
by Viktor Zerkin
~ nuclear data software developer ~

Technical Meeting NRDC-2025 of the International Network of Nuclear Reaction Data Centres,
Polytechnic University of Madrid, Madrid, Spain + WebEx, 17 - 20 June 2025

General-purpose “EXFOR-driver”:
tasks, approach and implementation

Before any development

Steps to go.
1. Understand/formulate problem and possibly task(s)

2. Three questions to answer:

a) What already exists and can be used?

b) What is wrong now?

c) What do we want to achieve? (define ideal goal)

3. Preparations:

a) discuss/define main ideas, concept and possible technologies

b) study and test technologies, select technology

4. Plan: split problem to tasks/sub-tasks, define dates

5. Implementation: development loop

What is wrong now?
EXFOR code systems:

1. Existing codes: Fortran: 2, C: 1, Java:2, Python: 6

2. Fortran, C, Java codes: functioning long time, well tested, comprehensive, advanced functionality
- produce C5, X5, JSON, XML, X4Pro accessible via Web-GUI and API with Python-examples,
but difficult to extend for new tasks by new people

3. Most of the systems were built for specific purposes

4. Systems are built independently without common approach

5. Some codes are very large and specialized

6. Python codes not yet cover all EXFOR data types and advance tasks (SG50, SG54)

1. More Python
2. More JSON for data exchange, operations and storage
3. More “open source” for codes and data files, more Git
4. Many EXFOR parsers and utility-codes in Python

Recent tendencies in ND

There is no general-purpose, low-level, simple “EXFOR-driver”
which can be used as common basis for other software built on top of it

Important

1. Translation EXFOR to JSON.
Tasks, basic principles, current limits

Tasks for EXFOR parser:

1. Step-1: small, general-purpose, low-level EXFOR parser (X4-Driver); not connected to Dictionaries

2. To be extended in near future by a new functionality

3. To be able translate EXFOR to JSON and back

4. Should work on any EXFOR file from single ENTRY to full Master file

5. Should allow sequential parsing of a file and full-file parsing to DOM (document object model)

6. Q: Should work with old EXFOR files? (support VECTOR-COMMON formalism)

Basic principles:

1. Languages: Python and JavaScript*

2. Based on OOP (Object Oriented Programming), i.e. classes/objects (structures with methods)

3. JSON is produced from an object by a method in a class

4. Every class in single file with self-test
* Structures and algorithms are based on existing X4-Java codes

Current limitations:

1. Work on valid EXFOR file, i.e. now not oriented to work with incorrect EXFOR files

2. Requires ENTRY+ENDENTRY lines (Q: change to SUBENT+ENDSUBENT?)

Object Oriented Programming using classes/objects having data structures with methods:
preparing for further extensions beyond the task “translate EXFOR to JSON”

About “basic principles”
Why OOP?

JSON is produced from an object by a method in a class

Every class in single file with self-test
this is how I was writing X4java package, keeping tests inside class-file

Having experience with programming EXFOR, CINDA, Dictionaries, ENDF, ENSDF-Editor in
Java + JSON + JavaScript/Html, I decided to try to rewrite basic low-level part of parsers in
Python and JavaScript and see how difficult it would be.

General approach

Object

EXFOR jObj

JSON

Class with full data and functionality

JS-object (Python-dict) with data needed for JSON

parser() to_dict()

to_cards() to_json() JavaScript: JSON.stringify(jObj)
Python: json.dump(jObj)

Low-level EXFOR parser: x4py, x4js (2025)
1. Implemented on Python and JavaScript

1) Python3. Package x4py: 1.1K lines (10 files, 70-200 lines each)
2) JavaScript-ES5. Module x4dom.js (1K lines), json2x4cards/csv (600 lines)

2. Translating EXFOR text to JSON
3. Translating JSON to EXFOR and CSV
4. Web interface via Web-browser (online, offline): EXFOR <=> JSON => JSON-Tree Editor
5. Command line interface (CLI): Python and Node.JS

