

International Atomic Energy Agency

INTERNATIONAL NUCLEAR DATA COMMITTEE

THE COMPUTER LIBRARY OF EXPERIMENTAL NEUTRON DATA

(Extract translation of Nuclear Constants Vol. 19)

V.M. Bychkov, V.N. Manokhin, V.V. Surgutanov

Translated by the IAEA May 1976

IAEA NUCLEAR DATA SECTION, KÄRNTNER RING 11, A-1010 VIENNA

Reproduced by the IAEA in Austria June 1976 76-3982 THE COMPUTER LIBRARY OF EXPERIMENTAL NEUTRON DATA

•

(Extract translation of Nuclear Constants Vol. 19)

V.M. Bychkov, V.N. Manokhin, V.V. Surgutanov

Translated by the IAEA May 1976

Voprosy atomnoj nauki i tekhniki Seriya: Yadernye Konstanty Vyp. 19 - Atomizdat 1975 Pp. 181-198 (Questions of atomic science and technology Series: Nuclear Constants Vol. 19 - Atomizdat 1975)

THE COMPUTER LIBRARY OF EXPERIMENTAL NEUTRON DATA

V.M. Bychkov, V.N. Manokhin, V.V. Surgutanov

ABSTRACT

The paper describes the computer library of experimental neutron data at the Obninsk Nuclear Data Centre. The format of the library (EXFOR) and the system of programmes for supplying the library are briefly described.

Introduction

The nuclear data requirements of the growing nuclear power engineering industry have led to a need for the systematic collection of bibliographic and numerical data on the subject of nuclear physics and for establishing a computerized library of experimental neutron data to serve as a basis for a library of recommended evaluated nuclear data. The establishment of a fairly complete experimental data library was possible thanks to the development of international co-operation in the exchange of experimental nuclear data.

At present an exchange of neutron data is being carried on under a system embracing four neutron data centres: Brookhaven (USA), Saclay (France), IAEA (Austria) and Obninsk (USSR). Each of the four centres collects and abstracts the entire literature from its geographical region for the CINDA computerized bibliographic catalogue; it also records factographic information in a special exchange format (EXFOR), which is processed and accepted for exchange purposes and which is now being improved and extended at the annual meetings of the four centres [1, 2]. The Obninsk Nuclear Data Centre is collecting and abstracting information on neutron physics within the USSR [3]. The documentation abstracted in exchange format is recorded on magnetic tape and sent out to the other centres abroad. In this way a computer-based worldwide library of experimental neutron data is being set up at each of the centres. The exchange format provides for the recording not only of numerical value but also of additional information supplying facts about experimental conditions and methods of processing measured values, which is very important for the subsequent evaluation of these data. The exchange format is similar to the SCISRS-II library format (Brookhaven), a detailed description of which is given in a report of M.D. Goldberg, which also traces its background. In the case of the Nuclear Data Centre, EXFOR is not only the input format but also the format of the library itself. At present the library contains 1100 experimental studies, representing approximately 1.1 million lines of information, of which around 900 000 are lines with numerical data. The library has a computerized catalogue.

In the sections that follow we briefly describe the content of the library, the main positions and the structure of the exchange format, and also the associated system of programmes supplying the library, as processed and supplied to the Nuclear Data Centre for the M-222 computer.

Content of the library

The library of experimental neutron data in EXFOR format contains the following types of data:

- (a) Total cross-sections obtained from transmission experiments;
- (b) Cross-sections for elastic and inelastic scattering, radiative capture; cross-sections with emission of charged particles (p, d, t, a), differential (in terms of angle and energy) cross-sections for the reactions in question, partial cross-sections of excited levels of a residual nucleus, integrals and average cross-sections for various spectra;
- (c) Resonance parameters (energy, spin, level width), neutron strength functions;
- (d) Cross-sections for coherent and incoherent scattering and coherent scattering amplitude;
- (e) Fission-reaction cross-sections, values of $\alpha, \overline{\nu}, \eta$, fission product yields.

