
IAEA-NDS-0244
Rev. 2025/01

INTERNATIONAL ATOMIC ENERGY AGENCY

NUCLEAR DATA SERVICES

DOCUMENTATION SERIES OF THE IAEA NUCLEAR DATA SECTION

ForEX: Utility Codes for EXFOR

Naohiko Otuka
IAEA Nuclear Data Section, Vienna, Austria

January 2025

IAEA Nuclear Data Section, Vienna International Centre, A-1400 Vienna, Austria

Note:

The IAEA-NDS-reports should not be considered as formal publications. When a nuclear data
library is sent out by the IAEA Nuclear Data Section, it will be accompanied by an IAEA-NDS-
report which should give the data user all necessary documentation on contents, format and
origin of the data library.

IAEA-NDS-reports are updated whenever there is additional information of relevance to the
users of the data library.

For citations care should be taken that credit is given to the author of the data library and/or to
the data centre which issued the data library. The editor of the IAEA-NDS-report is usually not
the author of the data library.

Neither the originator of the data libraries nor the IAEA assume any liability for their
correctness or for any damages resulting from their use.

96/11

Citation guideline:

When quoting the EXFOR Utility Codes in a publication this should be done in the following
way:

N. Otuka, “ForEX: Utility Codes for EXFOR”, report IAEA-NDS-0244 Rev. 2025/01,
International Atomic Energy Agency, 2024 (https://doi.org/10.61092/iaea.hz1z-0dx3).

 IAEA-NDS-0244
Rev. 2025/01

ForEX: Utility Codes for EXFOR

Naohiko Otuka
IAEA Nuclear Data Section, Vienna, Austria

Abstract
Descriptions are given for a package of utility codes operating on the experimental
nuclear reaction data files in the EXFOR format. This program package is written in
Python and may be downloaded from the NRDC software website
(http://nds.iaea.org/nrdc/nrdc_sft/).

January 2025

Master

DIRINI

nds.iaea.org

DIRUPD

Entry

MAKLIB

SEQADD

Master

Trans

EXFOR
(draft)

SPELLS

SEQADD

REFDOI

Entry EXFOR

X4TOJ4

J4TOX4

J4

POIPOI

J4

MAKCOV

covariance

Archive
Dict.

(draft)

DICATJ

DICJ2A
JSON
Dict.

DICJ2T

Trans
Dict.

DICDIS
Archive+
Backup

Dict.

Master: EXFOR Master File
Entry: EXFOR Entry File storage
Trans: EXFOR Trans File

The JSON Dictionary is also
used by J4TOX4, MAKCOV,
POIPOI, REFBIB and X4TOJ4.

REFDOI

REFBIB

BibTeX
etc.

Introduction

The Utility Codes for EXFOR Utility (ForEX) are written to process EXFOR Entry files and
EXFOR/CINDA Dictionary files. Currently, the following 17 codes (Python scripts) are
included in this package:

 DIC227 Produce Archive Dictionary 227 from a NUBASE file.

 DICA2J Convert Archive dictionaries to a JSON Dictionary.

 DICDIS Prepare Archive and Backup dictionaries for distribution.

 DICJ2A Convert a JSON Dictionary to Archive dictionaries.

 DICJ2T Convert a JSON Dictionary to a Transmission dictionary.

 DIRINI Split an EXFOR library tape into EXFOR entry files.

 DIRUPD Update the EXFOR entry files with an EXFOR transmission tape.

 EXTMUL Extraction of a dataset from a multiple reaction formalism subentry.

 J4TOX4 Convert a J4 file to an EXFOR file.

 MAKCOV Produce a data table and covariance matrix from a J4 file.

 MAKLIB Merge EXFOR entry files into a single library tape.

 POIPOI Remove pointers from a J4 file.

 REFBIB Extract bibliography of reference by using DOI.

 REFDOI Obtain DOI for articles registered in CrossRef.

 SEQADD Add record identification to an EXFOR file.