2. Technologies and current implementation

ENSDF parser (2024)
1. Languages: Python and JavaScript using myMeta-programming approach
2. Translating ENSDF file to JSON strictly according to ENSDF-Manual
3. Translating JSON to ENSDF and comparison with original
4. Web interface (JS only): ENSDF <=> JSON => JSON-Tree Editor
5. Command line interface (CLI): Python only

EXFOR-CINDA-X4TOC5 Dictionary parser (2024)
1. Language: Python
2. Using elements of meta-programming describing input format
3. Parsing Dictionaries to classes/objects (~clone of x4dicts.java reproducing functionality)
4. Production of JSON file for whole Dictionary release + internal X4toC5 Dictionaries

JSON-Tree Editor (2024-2025)
1. Initial main goal: develop/discuss JSON formats of nuclear data
2. Language: JavaScript; works in Web-Browser locally and remotely
3. Presents any JSON file as interactive tree
4. Provides specialized view for data in X5, ENDF, ENSDF, NSR, IBANDL, MyEnsdf, etc.
5. Provides “classic” operations: edit/delete/move/copy/paste text and nodes, new/open/save files,

undo/redo, history of operations, return back to any step, etc.

Pointer
Code text
Free text

EXFOR

. . .

ENTRY

ENTRY

ENTRY

Header

Units

Value

Header

Units

Value

Value Value

. . .

SUBENT

SUBENT

SUBENT

COMMON

BIB

DATA

. . .
KEYWORD

KEYWORD

KEYWORD

EXFOR file structure

Data structures, objects, flows

Why JavaScript?
Formats Parsers

ENSDF Python

JavaScript

JSON-Tree
Editor

JavaScriptEXFOR

JSON

MyEnsdf

MyX4

html/css

Main blocks and data flows

1) Python3
$ python x4dom.py mm03.x4
$ python x4update.py EXFOR-2023-06-30.bck trans.4213 -o:out1.bck

2) Node.JS
$ node x4tojs1 mm03.x4

Web-interface
1) Local (offline)
2) Remote (online)

Parser: package/modules can be
used to build Desktop and Web

Applications

Only Browser is needed
Easy to use/discuss structures

Code fields

x4file → x4entry[] → x4subent[] → x4bib, x4common, x4data
x4bib →x4kw[] →x4code[] →pointer, codeLines[], freeLines[]
x4common, x4data → headers[], pointers[], units[], data[][]

x4dom
↓

Exactly follows
EXFOR file
structure

Low-level EXFOR-Driver parser objects
Why “low-level”?

Because now X4-Driver
parses file up to this border

Command line interface (CLI)

[coded] text

ENSDF parser on Python and JavaScript

Codes in Web-tools MyEnsdf
~16K lines

parser() + to_json() ~1.1K ln,
json2ensdf: 338 lines

Java Python
parser() + to_json() ~1.6K ln;
json2ensdf: 413 lines

JavaScript

Web-App: ENSDF  JSON

JSON-Tree editor

ENSDF-Manual

Descriptor

Colored ENSDF with built-in record editor and JSON-Tree editor
JSON ⇔ JSON-Tree editorENSDF ⇔ JSON

ENSDF-Manual

Edit Record

Click to open
Popup-Window

Edit and [Save]

Reproduced via
Descriptor

Translate EXFOR to MyX4.json via Web interface

Options:
• EXFOR to JSON:

• JSON to EXFOR:

• only BIB (no COMMON, no DATA sections)

• right column (booking-info)
• data values in scientific notation, e.g. 0.00000123 => 1.23E-6
• E-less data style, e.g. 1.997512e-19 => 1.997512-19
• DATA in CSV form
• All in CSV: BIB (coded information), COMMON and DATA

Editable text areas:

JSON ⇔ JSON-Tree editorEXFOR ⇔ JSON

Python parser: ~1.1K lines
to_cards(): not yet done

JavaScript: parser ~1K lines;
to_cards(): ~600 lines

Colored EXFOR with built-in editors

Click to edit in
Popup Window;
[Save] result

Editable area
Edit DATA in EXFOR format

Edit data in CSV format

Translate EXFOR ⇔ CSV

JSON-Tree editor

Edit EXFOR

Edit EXFOR

Why CSV for DATA inside EXFOR?
STATUS (TABLE) Table V of Phys.Rev.C81(2010)064604, 23114002 81

Appendix B of Sage's thesis (micro correlation)23114002 82
HISTORY (20130924A) On. ERR-ANALYS, COVARIANCE etc. 23114002 83
ENDBIB 81 23114002 84
COMMON 4 3 23114002 85
ERR-3 ERR-4 ERR-5 ERR-6 23114002 86
PER-CENT PER-CENT PER-CENT PER-CENT 23114002 87
1.2 0.1 0.3 3. 23114002 88

ENDCOMMON 3 0 23114002 89
DATA 13 9 23114002 90
EN EN-ERR DATA ERR-T MONIT-ERR ERR-1 23114002 91
ERR-2 ERR-7 ERR-8 MISC1 MISC2 MISC3 23114002 92
MISC4 23114002 93
MEV MEV MB PER-CENT PER-CENT PER-CENT 23114002 94
PER-CENT PER-CENT PER-CENT NO-DIM NO-DIM NO-DIM 23114002 95
NO-DIM 23114002 96
 8.34 0.15 96.8 6.5 1.9 5. 23114002 97
 1. 0.9 0.9974 0.9925 1. 23114002 98
 1. 23114002 99
 9.15 0.15 162.9 5.7 1.9 4. 23114002 100
 1. 0.6 1.0731 1.3117 1. 23114002 101
 1. 23114002 102
 13.33 0.15 241.8 4.6 1.6 2.5 23114002 103
 1. 0.4 0.3 0.9168 0.8288 1. 23114002 104
 1. 23114002 105
 16.1 0.15 152.4 4.6 2. 2.1 23114002 106
 1. 0.6 0.3 1.0749 1.2335 1. 23114002 107
 1. 23114002 108
 17.16 0.03 116.1 4.4 2. 1.5 23114002 109
 1. 0.6 0.3 0.9987 0.9878 0.998 23114002 110
 0.997 23114002 111
 17.9 0.1 105.7 4.4 2.2 1.3 23114002 112
 0.7 0.7 0.3 0.969 0.933 0.998 23114002 113
 0.997 23114002 114
 19.36 0.15 89.5 8.2 3.1 6.3 23114002 115
 2. 0.6 1.3 1.0061 1.0157 0.941 23114002 116
 0.926 23114002 117
 19.95 0.07 102.1 5.8 4.1 1.4 23114002 118
 1. 0.6 1.4 0.9822 0.9433 0.922 23114002 119
 0.891 23114002 120
 20.61 0.04 77.9 8.8 5.4 5.7 23114002 121
 1.6 0.6 1.4 0.9938 0.982 0.885 23114002 122
 0.832 23114002 123
ENDDATA 33 0 23114002 124
ENDSUBENT 123 0 2311400299999

Original EXFOR: 3 lines per data point • EXFOR with DATA and COMMON sections presented
in CSV form (including headers, units, pointers coded
in one line) is fully equivalent to EXFOR

• compact, clearer, easy to observe and make copy/paste

• better if we need significantly extend number of partial
uncertainties (may be needed for SG54 curated data)

EXFOR DATA-CSV exported to EXCEL:

DATA in CSV form (comma separated values):
STATUS (TABLE) Table V of Phys.Rev.C81(2010)064604, 23114002 81