In addition to numerical data on the above-mentioned reaction crosssections and values, the library includes the following types of information concerning experimental conditions and methods of deriving and processing data:

- (a) Neutron source characteristics (intensity, neutron energy, polarization);
- (b) Characteristics of particles emitted or scattered by a sample;
- (c) Standards used for normalizing cross-sections (in relative measurements);
- (d) Experimental facility (type of reactor, accelerator etc);
- (e) Experimental methods;
- (f) Experimentally recorded particles and type of detector;
- (g) Description of sample (isotopic composition, number of nuclei);
- (h) Indication of systems of co-ordinates used for data on angular distribution;
- (i) Method of processing experimental results, error analysis;
- (j) Description of corrections applied to experimental data and error thereof.

In preparing their reports experimenters must include essential information on the points listed above. Analysis of errors and of corrections is particularly important. In view of the different correlation characteristics of errors, it is essential to indicate separately the statistical error, the standard errors and the corrections made.

The library format

At present the format of the experimental neutron data library is the exchange format (EXFOR). The exchange format provides for the recording of numerical and bibliographic information, the latter term being understood as meaning not only a reference to the data but also a description of the methods used for processing them. Each input into the library corresponds to a published item containing the results of a neutron experiment and is termed an ENTRY. The entry is divided into SUBENTRIES in such a way that the subentry is a record of information relating to only one type of cross-section for a single isotope.

The subentry is divided in turn into three sections: BIB, COMMON and DATA. The BIB section contains information which can be used in making a bibliographic search (reference, authors' names, institute) and a description of the experiment by means of key words, codes and free text. The COMMON section contains data common to all the subentries, e.g. energy of incident neutrons in the case of differential scattering cross-sections. The DATA section contains direct numerical data from experiments. The words ENTRY, SUBENTRY, BIB, COMMON, DATA are systems identifiers and denote, respectively, the start of operations, subentries, the bibliographic sections, the common data sections and the data sections. The systems identifiers used to denote the termination of operations, suboperations or work with one of the subsections are: ENDENTRY, ENDSUBJECT, ENDBIB, ENDCOMMON and ENDDATA.

The fact that the relevant section is lacking is indicated by the identifiers NOBIB, NOCOMMON, NODATA.

The first subentry under every entry concerns only the BIB and COMMON sections, which contain bibliographic and common numerical data relating to subentries under the particular entry. Within the bibliographic section BIB the information is differentiated in terms of key words (see Annex No. 1), the data themselves being presented by means of special codes which can be used for computer retrieval of essential information. The BIB section contains free text, which is used for the description of bibliographic information. For the input of information written in the exchange format use is made of a format based on a standard 80-column punch card, i.e. the line length of an individual recording is limited to 80 symbols. Columns 1-66 are occupied by the text (bibliographic information and numerical data). The system identifiers and key words are placed in columns 1-11, the codes are placed in brackets and begin from the 12th column. After this comes the free text. Columns 67-80 are used for the sample identification of each line. Columns 67-71: ENTRY number; 72-74: SUBENTRY number; 75-79: number of line in SUBENTRY. The symbol of the data editing body appears in column 80. With the format organized in this way, any line or subentry can be corrected, replaced or deleted by means of the programmes used for supplying the system.

The first figure of the ENTRY number denotes the number of the centre which wrote the paper in the exchange format:

NNCSC (Brookhaven, USA)
NDCC (Saclay, France)
NDS (Vienna, Austria)
TsYaD (Obninsk, USSR)

The centres are working continuously to improve and extend the format with a view to including new types of data and also to recording the data in a more convenient and compact form.

- 4 -

Programme support of the library

A system of programmes has been developed and set up in the Nuclear Data Centre for the purpose of processing the flows of information. Depending on the purpose for which they are intended the programmes can be subdivided into a number of groups.

The first group of programmes covers the preliminary preparation of neutron data for input into the library.

The second group has to do with internal library operations: sorting, ordering, cataloguing etc.

The third group is concerned with exchanges of information with centres abroad.

