.922	23114002	119			
0.891	0.0	1.4	0.9022	0.9435	0.522	23114002	120			
20.61	0.04	77.9	8.8	5.4	5.7	23114002	121			
1.6	0.6	1.4	0.9938	0.982	0.885	23114002	122			
0.832	0.0	1.4	0.3338	0.902	0.005	23114002	122			
ENDDATA		33	0			23114002	123			
ENDSUBENT		.23	0			231140029				
LABOODDANI			-			_31140023				

- EXFOR with DATA and COMMON sections presented in CSV form (including headers, units, pointers coded in one line) is fully equivalent to EXFOR
- compact, clearer, easy to observe and make copy/paste
- better if we need significantly extend number of partial uncertainties (may be needed for SG54 curated data)

Largest EXFOR Entry: 14508

- with right-column: 94MB 100%
- without right-column: 51MB 54%
- with DATA in CSV: 31MB 33%

DATA in CSV form (comma separated values):

STATUS	(TABLE) Table V of			23114002	81
	Appendix B	of Sage's	thesis (micro correlation)23114002	82
HISTORY	(20130924A) On. ER	R-ANALYS, C	OVARIANCE etc.	23114002	83
ENDBIB	81			23114002	84
COMMON	4	3		23114002	85
#h:23114002	: COMMON, ERR-3: PER-	CENT, ERR-4:	PER-CENT, ERR-5: PER-CENT, E	RR-6:PER-CE	NT
#,1.2,0.1,0	.3,3				
ENDCOMMON	3	0		23114002	86
DATA	13	9		23114002	87
#h:23114002	:DATA, EN:MEV, EN-ER	R:MEV,DATA:	MB, ERR-T: PER-CENT, MONIT-E	RR: PER-CENT	,ERR-1
#,8.34,0.15	,96.8,6.5,1.9,5,1,	0.9,,0.9974	,0.9925,1,1		
<mark>#,9.15,0.15</mark>	,162.9,5.7,1.9,4,1	,0.6,,1.073	<mark>1,1.3117,1,1</mark>		
#,13.33,0.1	5,241.8,4.6,1.6,2.	5,1,0.4,0.3	,0.9168,0.8288,1,1		
#,16.1,0.15	,152.4,4.6,2,2.1,1	,0.6,0.3,1.	0749,1.2335,1,1		
#,17.16,0.0	3,116.1,4.4,2,1.5,	1,0.6,0.3,0	.9987,0.9878,0.998,0.997		
#,17.9,0.1,	105.7,4.4,2.2,1.3,	0.7,0.7,0.3	,0.969,0.933,0.998,0.997		
#,19.36,0.1	5,89.5,8.2,3.1,6.3	,2,0.6,1.3,	1.0061,1.0157,0.941,0.926		
#,19.95,0.0	7,102.1,5.8,4.1,1.	4,1,0.6,1.4	,0.9822,0.9433,0.922,0.89	1	
#,20.61,0.0	4,77.9,8.8,5.4,5.7	,1.6,0.6,1.	4,0.9938,0.982,0.885,0.83	2	
ENDDATA	10	0	, , , , , , , , , , , , , , , , , , , ,	23114002	88
ENDSUBENT	99	0		2311400299	999

EXFOR DATA-CSV exported to EXCEL:

		А	В	C	D	E	F	G	Н	1 I	J	K	L	M	N
-	1	#h:23114002:DATA	EN:MEV	EN-ERR:MEV	DATA:MB	ERR-T:PER-CENT	MONIT-ERR:P	ERR-1:PER	ERR-2:PER	RERR-7:PER	ERR-8:PER	MISC1:NO-DIM	MISC2:NO	MISC3:NO-D	MISC4:NO-
ć	2	#	8.34	0.15	96.8	6.5	1.9	5	1	0.9		0.9974	0.9925	1	1
1	3	#	9.15	0.15	162.9	5.7	1.9	4	1	0.6		1.0731	1.3117	1	1
4	1	#	13.33	0.15	241.8	4.6	1.6	2.5	1	. 0.4	0.3	0.9168	0.8288	1	1
-	5	#	16.1	0.15	152.4	4.6	2	2.1	1	0.6	0.3	1.0749	1.2335	1	1
(5	#	17.16	0.03	116.1	4.4	2	1.5	1	0.6	0.3	0.9987	0.9878	0.998	0.997
	7	#	17.9	0.1	105.7	4.4	2.2	1.3	0.7	0.7	0.3	0.969	0.933	0.998	0.997
8	3	#	19.36	0.15	89.5	8.2	3.1	6.3	2	0.6	1.3	1.0061	1.0157	0.941	0.926
9)	#	19.95	0.07	102.1	5.8	4.1	1.4	1	0.6	1.4	0.9822	0.9433	0.922	0.891
1	0	#	20.61	0.04	77.9	8.8	5.4	5.7	1.6	0.6	1.4	0.9938	0.982	0.885	0.832