Appendix B of Sage's thesis (micro correlation)23114002 82
HISTORY (20130924A) On. ERR-ANALYS, COVARIANCE etc. 23114002 83
ENDBIB 81 23114002 84
COMMON 4 3 23114002 85
#h:23114002:COMMON,ERR-3:PER-CENT,ERR-4:PER-CENT,ERR-5:PER-CENT,ERR-6:PER-CENT
#,1.2,0.1,0.3,3
ENDCOMMON 3 0 23114002 86
DATA 13 9 23114002 87
#h:23114002:DATA,EN:MEV,EN-ERR:MEV,DATA:MB,ERR-T:PER-CENT,MONIT-ERR:PER-CENT,ERR-1:PER
#,8.34,0.15,96.8,6.5,1.9,5,1,0.9,,0.9974,0.9925,1,1
#,9.15,0.15,162.9,5.7,1.9,4,1,0.6,,1.0731,1.3117,1,1
#,13.33,0.15,241.8,4.6,1.6,2.5,1,0.4,0.3,0.9168,0.8288,1,1
#,16.1,0.15,152.4,4.6,2,2.1,1,0.6,0.3,1.0749,1.2335,1,1
#,17.16,0.03,116.1,4.4,2,1.5,1,0.6,0.3,0.9987,0.9878,0.998,0.997
#,17.9,0.1,105.7,4.4,2.2,1.3,0.7,0.7,0.3,0.969,0.933,0.998,0.997
#,19.36,0.15,89.5,8.2,3.1,6.3,2,0.6,1.3,1.0061,1.0157,0.941,0.926
#,19.95,0.07,102.1,5.8,4.1,1.4,1,0.6,1.4,0.9822,0.9433,0.922,0.891
#,20.61,0.04,77.9,8.8,5.4,5.7,1.6,0.6,1.4,0.9938,0.982,0.885,0.832
ENDDATA 10 0 23114002 88
ENDSUBENT 99 0 2311400299999

Largest EXFOR Entry: 14508
- with right-column: 94MB 100%
- without right-column: 51MB 54%
- with DATA in CSV: 31MB 33%

$ python -B EnsDom.py 177LU.ens
$ python -B EnsJson2Cards.py 177LU.ens.json
$ ens2flag6 177LU.ens > 177LU.ens.cmp
$ ens2flag6 177LU.ens.json.ens > 177LU.ens.json.ens.cmp
$ mycmp 177LU.ens.cmp 177LU.ens.json.ens.cmp
$ cat ens2flag6.c
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#define LSTR 520
char str[LSTR];
int main(int argc,char **argv)
{

char ch, *ss, *fgets();
FILE *in;
char *infile;
int i;
if (argc<2) {

printf("At least one parameter needed!\n");
return(0);

}
argv++; argc--;
if (argc>0) {infile=*argv++; argc--;}
in=fopen(infile,"r");
if (in==NULL) return(-1);
for (i=0; ;i++) {

ss=fgets(str,LSTR-1,in);
if (ss==NULL) break;
if (strlen(str)>6) {

ch=str[5];
if (ch!=' ') str[5]='.’;

}
printf("%s",str);

}
}

Command line interface: tests, validation, utilities.

1) Translate ENSDF to MyEnsdf.json
2) Translate MyEnsdf.json to ENSDF
3) Modify flag-6 to “.” for continuation records
4) Compare initial and finel ENSDF

ENSDF +--------------------------------------+
| Update EXFOR files. |
| Program x4update.py ver.2024-11-13 |
| by V.Zerkin, Vienna, 2024 |
+--------------------------------------+

Program: x4update.py
Package "x4py" version: 1.0.0
Running: 2025-06-18 21:29:50
Help.
Purpose: merge/update EXFOR files
Functions:
* standalone maintenance of EXFOR Master file
* join/merge EXFOR files using latest Subentries
* cut EXFOR text after 66th column and right-trim strings
* add right column after 66th column to EXFOR text
* sort Entries in EXFOR file
* supporting NOENTRY (to exclude Entry from output)
* split EXFOR file(s) by ENTRY and store one file for one Entry