 SPELLS Check English spell in free text in EXFOR format.

 X4TOJ4 Convert an EXROF file to a J4 file.

(“J4” means EXFOR in JSON.)

This package is distributed in a zipped form from the NRDC software website
(https://nds.iaea.org/nrdc/nrdc_sft/).

This document explains how to use these codes. Users need to install Python3 in their
environments prior to run these codes. Any comments on the use of the codes, including
difficulties encountered or any possible bug reports and suggestions are welcome.

Optional arguments available in all codes

 -h Display help information

 -v Display the version

 -f Never prompt

Acknowledgements

The developer would like to thank David Brown, Oscar Cabellos, Georg Schnabel and Nicolas
Soppera for their comments and proposals.

History (major revisions only)

2023-10-23:

 First release of 4 scripts (DIRINI, DIRUPD, MAKLIB, SEQADD)

2023-11-02:

 First release of IAEA-NDS-0244.

2024-05-03:

 First release of 6 scripts (DIC227, DICA2J, DICDIS, DICJ2A, DICJ2T, SPELLS)

2024-06-25:

 Addition of -c option to MAKLIB.

 Update of DICA2J to implement format changes of Dictionaries 25, 209 and 227
concluded in the NRDC 2024 meeting (C12 and C13).

2024-10-07:

 First release of 4 scripts (J4TOX4, MAKTAB, POIPOI, X4TOJ4).

2024-11-21:

 First release of EXTMUL. MAKTAB renamed into MAKCOV.

2025-01-05:

 First release of REFBIB and REFDOI.

DIC227

This code reads a NUBASE file and a supplemental dictionary file (compilation of properties
of elementary particles and natural elements in the Archive Dictionary format), and convert
them to Archive Dictionary227.

Input files

 NUBASE file1 (-i)

 supplemental file (-s)

Output file

 Archive Dictionary 227 file (-o)

Arguments

 -i file_nubase input NUBASE file

 -s file_suppl input supplemental dictionary file

 -o file_arc227 output archive dictionary file

Example

Convert a NUBASE file nubase_4.mas20.txt and a supplemental dictionary file
dict_arc_sup.227 to the Archive Dictionary 227 dict_arc_new.227:

python3 x4_dic227.py -i nubase_4.mas20.txt -s dict_arc_sup.227
-o dict_arc_new.227

1 The NUBASE file is distributed from the Atomic Mass Data Center (https://amdc.impcas.ac.cn/,
https://www.anl.gov/phy/atomic-mass-data-resources, https://nds.iaea.org/amdc/).

DICA2J

This code reads Archive Dictionaries and convert them to a JSON Dictionary.

Input file

 Archive Dictionaries (-i)

Output file

 JSON Dictionary (-o)

Arguments

 -n dict_ver dictionary version (transmission ID)

 -i dir_archive directory of input Archive Dictionaries

 -o dir_json directory of output JSON Dictionary

Example

Convert Archive Dictionaries input/dict_arc.top, input/dict_arc_new.001 etc. to a JSON
Dictionary json/dict_9131.json.

python3 x4_dica2j.py -n 9131 -i input -o json

DICDIS

This code reads Archive and JSON Dictionaries and process them for distribution after removal
of records with the alteration flag D (deletion) and updating the year + month field (YYYYMM).
At the same time, this code also produces the Backup Dictionary.

Input files

 Archive Dictionaries (-a)

 JSON Dictionary (-j)

Output files

 Archive, Backup and JSON Dictionaries for distribution (-o)

Arguments

 -n dict_ver dictionary version (transmission ID)

 -a dir_archive directory of input Archive Dictionaries

 -j dir_json directory of input JSON Dictionary

 -o dir_dist directory of output dictionaries

Example

Read Archive and JSON Dictionaries input/dict_arc.top, input/dict_arc_new.001 etc. and
json/dict_9131.json, process them for distribution, and output them under the same names but
under the directory dist. At the same time, it also produces the Backup Dictionary
dist/dan_back_new.9131.

python3 x4_dicdis.py -n 9131 -a input -j json -o dist

DICJ2A

This code reads JSON Dictionary and convert it to Archive Dictionaries.