The fourth group covers the retrieval and extraction of data relating to inquiries of users by printouts, perforated tapes, recordings on magnetic tape in various formats. The programmes of the system are written in ALGOL (translator TA-IM) [5, 6] and FORTRAN [7].

The nucleus of the system consists of programmes which serve to perform the following operations:

1. Preparation of the information for input into the library

This process covers programmes of reading standard IEM tapes which come from foreign centres; it involves the preparation of a recording of the contents on magnetic tapes of an M-222 computer or the preparation of printouts. Programmes prepared by the Nuclear Data Centre for recording in an ML-222 compilation also come under this heading.

2. Checking the prepared information

The prerequisite for avoiding uncertain situations in operations with data in EXFOR format is strict compliance with the formalism of EXFOR. This involves:

- The external structure, as described in the introduction, i.e. subdivision of the information into entries, subentries and sections of subentries, each part being differentiated by means of identifier words, auxiliary information and numerical identification of lines;
- Internal structure, i.e. key words, the information associated with them, the retrieval mnemonic codes, rules for recording numerical tables etc.

The programme checks compliance with the conditions of external and internal structure in the recording of compilations and indicates the errors which have been found.

In principle there is also the possibility of making checks for meaning in the compilation of the separate groups of recordings in the entries. It is intended to supplement this step in future on the basis of advanced mathematical treatment.

3. Correction of errors

The condition of unique identification of each line of the data library on EXFOR format provides a fairly simple means of identifying the place for introducing changes in the original text. The programmes for error correction constitute operations either on individual lines or on groups of lines in the subentries and on the subentries as a whole, involving the deletion, introduction or exchange of data items, as appropriate.

4. Compilation of catalogues

In order to familiarize data users with the contents of the library, the programmes are devised for formulating data catalogues. These include the catalogue of the library as a whole or of parts thereof and the catalogue of exchange tapes sent to foreign centres. The first-mentioned catalogue is a list of the data available at the Nuclear Data Centre. The catalogue data are concentrated in lines which are ordered on the basis of the elements of the periodic table and by reactions. Each line contains information about the element (isotope), reaction, energy interval, number of points, brief bibliographical information and number of the reference in which the corresponding material is to be found. To some extent this catalogue is identical with the CINDA catalogue.

The second catalogue is an abridged version of the first, the items recorded corresponding to the order of the numbers of the entries and subentries in the exchange tape.

There are also programmes for the compilation of specific catalogues in response to internal requirements connected with library processes.

5. The input of information into the library

At present the library consists of texts of studies recorded on M-222 magnetic tape in EXFOR format. The studies are arranged in ascending order of the numbers assigned to them. The inclusion of new studies is effected by merging incoming information with that already included in

- 6 -

the library and by simultaneous re-ordering in accordance with established rules. The recording of the original library is conserved, so that the operation can be repeated if errors are found or if difficulties occur in the compilation of a new data library.

6. Extraction of data from the library

At the Nuclear Data Centre a number of programmes have been developed and written for the retrieval and extraction of data from libraries on magnetic tape, punched tape, punched cards and printouts. A special programme transforms the data into some intermediate format for subsequent processing by an M-222 computer and output on a plotter.

In conclusion the authors would like to mention that at various stages of the work of developing algorithms and of writing and setting up the programmes for supplying the data library, they had the benefit of co-operation from the following associates of the Nuclear Data Centre: S.M. Nasyrova, V.M. Pan^{*}kov, N.E. Kuznetsov and E.N. Korol^{*}.