Algorithm:
* program in the loop on command line arguments:
- reads EXFOR file (Backup/Master/TRANS or any other) into buffer
- inserts/overwrites next Entry/Subentry into the buffer
- accepts options and formatting parameters

* output content of buffer to new EXFOR file or directory
Usage: $ python [{flag}] x4update.py {[option|file]}
* flag: see all Python flags: $ python --help
-B don't write .pyc files on import

* option:
-help print this help-text and exit (also --help)
-h:<hdr> set header-line in output file (default: -t:REQUEST)
-n1:<N1> set N1 in header-line (default: -n1:777)
-wide add to EXFOR file right column (default: cut after 66-col.)
-o:<file> write final buffer to new EXFOR file
-d:<dir> split final buffer by Entry to directory structure
-sdd set date of modification by Entry.N2 to <dir>
-i:<Ent> include Entries starting with <Ent>
-x:<Ent> exclude Entries starting with <Ent>
-v:<show> verbose - show details of the process

* file: file name should not start with sign "-"
<file> path of an EXFOR file (can be relative or absolute)

Examples:
1) load Master file, update by Trans-file(s), write new Master file

$ python3 -B x4update.py EXFOR-2023-06-30.bck trans.4213 -o:out1.bck -h:LIB
2) insert/replace EXFOR Entries into TRANS file, verbose (trace of the processing)

$ python3 -B x4update.py trans.4213 mm03.x4 -wide -h:TRANS -n1:4213 -o:trans.4213 -v:1
3) split EXFOR file into sub-directoriess by Entries, set dir-dates by Entry:N2

$ python3 -B x4update.py EXFOR-2023-05-23.bck -wide -d:x4all -sdd
4) join EXFOR files from Area-4 to single file (use with bash or in MinGW/MSYS)

$ python3 -B x4update.py x4all/4/*/*.x4 -o:area4.x4 -wide
5) merge EXFOR files, filter Entries: include 41* and exclude 414*, output Entries to

out1/
$ python -B x4update.py trans.4213 mm03.x4 trans.e150 -d:out1 -i:41 -x:414

6) print help message and exit
$ python3 -B x4update.py

x4update.py – update, split and merge
EXFOR files, maintain Master file
without intermediate files;
using “x4py” package

EXFOR

Technical:
Step-1. Low-level EXFOR-Driver. Done:

1. small library of classes written in Python and JavaScript
2. needs only valid EXFOR file/text (Dictionaries are not required)
3. implements sequential and direct access using DOM
4. works with small (one Entry) and large files: retrieved/assembled/Trans/Prelim/Master
5. can translate EXFOR to JSON and backward from JSON to EXFOR and CSV
6. having command-line and Web interface for translation with various options and operations
7. integrated with Web-App “JSON-Tree editor”

Possible plans:
1. Step-2: classes for specific coding of essential BIB-keywords
2. Step-3: connection to EXFOR-Dictionaries
3. Step-4: datasets, variables and computational values
4. etc. … finally reproducing functionality of x4java/x4pro/c5/x5

Conclusions/Proposal/Question:

1. Several EXFOR parsers and converters to different versions of JSON exist

2. There is no EXFOR-JSON format agreed in NRDC and recommended for end-users (X5json?)

3. Recommended/stable/tested EXFOR-Driver is missing as starting tool for users who want to use
original EXFOR instead of Web/X4Pro/X4Pro/C5/X4+ (e.g. WPEC-SG50/SG54).

4. If supported by NRDC, a common/generic low-level EXFOR-Driver on Python/JavaScript can be
discussed in detailed, published as open-source product, further developed and possibly recommended
for SG54 and other users’ communities

5. Are NRDC, NNDC, SG54 and other nuclear data communities interested in ND-JSON-Tree Editor?
If yes, conclusion and support are needed.

Concluding remarks

Citing of the materials of this presentation should be done with proper acknowledgement of the author

Thank you.