Input file

 JSON Dictionary (-i)

Output files

 Archive Dictionaries (-o)

Arguments

 -n dict_ver dictionary version (transmission ID)

 -i dir_json directory of input JSON Dictionary

 -o dir_archive directory of output Archive Dictionaries

Example

Convert a JSON Dictionary json/dict_9131.json to Archive Dictionaries output/dict_arc.top,
output/dict_arc_new.001 etc..

python3 x4_dicj2a.py -n 9131 -i json -o output

DICJ2T

This code reads JSON Dictionary and convert it to a Transmission (TRANS) Dictionary.

Input file

 JSON Dictionary (-i)

Output file

 TRANS Dictionary (-o)

Arguments

 -n trans_ID dictionary version (transmission ID)

 -i dir_json directory of input JSON Dictionary

 -o dir_trans directory of output TRANS Dictionary

Example

Convert JSON Dictionary json/dict_9131.json to TRANS Dictionary dist/trans.9131.

python3 x4_dicj2t.py -n 9131 -i json -o dist

DIRINI

This code reads an EXFOR library tape (e.g., a master file2) in EXFOR formats with a MASTER,
LIB or REQUEST record as the first record, splits it into entries, and saves each entry file in an
entry storage. It initialises the storage (i.e, namely delete the files in the storage directory) at
the beginning of processing.

Input file

 library tape (-l)

Output file

 entry files (-d)

 log file (-g)

Arguments

 -c Delete (1) trailing blanks in col. 12-66, (2) line sequential number (col.67-80)
and (3) N2 of ENDBIB/ENDCOMMON/ENDSUBENT/ENDENTRY.

 -l file_lib input library tape

 -d dir_storage directory of output entry storage

 -g file_log output log file

Example

Initialise the entry storage directory entry by loading the input library tape lib/library.txt
(without elimination of the record identification and bookkeeping if the input library has them)
and record it in x4_dirupd.log:

python3 x4_dirini.py -l lib/library.txt -d entry -g x4_dirupd.log

At the end of processing, one obtains entry files under entry/1/, entry/2/, etc. and a log file with
a new line like

Seq. Update date/time Trans(N1) Trans(N2) Centre Tape
 0 2023-10-04 00:48:30.849567 0001 20231004 lib/library.txt

Note

A storage initialized by DIRINI with the most recent EXFOR Master File and updated by
DIRUPD with all TRANS files released after the EXFOR Master File is equivalent to the zipped
version of the EXFOR Entry Files distributed from the NRDC website
(https://nds.iaea.org/nrdc/exfor-master/entry/).

2 The NRDC release the EXFOR Master File on an annual basis on the NRDC website
(https://nds.iaea.org/nrdc/exfor-master/).

DIRUPD

This code reads a trans tape3 (starting from the TRANS record) and adds or updates the entry files
in the local storage.

Input files

 trans tape (-t)

 entry files (-d)

 log file (-g)

Output files

 entry files (-d)

 log file (-g)

Arguments

 -c (Same as DIRINI. Use this option if you use it for DIRINI.)

 -t file_trans input trans tape

 -d dir_storage (Same as DIRINI)

 -g file_log input/output log file

Example

Update of the entry storage entry by a tape trans/trans.txt, and record it in x4_dirupd.log:

python3 x4_dirupd.py -t trans/trans.txt -d entry -g x4_dirupd.log

At the end of processing, one obtains new and/or updated entry files under entry/1/ etc. and a
log file with a new line like

Seq. Update date/time Trans(N1) Trans(N2) Centre Tape
 0 2023-10-04 00:48:30.849567 0001 20231004 lib/library.txt
 1 2023-10-04 00:48:31.725707 1234 20160121 NNDC trans.txt

3 The NRDC assembles a set of new and revised EXFOR entries in a TRANS file on a regular basis, and it is
released on the NRDC website (https://nds.iaea.org/nrdc/exfor-master/trans/)

EXTMUL

This code reads an EXFOR file containing subentries with the multiple reaction formalism, and
write an extracted dataset as an EXFOR file. Three other Python scripts files for J4TOX4,
POIPOI and X4TOJ4 must be placed together with EXTMUL in the same directory.