REFERENCES

- Report on the Ninth Four-Centre Meeting, Moscow/Obninsk, 1973, INDC (NDS)-54G.
- [2] Report on the Tenth Four-Centre Meeting, Paris, 1974, INDC (NDS)-58G.
- [3] USACHEV, L.N., MANOKHIN, V.N., Experience gained by the Obninsk Nuclear Data Centre in operations and international co-operation. Report to the Fourth International Conference on Numerical Data, Tsakhkadzor, 1974 (in Russian).
- [4] GOLDBERG, M.D., "Numerical Data Libraries of the National Neutron Cross-Sections Center". Proc. of Conference Neutron Cross-Sections and Technology, Knoxville, Vol. 1, 332 (1971).
- [5] LYASHENKO, V.F., Digital computer programming with an M-20 command system, SOVETSKOE RADIO, Moscow, 1974 (in Russian).
- [6] PAN*KOV, V.M., FORMAT operator in ALGOL. Preprint FEI-395, Obninsk, 1973 (in Russian).
- [7] ISAEV, V.S., ZAGINAJKO, V.A., EGOROVA, I.P., System of mathematical support, Dubna - All-Union Scientific Research Institute for Geophysics, for BESM-4 and M-222 computers, Moscow 1973 (in Russian).

- 7 -

	,	6632	-10002			516356667733
51 HEA 7	100:	8431	-15202			309360010050
818 -		14	23			1.0350010001
7 7 7 1 2	「デモロップしょ	TTONS IN	THE TOTAL -		ON OF ENDARY	3033603100300
	REACTIO	N S				
▲ばす≒つる	3.CSIK	41)				300300010000
TRSTITUTE	C SHUNDE	67				300300010000
PCFERENCE	P, EAND	- 5+505.2.4	521.63.71	6046 990c	5474 TABLE	300-300100008
	(C.654N	1WERP	6507) 1851	LACT FULL	ADER FEANDELE	3002200100003
	(JAKAS	. 79	PANT OF TH		FFER SEANDUSE	2 3003000100008
FACILITY	TACCELS	3co xFv -	FUPBATen	- 3131 3 0 H	1 - DE DURF 1 M 3 1 A D L	E 3593000100009
N-COURCE	(0-T) D	SUTEPTUN_		CTICKLEY BU	161	3003500100010
NETHER	(ACTIV)		PT-JOW RC	CITON -		3003830100011
OFTECTOR	CHATCRS					3003800100012
	16461 6	**************************************	TTA TOLATO	R FOR GAMMI	ALLINES	3003600100013
	CALINA	9 FOLK LJUN 9 FO WITH J	TILP FUE BE	JA PARTICLE	ES, COUNTERS WE	RE 3003800100014
	LONG CO		ITHOTED 20	URCES, FLUI	K MONITURED WIT	M 3003800190015
FRA-ANAL VS	NOTUE	UNICA END	PLASTIC SC	INTILLATOR		3003800100016
COSPECTION	RESULTS				•	3003800100017
	DISTRIA	TION OF	ESTED FOR	THE LABORAN	TORY ANGULAR	3503800100018
STANDARD.	139.00-		HE NEUTRON	5		3003800100019
J ANDENV	SASED D.	ESINZNI VI	LUE AT 14.	6 MEV TAKEN	AS ABSOLUTE	3003800100020
		N EXCIPATI	ON FUNCTIO	N AND VALUE	E AT 14.1 MEVIS	EE 3003800100021
PERTADET	(00) 05/	UCNIRY .00	()			3053800100022
STATILS	(PUAL)	LAY-GINNA				3003800100023
41-T064	1700001	ΠΡΙΚ ΤΑΚΈΝ - 1	FROM EAND	9-905 PAPER	102/TABLE 2	3003600100024
ENARTS	1 20 20 20 20	.,				3003500100023
CC4404		25	-			3003800100026
EN-NDM	51-051	3	3			3003800100027
L	Low Roll	STAND				3003800100028
16 6		48				5003600100029
17.9	U e L	541,9				3003800100030
ENGLUMMUN		3				3003800100031
CHOSUBENI		30				3003800199999
SUBENI	20028	005 7	10>02			3003800500001
		1	1			3003800500002
190-60441	(20-12-3	4 + N 2 N 1				3003800590003
FUDGIE		1				3003803500004
NOCOMMON						3003800500005
UATA		4	1			3003400500006
211	214-856	DATA	DATE-1	a R		3093800500007
NEV	we V	MB	M.B.			300368450008
14.6	0.1	16.0	3.0			3003800500005
ENDDATA		3				3083800500010
ENGSUBENT		ç				30838003399999