Command line interface: tests, validation, utilities.

```
$ python -B EnsDom.py 177LU.ens
                                                                                  +----+
                                                                                                                                      EXFOR
$ python -B EnsJson2Cards.py 177LU.ens.json
                                                                                            Update EXFOR files.
$ ens2flag6 177LU.ens > 177LU.ens.cmp
                                                                                    Program x4update.py ver.2024-11-13
$ ens2flag6 177LU.ens.json.ens > 177LU.ens.json.ens.cmp
                                                                                          by V.Zerkin, Vienna, 2024
$ mycmp 177LU.ens.cmp 177LU.ens.json.ens.cmp
                                                                                       ------+
$ cat ens2flag6.c
                                                                  Program: x4update.py
                                                                                                                  x4update.py – update, split and merge
  #include <ctype.h>
                                                                  Package "x4py" version: 1.0.0
  #include <stdio.h>
                                                                  Running: 2025-06-18 21:29:50
                                                                                                                  EXFOR files, maintain Master file
  #include <string.h>
  #define LSTR
                                                                  Help.
                 520
                                                                                                                  without intermediate files:
  char str[LSTR];
                                                                  Purpose: merge/update EXFOR files
  int main(int argc,char **argv)
                                                                  Functions:
                                                                                                                  using "x4py" package
                                                                    * standalone maintenance of EXFOR Master file
      char ch, *ss, *fgets();
      FILE *in;
                                                                    * join/merge EXFOR files using latest Subentries
      char *infile;
                                                                    * cut EXFOR text after 66th column and right-trim strings
      int i:
                                                                    * add right column after 66th column to EXFOR text
      if (argc<2)
         printf("At least one parameter needed!\n");
                                                                    * sort Entries in EXFOR file
          return(0);
                                                                    * supporting NOENTRY (to exclude Entry from output)
                                                                    * split EXFOR file(s) by ENTRY and store one file for one Entry
      argv++; argc--;
      if (argc>0) {infile=*argv++; argc--;}
                                                                  Algorithm:
      in=fopen(infile,"r");
                                                                    * program in the loop on command line arguments:
      if (in==NULL) return(-1);
                                                                      - reads EXFOR file (Backup/Master/TRANS or any other) into buffer
      for (i=0; ;i++) {
                                                                      - inserts/overwrites next Entry/Subentry into the buffer
          ss=fgets(str,LSTR-1,in);
         if (ss==NULL) break;
                                                                      - accepts options and formatting parameters
          if (strlen(str)>6) {
                                                                    * output content of buffer to new EXFOR file or directory
             ch=str[5];
if (ch!=' ') str[5]='.';
                                                                  Usage: $ python [{flag}] x4update.py {[option|file]}
                                                                    * flag: see all Python flags: $ python --help
         printf("%s",str);
                                                                                don't write .pyc files on import
                                                                      -B
                                                                    * option:
 }
                                                                      -help
                                                                                print this help-text and exit (also --help)
     1) Translate ENSDF to MyEnsdf.json
                                                                      -h:<hdr> set header-line in output file (default: -t:REQUEST)
                                                                      -n1:<N1> set N1 in header-line (default: -n1:777)
    2) Translate MyEnsdf.json to ENSDF
                                                                      -wide
                                                                                add to EXFOR file right column (default: cut after 66-col.)
                                                                      -o:<file> write final buffer to new EXFOR file
    3) Modify flag-6 to "." for continuation records
                                                                      -d:<dir> split final buffer by Entry to directory structure
    4) Compare initial and finel ENSDF
                                                                      -sdd
                                                                                set date of modification by Entry.N2 to <dir>
                                                                      -i:<Ent> include Entries starting with <Ent>
                                                                      -x:<Ent> exclude Entries starting with <Ent>
                                                                      -v:<show> verbose - show details of the process
              G:\projects\zerkin\pdev\x4dev\ens1\177LU.ens.cmp
                                                                    * file: file name should not start with sign "-"
 177LU G
            569,680 9 2.1
                            5 [M3]
                                                         0.235
                                                                      <file>
                                                                                path of an EXFOR file (can be relative or absolute)
 177LU. G FL=0.0
                                                                  Examples:
 177LU. G KC=0.183 3$LC=0.0395 6$MC=0.00930 13
                                                                    1) load Master file, update by Trans-file(s), write new Master file
                                                                       $ python3 -B x4update.py EXFOR-2023-06-30.bck trans.4213 -o:out1.bck -h:LIB
 177LU. G NC=0.00220 3$0C=0.000319 5$PC=1.753E-5 25
                                                                    2) insert/replace EXFOR Entries into TRANS file, verbose (trace of the processing)
 177LU, G BM3W=0.14 4
 177LU L 573.6203 14
                        3/2+
                                                                       $ python3 -B x4update.py trans.4213 mm03.x4 -wide -h:TRANS -n1:4213 -o:trans.4213 -v:1
                                       3.5 NS
                                                 10
                                                                    3) split EXFOR file into sub-directoriess by Entries, set dir-dates by Entry:N2
                                                                       $ python3 -B x4update.py EXFOR-2023-05-23.bck -wide -d:x4all -sdd
        G:\projects\zerkin\pdev\x4dev\ens1\177LU.ens.json.ens.cmp
                                                                    4)
                                                                       join EXFOR files from Area-4 to single file (use with bash or in MinGW/MSYS)
                                                                       $ python3 -B x4update.py x4all/4/*/*.x4 -o:area4.x4 -wide
 177LU G
            569.680 9 2.1
                            5 [M3]
                                                      0.235
                                                                    5) merge EXFOR files, filter Entries: include 41* and exclude 414*, output Entries to
 177LU. G FL=0.0$KC=0.183 3$LC=0.0395 6$MC=0.00930 13$NC=0.00220 3
                                                                  out1/
 177LU. G OC=0.000319 5$PC=1.753E-5 25$BM3W=0.14 4
                                                                       $ python -B x4update.py trans.4213 mm03.x4 trans.e150 -d:out1 -i:41 -x:414
                                                                    6) print help message and exit
```