Input files

 EXFOR file (-i)

 JSON Dictionary (-d)

Output file

 EXFOR file (-o)

Arguments

 -i file_x4 input EXFOR file

 -d file_dict input JSON Dictionary

 -e data_id EXFOR dataset ID for extraction (or “all” to extract all datasets)

 -o file_x4 output EXFOR file

Example

Extract a dataset 23756.002.3 from an EXFOR file exfor.txt to an EXFOR file exfor_out.txt
with the dictionary dict_9131.json:

python3 x4_extmul.py -i exfor.txt -d dict_9131.json -e 23756.002.3 -o
exfor_out.txt

Extract all datasets.1 from an EXFOR file exfor.txt to an EXFOR file exfor_out.txt with the
dictionary dict_9131.json:

python3 x4_extmul.py -i exfor.txt -d dict_9131.json -e all -o
exfor_out.txt

Note that the first subentry (e.g., 23756.001) must be always present in the input EXFOR file.

J4TOX4

This code reads a J4 file and convert it to an EXFOR file (starting from an ENTRY, MASTER,
REQUEST or TRANS record).

Input files

 J4 file (-i)

 JSON Dictionary (-d)

Output file

 EXFOR file (-o)

Arguments

 -i file_j4 input J4 file to read

 -d file_dict directory of the input JSON Dictionary

 -o file_x4 output EXFOR file

Example

Convert a J4 file exfor.json to an EXFOR file exfor.txt with the dictionary dict_9131.json:

python3 x4_j4tox4.py -i exfor.json -d dict_9131.json -o exfor.txt

MAKCOV

This reads a J4 file processed by POIPOI, and print a four-column (x, Δx, y, Δy) table and
correlation coefficients (upper triangle matrix).

Input files

 J4 file processed by POIPOI (-i)

 “HED file” (-j). See Appendix of this manual for its details.

 JSON Dictionary (-d)

Output files

 covariance file (-o)

 log file (-g)

Arguments

 -s treat the dataset as a shape (normalization free) dataset

 -r print Δy/y (%) rather than Δy

 -i file_j4 input J4 file

 -j file_hed input “HED file”

 -d file_dict input JSON Dictionary

 -e data_id EXFOR Dataset ID4

 -o file_cov output covariance file

 -g file_log output log file

 -l x_min lower boundary of independent variable to process

 -u x_max upper boundary of independent variable to process

Example

Read a J4 file exfor.json, HED file exfor_hed.txt, JSON dictionary dict_9131.json, and create a
table file x4_makcov_out.txt for a dataset 22742.004.1:

python3 x4_makcov.py -i exfor.json -j exfor_hed.txt -d dict_9131.json
-e 22742.004.1 -o x4_makcov_out.txt

4 To identify the corresponding dataset ID (e.g., 22742.004.1) in the J4 file, the J4 file must be created by POIPOI
without the option -d (delete pointer).

MAKLIB

This reads and combines the entry files in the entry storage and create a single library tape.

Input file

 entry files (-d)

Output file

 library tape (-l).

Arguments

 -a Add “19” to two-digit year in N2 of ENTRY/SUBENT/NOSUBENT.

 -c (Same as DIRINI.)

 -n Exclude dictionaries

 -d dir_storage (Same as DIRINI)

 -l file_lib output library tape

 -i tape_ID Tape ID (integer printed at cols 12-22 of the first record)

Example

Create a library tape lib/library.txt by merging entry files in the storage entry with the tape ID
0001:

python3 x4_maklib.py -d entry -l library.txt -i 0001

This operation does not add a new line in the log file.