Bibliographic index of studies included in the compendium of the international system CINDA[#])

ISOTOPE	CROSS SEC- TION TYPE	INSTITU- TE	MIN ENERGY	MAX (EV)	REFE	RENCI	E :	DATE	FIRST AUTHOR, COMJENTS
96-Cm-244	N25	FEI	PILE		YPI	19	3	75	ZHURAVLEV SIG=1 0+0.2 BARN
96- Cm- 245	NP	FEI	PILE		YEI	19	3	75	SIG=2055+150 BARN
96-Cz-246	NP	FEI	PILE		YEI	19	3	75	SIC=0.14+0.05 BARN
96-Cm-247	NP	FEI	PILE		YEI	19	3	75	SIG= 79 <u>+</u> 7 BARN
96-Cm-248	NF	FEI	PILE		YEI	19	3	75	SIG=0.39±0.7 BARN
96-cm-244	RIF	FEI	PILE		YEI	19	3	75	SIG=13.4±1.5 BARN
96. Cm-245	RIF	FEI	PILE		YEI	19	3	75	SIG=802 ± 80 BARN
96-Cm-246	RIF	FEI	PILE		YEI	19	3	75	SIG=13.3+1.5 EARN
96-Cm-247	RIP	PEI	PILZ		YEI	19	3	75	SIG=725 +70 BARN
96-02-248	RIP	PEI	PILE		YE1	19	9	75	SIG=13.1+1.5 BARN
3-Li -006	AK	PEI	2,5-2	1.05	YFI	19	10	75	SEREGINA SIG(NEUT-E), TBL, GRAPH
98-Cf-252	5	PEI	SPON		YP I	19	16	75	VOROB'EVA KE OF FRAGS, TBLS
92-0-235	spn	PEI	THR		YBI	19	16	75	VOROB'EVA KE OF FRAGS, TBLS
92-0-238	SPS	fei	SPON		YB1	19	16	75	VOROE'EVA KE OF FRAGS, TELS
94-Pu-240	S7N	PEI	SPON		YEI	19	16	75	VOROB'EVA KE CF FRAGS, TELS

.

A) 103 - FIDSION: RIF - RES INT FIDS: NA - N, ALPHA; SPN - SPECT FISS N; GP - PHOTO-FISSN; 104 - N. GLAMA; DEL - DIFF BLACTIC: DIN - DIFF INELADT; DNG - INELST GAMMA: FVL - EVALUATION

1007012	URACIO S STA 1 1903 Mileio	анан улан Анар уль Тар	i ing i Ng ing ing ing ing ing ing ing ing ing in	AND SUPERIOR	: : 5/22	Part Augura, economic
34-21-242	SFR	FSI	5:08	YFI 19 16	<u>1</u>	VOROB+EVA
96- Ciii 244	SAN	P 352	aros	YUI 19 16	75	KE OF FRACS, THE VOROBLEVA
96- CH-246	SEN	FEI	SPOR	YEI 19 16	75	KE OF ERAGS, THIS VOROB'EVA
96– ^C ≋–248	SEN	F JI	SPOR	YEL 19 16	75	KE OF FRAGS, TBLS VOROB'EVA
960 m-250	Sen	FEI	SP01	YEI 19 16	75	KE OF FRAGS, THIS VCROBIEVA
98- 01-246	Sen	PEI	Spon	YEI 19 16	75	KE OP FRAGS, THIS VOROB'EVA
93-91-248	Sen	F >1	SPOR	YET 19 16	75	KE OF ILAGS, THES VOROBIEVA
98- C 1-250	SEN	F21	S PO!!	YEI 19 16	75	KE OF FRAGS, TBLS VOROBIEVA
93-0 1-25 2	SEN	Fei	Spon	YBI 19 15	75	KE OF FRAGS, THES VOROBIEVA
98-CC-254	SEN	Pei	SPON	YEI 19 16	75	KE OP PRAGS, TELS VOROPIEVA
98- ¹²⁸ -253	SEM	Fei	Spoil	¥31 19 16	75	KE OF FRACE, THIS VCROB'EVA
10(ን ም፹ 254	SEN	FEI	SPON	YEI 19 16	75	KE OF FRAGE, THIS VOROB'EVA
100-Fti-256	SEN	7 EI	SPON	YEI 19 16	75	KE OF FUAGS, THES VCRON'EVA KE OF FEAGS THES