\$ python3 -B x4update.py

177LU L 573.6203 14 3/2+

3.5 NS

10

Concluding remarks

Technical:

Step-1. Low-level EXFOR-Driver. Done:

- 1. small library of classes written in Python and JavaScript
- 2. needs only valid EXFOR file/text (Dictionaries are not required)
- 3. implements sequential and direct access using DOM
- 4. works with small (one Entry) and large files: retrieved/assembled/Trans/Prelim/Master
- 5. can translate EXFOR to JSON and backward from JSON to EXFOR and CSV
- 6. having command-line and Web interface for translation with various options and operations
- 7. integrated with Web-App "JSON-Tree editor"

Possible plans:

- 1. Step-2: classes for specific coding of essential BIB-keywords
- 2. Step-3: connection to EXFOR-Dictionaries
- 3. Step-4: datasets, variables and computational values
- 4. etc. ... finally reproducing functionality of x4java/x4pro/c5/x5

Conclusions/Proposal/Question:

- 1. Several EXFOR parsers and converters to different versions of JSON exist
- 2. There is no EXFOR-JSON format agreed in NRDC and recommended for end-users (X5json?)
- 3. Recommended/stable/tested EXFOR-Driver is missing as starting tool for users who want to use original EXFOR instead of Web/X4Pro/X4Pro/C5/X4+ (e.g. WPEC-SG50/SG54).
- 4. If supported by NRDC, a common/generic low-level EXFOR-Driver on Python/JavaScript can be discussed in detailed, published as open-source product, further developed and possibly recommended for SG54 and other users' communities
- 5. Are NRDC, NNDC, SG54 and other nuclear data communities interested in ND-JSON-Tree Editor? If yes, conclusion and support are needed.

Thank you.

Citing of the materials of this presentation should be done with proper acknowledgement of the author