Note: The format of the output library tape depends on the format of the files in the entry storage.
If user maintains the entry files in the storage without record identifications etc. (e.g., with -c
option of DIRINI and DIRUPD), then the produced library tape also does not have them. The
record identifications can be added later by processing the output library tape by SEQADD.

POIPOI

This reads a J4 file, extract the information relevant to a particular dataset, and create a J4 file.
It removes the pointer structure in the input J4 file. If wish, one can (1) merge the information
originally compiled in the common (001) subentry and the data subentry, and (2) select the
keywords (e.g., TITLE, AUTHOR) to be kept in the output J4 file.

Input files

 J4 file (-i)

 JSON Dictionary (-d)

Output file

 J4 file (-o)

Arguments

 -k keywords BIB keywords to keep5

 -p Delete the pointer

 -1 Keep the common (001) and data subentries separately

 -i file_inp input J4 file

 -e data_ID EXFOR Dataset ID (or “all” to process all datasets in the input)

 -o file_out output J4 file

Example

Read a J4 file exfor.json, and JSON dictionary dict_9131.json, and create another J4 file
exfor_poi.json for a dataset 22742.004.1: by keeping the BIB records under AUTHOR and
REFERENCE:

python3 x4_poipoi.py -i exfor.json -d dict_9131.json -e 22742.004.1
-o exfor_poi.json

Same as above, but remove all data descriptions other than those under AUTHOR and
REFERENCE:

python3 x4_poipoi.py -i exfor.json -d dict_9131.json -e 22742.004.1
-o exfor_poi.json -k AUTHOR REFERENCE

5 The REACTION information is always kept.

REFBIB (New!)

This code converts an EXFOR reference code to DOI and vice versa. Then it extracts various
bibliography related items (e.g., title, authors) from the metadata deposited in DOI registration
agencies, and outputs them in various format. Currently this code supports only DOIs of journal
articles registered in CrossRef.

Execution requires Python modules pylatexenc, pyspellchecker and requests, which may be
installed by the following command if pip (a standard Python package manager) is installed in
your computer:

pip install pylatexenc

pip install pyspellchecker

pip install requests

Input file

 JSON Dictionary (-d)

Output file

 Bibliography file (-o)

Arguments

 -s Strip accent symbols in output

 -a fauthor Family name of the first author (optional)

 -i ref_inp EXFOR reference code or DOI

 -d file_dict input JSON Dictionary

 -o file_out output bibliography file

 -r format output format (doi, piped, exfor, bibtex, json or xml)

 -e email your email address (for notification to CrossRef)

Example

For the EXFOR reference code J,NDS,120,272,2014, read a JSON dictionary dict_9131.json
and email address email@address.com and write a BibTeX file exfor.bib:

python3 x4_refbib.py -i J,NDS,120,272,2014 -d dict_9131.json -o
exfor.bib -r bibtex -e email@address.com

REFDOI (New!)

This code reads an EXFOR file, and check presence of a DOI for each article coded under
REFERENCE, REL-REF and MONIT-REF when the article is from a journal volume
registered in CrossRef. Three Python scripts files for REFCHK, X4TOJ4 and REFBIB must be
placed in the same directory.

Execution of REFDOI requires Python modules pylatexenc, pyspellchecker and requests. See
the page for REFDOI for their installation.

Input files

 EXFOR file (-i)

 JSON Dictionary (-d)

 Email address (-e)

Output file

 DOI file (-o)

Arguments

 -i file_x4 input EXFOR file

 -d file_dict input JSON Dictionary

 -o file_out output DOI file

 -e email your email address (for notification to CrossRef)

Example

Check reference codes included in exfor.txt with the dictionary dict_9131.json:

python3 x4_refdoi.py -i exfor.txt -d dict_9131.json -o
x4_refdoi_out.txt -e email@address.com

SEQADD

This code adds and/or updates record identifications (cols.67-79) and bookkeeping information
such as N1 and N2 of BIB and ENDBIB. records. (Similar to ORDER developed at NNDC and
ZORDER developed at NDS).