ISOTOPE	CROSS SEC TION TYPE	INSTITU- TE	MIN ENERGY	MAX (EV)	Re f er	ence	: DATE	: FIRST AUTHOR, COLMENTS
90- Ib- 229	SPN	FEI	THR	Y	BI 19	16	75	VOROB'EVA KE OF FRAGS, TELS
92 -U-233	spn	PEI	THR	Y	B I 19	16	75	VOROB'EVA Re of Frags, Tels
94-Pu-239	SFR	YEI	THR	Y	BI 19	16	75	VOROB'EVA KE OF FRAGS, TELS
94-Pu-241	SPR	FEI	TER	Y	BI 19	16	75	VOROB'RYA KE OF FRAGS, TELS
95- <i>1</i> m-241	S FN	P EI	THR	Y	BI 19	16	75	VOROB'EVA TOE OF FRAGS, TBLS
96 - C 2-245	SFR	FEI	THR	Y	BI 19	16	75	VOROB'EVA KE OF FRAGS, TELS
98- C1 -249	SFN	PEI	THR	r	EI 19	16	75	VOROB'EVA KE OF FRAGS, TBLS
98- Cf- 251	SPN	FE I	THR	Y	EI 19	16	75	KE OF FRAGS, TELS
99-Es-25 4	SFN	FEI	TIR	Y	EI 19	16	75	VOROB'EVA KE OF FRAGS, TELS
100- 2 m-25	5 SFT	PEI	THR	Y	TEI 19	16	75	VOROB'EVA
90-Tn-232	SPN	P BI	1.46	5.6 ⁶ Y	TEI 19	16	75	KS OF FRAGS, TELS Vorob'EVA KE of Prags, Tels
98-01-252	spi	FEI	1.96	•.8 ⁶ Y	EI 19	16	75	VOROB'EVA

et al potential et al potential	ol kal Sede Proc Miles	TESTITU- TE	ki di Kasa	1947 (27)	: : 15213	سو د المر لوله مي:	······································	DATE :	FIGST AUTHOR, COULDING
25-17-240	,170 ,	Fri	C	6	YEI.	19	16	75	VOROB'EVA KE OP FRACS, TBL
99-9-26 3	020	P21	7.0-2	5.4 ⁶	Yr:I	19	16	75	VOROBIUVA KE OF FRAGS, TEL
()-1 <u>7</u> 77	SPX	FEI	3.0 ⁵	4.7 ⁶	Y 7 T	19	16	75	VOROB'EVA KE OF FRAGS, TEL
(K)=1=233	Srif	FEI	2.6-2	1.05	YEI	19	16	75	VOROB'EVA KE OF FRACS, TEL
01-0-205	STH	PZI	1.2 ⁵	6.0 ⁶	YEI	19	16	75	VOROB'EVA KE OF FRAGS, TBL
92 V-805	SPA	F 21	8,0-2	5.0 ⁶	Y£I	19	16	7 5	VOROD'EVA KE OF FRAGS, TBL
92-15-235	Shi	IST	5°02	9.0 ⁵	X SI	19	16	7 5	VOROB'EVA KE OF FRAGS, TBL
92-0-235	SFN	PEI	1.25	6.0 ⁶	YFI	19	16	75	VOROE'EVA KE OF FRAGS, TBL
92-0-238	sfn	FEI	1.30	5.36	X BI	19	16	75	VOROB'EVA KE OF FRAGS, IBL
92 -U-23 8	SFN	PEI	1.56	5.66	Y £I	19	16	75	VOROB'EVA KE OF FRAGS, TBL
92-0-238	SFN	FEI	0	6	YEI	19	16	75	VOROB'EVA KE OP FRAGS, TEL
93-Np -237	SFN	FEI	7.05	5•4 ⁰	YEI	19	16	75	VOROBIEVA KB OF FRACS, TBL