Input file

 Entry, trans or library tape (-i)

Output file

 Entry, trans or library tape (-o)

Arguments

 -m Do not add “19” to two-digit year in N2 of ENTRY/SUBENT/NOSUBENT, and do
not alter N2 of ENDBIB/ENDCOMMON/ENDDATA/ENDSUBENT/ENDENTRY/ENDSUBDICT
records.

 -i file_inp input EXFOR file

 -o file_out output EXFOR file

Example

Process an EXFOR file exfor.txt by adding and updating the record identification and
bookkeeping information, and print the output in exfor_ord.txt.

python3 x4_seqadd.py -i exfor.txt -o exfor_ord.txt

SPELLS

This code checks English spells in the free text field in the EXFOR format. It checks each set
of lower characters in free text (i.e., the first word of a sentence is not checked). The default
dictionary does not know nuclear physics technical terms, and the user should add the to the
dictionary to minimize the output.

Execution requires a Python module pyspellchecker, which may be installed by the following
command if pip (a standard Python package manager) is installed in your computer:

pip install pyspellchecker

Input files

 Entry, trans or library tape (-i)

 Dictionary listing known technical words (-d)

Example of the dictionary file (a plain text file to be updated by the user by adding more
technical terms etc.)

Output file

 list of typos (-l)

Arguments

 -i file_x4 input EXFOR file

 -d file_dict input known word dictionary

 -o file_output output typo list file

Example

Check spells in an EXFOR entry file exfor.txt with a dictionary x4_spells.dic and record the
checking result in x4_spells.log.

python3 x4_spells.py -i exfor.txt -d x4_spells.dic -l x4_spells.log

atm
deadtime
decoupler
epithermal
fluence
linac
nonuniformity
subentry

X4TOJ4

This code reads an EXFOR file (starting from an ENTRY, MASTER, REQUEST or TRANS record)
and convert it to a J4 file. One can select the keywords (e.g., TITLE, AUTHOR) to be kept in
the J4 file.

Input files

 EXFOR file (-i)

 JSON Dictionary (-d)

Output file

 J4 file (-o)

Arguments

 -c Check record identification of the system identifiers

 -k keywords BIB keywords to be kept6

 -g Keep the flag at column 80 of each record of the DATA sections

 -s Keep real numbers as strings

 -i file_x4 input EXFOR file

 -d file_dict input JSON Dictionary

 -o file_j4 output J4 file

Example

Read an EXFOR file exfor.txt and JSON dictionary dict_9131.json and write a J4 file exfor.json:

python3 x4_x4toj4.py -i exfor.txt -d dict_9131.json -o exfor.json

Same as above, but remove all data descriptions other than those under AUTHOR,
REFERENCE and REACTION:

python3 x4_x4toj4.py -i exfor.txt -d dict_9131.json -o exfor.json -k
AUTHOR REFERENCE REACTION

6 The REACTION information is always kept.

Appendix 1: HED file used in MAKTAB

(See also N. Otuka, O. Iwamoto, INDC(SEC)-0112(Rev.) Sect.2.3)

Basic structure
The HED file defines the independent (x) and dependent (y) variables for tabulation by
MAKTAB. It may have the following lines:

 L.1: Heading for the lower boundary of the independent variable.

 L.2: Heading for the upper boundary of the independent variable (may be repetition
of the heading on L.1).

 L.3: Heading for the uncertainty or resolution of the independent variable (optional).
The number under this heading is ignored if it is smaller than the difference of the
numbers under the headings specified in L.1 and L.2.

 L.4: Heading for the dependent variable. The heading specified in L.4 is typically
DATA or DATA-CM.

 L.5: Heading for the reference variable (optional). The heading specified in L.5 is
typically MONIT. The number under this heading is used when conversion of the number
to or from the fractional (%) uncertainty is required.

 L.6: Heading for the total uncertainty in the dependent variable (optional if L.7 is
given). The heading specified in L.6 is typically ERR-T or DATA-ERR.

 L.7: Heading for the 1st partial uncertainty in the dependent variable (optional if L.6
is given). The heading specified in L.7 and below is typically ERR-S, ERR-1, ERR-2 etc.

 L.8: Heading for the 2nd partial uncertainty in the dependent variable (optional)

etc.

The column 1 is reserved for a flag. It must be empty in Line 1 to 6 must be empty. In Line 7
and below, this column can be empty or

 “S”: indicates the uncertainty must be ignored when the dataset is treated as a shape
dataset (MAKTAB with option -s)

 “#”: indicates it is a comment line (always ignored).

The column 2 is for the first character of a heading if a heading is given on the line.

When only a range of the partial uncertainty is given under ERR-ANALYS, its lower boundary
is treated as a constant of the dataset. The user may add an extra uncertainty following an ad-
hoc heading such as ERR-A, ERR-B.

Tabulation without estimation of correlation coefficients

When the only tabulation in the four-column (x, Δx, y, Δy) structure is necessary, L.5 always
has a correlation flag “+”. If the partial uncertainties are in EXFOR without the total uncertainty,
the partial uncertainties under the heading in L.6 and below must be flagged by “-“. Δy is
calculated by adding these partial uncertainties in % quadratically.

Example 1
Δx is calculated by the difference between EN-MIN and EN-MAX. Δy is taken from ERR-T.

1: EN-MIN
2: EN-MAX
3:
4: DATA
5:
6: ERR-T +

Example 2
Δx is taken from EN-ERR. Δy is obtained by the quadrature sum of ERR-S, ERR-1 and ERR-2.

1: EN
2: EN
3: EN-ERR
4: DATA
5:
6: +
7: ERR-S 0
8: ERR-1 0
9: ERR-2 0

Example 3
Δx is always zero. Δy is obtained by the quadrature sum of ERR-S, ERR-1 and MONIT-ERR. The
MONIT-ERR coded in other than % (e.g., in barn) is divided by MONIT for conversion to the
fractional (%) uncertainty. The flag “S” on the L.9 indicates that the MONIT-ERR value is ignored
when the dataset is treated as a shape dataset (i.e., MAKTAB is used with the option -s).

1: EN
2: EN
3:
4: DATA
5: MONIT
6: +
7: ERR-S 0
8: ERR-1 0
9:SMONIT-ERR 0

Tabulation with estimation of correlation coefficients
The correlation coefficients are calculated on the assumption that each partial uncertainty is
fully correlated or uncorrelated between two data points (x1,y1) and (x2,y2).

 The correlation property of each partial uncertainty is specified by a flag 1 (fully
correlated) or 0 (uncorrelated).

 When all partial uncertainties are given in EXFOR, then the heading of the total
uncertainty should not be specified in L.6.

When the total uncertainty is known but not all partial uncertainties are known, the “residual
uncertainty” (the difference of the quadrature sum of all known partial uncertainties) is
calculated for which the user must assign a correlation property.

L6 is used to specify the heading of the total uncertainty, the “residual uncertainty” (the
difference of the quadrature sum of all known partial uncertainties) is calculated. The heading
of the total uncertainty specified in L.6 must be followed by blanks and one of the following
flags:

*: Estimation of the correlation coefficients is skipped (e.g., when the correlation
coefficients estimated by the experimentalists are available in EXFOR)

F: The residual uncertainty is fully correlated.

U: The residual uncertainty is uncorrelated.

L7 and below is used for the heading of a partial uncertainty, the heading must be followed by
one of the following flags:

0: This partial uncertainty as uncorrelated. (currently not allowed when the total uncertainty
heading is flagged with U)

1: This partial uncertainty is fully correlated. (currently not allowed when the total
uncertainty heading is flagged with F)

-: This partial uncertainty is subtracted from the total uncertainty. (This is used only when
the total uncertainty heading is specified in L.6. The 1st column must be flagged by S.)