ISOTOPE	CROSS SEC-	INSTITU- TE	HIN ENER	MAX GY (EV)	REFR	uence		DATE	FIRST AUTHOR, COMMENTS
93-Np-237	SFN	PEI	0	6	YEI	19	16	75	VOROB'EVA KE OF FRAGS, TBL
94-Pu-23 9	SFN	FEI	8.0 ⁴	5.3 ⁶	YBI	19	16	75	VOROB'EVA KE OF FRAGS, TEL
94-Pu-24C	SFN	FRI	8.5 ⁵	4.9 ⁶	YEI	19	16	7 5	VOROB'EVA KE OF FRAGS, TBL
94-Pu-241	SPN	FEI	2.8 ⁵	5.06	YEI	19	16	75	VOROB'EVA KE OF FRAGS, TEL
94-Pu-242	SFN	PEI	7.05	4. 9 ⁶	YEI	19	16	75	VOROB'EVA KE OF PRAGS, TEL
88-Ra-226	spn	FEI	7.8 ⁶	1.27	YRI	19	16	75	VOROB'EVA KE OF FRAGS, TBL
88-Ra-226	SPN	FEI	7•1 ⁶	1.47	YRI	19	16	75	VOROB'EVA KE OF FRACS, TBL
90-Th-232	GF	CCP	5.0 ⁶	1.27	YBI	19	42	75	IVANOV YLD OF FRAGS, GRAPH, CFD, TBL
92 -U- 238	0 p	CCP	5.0 ⁶	1.27	YRI	19	42	75	IVANDV YLD OF FRAGS, GRAPH, CFD, TEL
93-Np-237	GP	CCP	5.06	1.27	Yei	19	42	75	IVANOV YLD OP FRAGS, GRAGS, GRAPH,CDD, TEL
94-Pu-239	GP CP	CCP	5.0 ⁶	1.27	Yei	19	42	75	YID OF FRAGS, GRAGS, GRAFH, CFD, TEL

.

iconger	CHCES CEC- 1100 IYFE	INSTITU- TE	MIN EMERO	MAX (EV)	: : KSFDF	ENCI	2	DATE	: FIRST AUTHOR, CONSERVAL
49-1: 4	. ¥а	FEI	5.0 ³	8.04	YEI	19	57	75	SHORTH SIG(NEUT-E), TEL, JRAPH
53-1-127	NG	PEI	5.0 ³	8.04	YEI G	19	57	75	SHORIN SIG(NEUT-2), TBL, GRAFH
79 -1 97	NG	PEI	5.0 ³	8.04	YEI	19	57	75	SHORIN SIG(NEUT-E), TBL, SRAPH
73-Ta-181	NG	Pei	5.0 ³	8.04	YEI	19	57	75	SHORIN SIG(NEUT-E), TEL, GRAPH
4-Be-00 9	DEL	FEI	4.4 ⁶		YE I	19	66	75	TRYKOVA SIG(ANG), TBL, GRAFE
13-41-027	DEL	Pei	4.4 ⁶		¥ei	19	66	75	TRYKOVA SIG(ANG), TBL. GRAF!!
39-1-0 89	DEL	PEI	4.46		YEI	19	66	75	TRIKOVA SIG(ANG), TEL. GRAPH
42-No	DEL	PEI	4.4 ⁶		A RI	19	66	75	TRYKOVA SIG(ANG), TBL, GRAPH
83-B1-209	DEL	FEI	4.4 ⁶		YEI	19	66	75	TRYKOVA SIG(ANG). JEL. GRAPH
4-Be-009	DIN	7BI	4.46		1e1	19	66	75	TRYKOVA SIG(ANG), TEL, GRAPH
13-11-027	DIN	PEI	4.4 ⁶		YEI	19	66	75	TRYKOVA SIG(ANG), TBL, GRAPH
39 -Y-0 89	DIN	PEI	4.4 ⁰		X2I	19	66	75	TRYKOVA SIG(ANG), TEL, GRAPH
42 ~X o	DIN	ye i	4. 4 ⁶		YEI	19	66	75	TRYKOVA SIG(ANG), TBL, CRAPH
8 3- 8i -20 9	DIN	PEI	4.46		Yei	19	66	75	TRYKOVA