Example 4
The partial uncertainty coded under ERR-S is specified as uncorrelated. The residual uncertainty
is specified as fully correlated.

1: EN
2: EN
3: EN-ERR
4: DATA
5:
6: ERR-T F
7: ERR-S 0

Example 5
The partial uncertainty coded under ERR-1 and ERR-2 is specified as fully uncorrelated. The
residual uncertainty is specified as uncorrelated.

1: EN
2: EN
3: EN-ERR
4: DATA
5:
6: ERR-T U
7: ERR-1 1
8: ERR-2 1

Example 6
The partial uncertainty coded under ERR-S is specified as uncorrelated, and those under ERR-1
and ERR-2 is specified as fully uncorrelated. The residual uncertainty is specified as
uncorrelated.

1: EN
2: EN
3: EN-ERR
4: DATA
5:
6:
7: ERR-S 0
8: ERR-1 1
9: ERR-2 1

Example 7
Same as Example 6, but ERR-2 is ignored.

1: EN
2: EN
3: EN-ERR
4: DATA
5:
6:
7: ERR-S 0
8: ERR-1 1
9:#ERR-2 1

Example 8
Same as Example 6, but MONIT-ERR instead of ERR-2. The flag “S” on the L.9 indicates that the
MONIT-ERR value is ignored when the dataset is treated as a shape dataset (i.e., MAKTAB is
used with the option -s).

1: EN
2: EN
3: EN-ERR
4: DATA
5:
6:
7: ERR-S 0
8: ERR-1 1
9:SMONIT-ERR 1

Example 9
Same as Example 4, but L.8 indicates that the MONIT-ERR is subtracted from the total
uncertainty when the dataset is treated as a shape dataset.

1: EN
2: EN
3: EN-ERR
4: DATA
5:
6: ERR-T F
7: ERR-S 0
8:SMONIT-ERR -

Example 10
The partial uncertainty coded under ERR-S is specified as uncorrelated, and a fully correlated
partial uncertainty of 1.00% not in EXFOR is added with ERR-A in L.8.

1: EN
2: EN
3: EN-ERR
4: DATA
5:
6:
7: ERR-S 0
8: ERR-A 1 1.00 # Normalization uncertainty 1% added

Numerical example
Numerical examples are given for the correlation coefficient and total uncertainty Δy calculated
with the various setting of correlation flags for a dataset consisting of two data points having
the same total and partial uncertainties coded by

ERR-T ERR-S ERR-1 MONIT-ERR
PER-CENT PER-CENT PER-CENT PER-CENT
 6. 4. 1. 2.

for which is the L.6 to L.9 of the HED file are

6: ERR-T ?
7: ERR-S ?
8: ERR-1 ?
9:SMONIT-ERR ?

The next table summarizes the obtained correlation coefficient between the two data points and
the total uncertainty Δy for various combination of the flags. The first column shows use of -s
option (treat as a shape dataset) in MAKTAB. “(#)” indicates that the line is commented out.

Shape ERR-T ERR-S ERR-1 MONIT-ERR Cor Δy

No U 1 1 1 0.583 6.000
Yes U 1 1 1 0.531 5.657
No F 0 0 (#) 0.528 6.000
No U (#) 1 1 0.139 6.000
Yes U (#) 1 1 0.031 5.657
No 0 1 1 0.238 4.583
Yes 0 1 1 0.059 4.123
No F 0 0 - 0.528 6.000
Yes F 0 0 - 0.469 5.657

Nuclear Data Section e-mail: nds.contact-point@iaea.org
International Atomic Energy Agency fax: (43-1)26007
P.O. Box 100 telephone: (43-1)2600-21710
A-1400 Vienna web: http://nds.iaea.org/
Austria