ISCTOPE	CROSS SEC-	INSTITU- TE	MIN Energy	MAX (EV)	REFE	RENCE	:	DATE	PIRST AUTHOR. COLMERTS
40-?r	DIN	FEI	4.4 ^b		YEI	19	66	75	TRYKOVA SIG(ANG), TBL, GRAPH
40-2r	DEL	FEI	4.46		YEI	19	66	75	TRYKOVA SIG(ANG), TEL. GRAPH
3-Li+006	DNG	CCP	1.47		YEI	19	77	75	BEZOTOSNY TOF, SIG, TBL
3-Li-007	DNG	CCP	1.47		TEI	19	77	75	BEZOTOSNY TOF, SIG, TBL
4-Be-009	DNG	CCP	1.47		YEI	19	77	75	BEZOTOSNY TOP, SIG, TBL
5-B-010	DNG	CCP	1.47		YEI	19	77	75	BEZOTOSHY TOF, SIG, TEL
6- C- 012	DNG	CCP	1.47		YEI	19	77	75	BEZOTOSNY TOP, SIG, THL
7-N-014	DNG	CCP	1.47		YEI	19	77	7 5	BEZOTOSNY TOP, SIG, TEL
8-0-016	DNG	CCP	1.47		YBI	19	77	75	BEZOTOSNY TOF, SIG, TBL
13-11-027	DNG	CCP	1.47		YE I	19	77	75	BEZOTOSKY TOF. SIG, TBL
26-FE	DNG	CCP	1.47		A RI	19	77	7 5	REZOTOSNY TOF, SIG, TBL
73-Ta-181	DNG	CCP	1.47		YEI	19	77	7 5	BEZOTOSNY TOP, SIG, TEL
74-W	DNG	CCP	1.47		YEI	19	7 7	7 5	BEZOTOSNY TOF, SIG, TBL

.

	ISOTOPE	CROSS SEC- TION TYPE	INSTITU- TE	MIN ENERGY	MAX (EV)	REFE	RENCE	DATE	FIRST AUTHOR. COLLENTS
	82-Pb	DNG	PEI	1.47		YEI	19 7 7	75	BEZOTOSNY TOF, SIG. TEL
,	24-3r	DIN	Pei	9•1 ⁶		YEI	19 84	75	BIRJUKOV DETERM OF SPIN CUT- - OFF PAR
	26- P e	DIN	Fei	9.1 ⁶		YBI	19 84	75	BIRJUKOV DETERM CP SPIN CUT- OFF PAR
	27 -C o -05 9	DIN	Pei	9.1 ⁶		YBI	19 84	75	BIRJUKOV DETERM OF SPIN CUT- OFF PAR
	28-Ni	DIN	Fei	9 . 1 ⁶		YEI	19 84	75	BIRJUKOV DETERM OF SPIN CUT- OFF PAR
	39-Y-0 89	DIN	PEI	9•1 ⁶		YEI	19 84	75	BIRJUKOV DETERM OF SFIN CUT- OFF PAR
	26- Pe-05 6	EVL	FEI	1.06	1.57	YEI	19 110	75	BYCHKOV SIG,NG,DIN,NP,MA, TOT, TBLS
	41- 17b-093	DIN	FEI	1.47		YEI	19 143	75	SAPRYKIN METHOD OF ANAL DIN, GRAPHS
	26 -Pe-0 56	DIN	FEI	9•1 ⁶		'YBI	19 143	75	SAPRYKIN METHOD OF ANAL DIN, GRAPHS

.