

Quality Improvement of the EXFOR database

WPEC subgroup 30

Arjan Koning
NRG Petten, the Netherlands

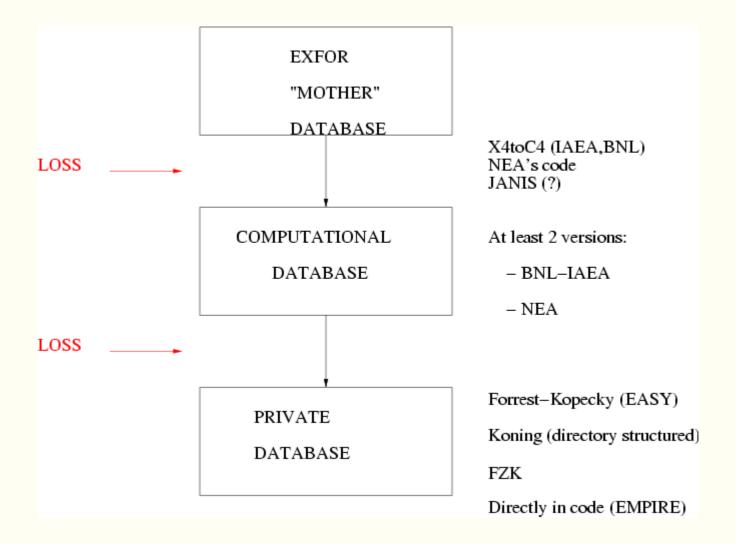
Contents

- * EXFOR
- * Objective
- Problems and challenges
- * Plan
- * A short history of SG-30
- * List of problems

EXFOR

- * Most complete nuclear reaction database:
 - More than 15,500 experiments
 - Practically complete for neutrons
 - More and more complete for charged particles
- Maintained/updated by the Data Centers and compilers
- * An important treasure for nuclear science and technology.

Possible issues for improvement


- * Completeness (not considered here)
- * Database management and EXFOR format (not considered here, apart from format harmonization)
- * Data Retrieval (completeness)
- * Quality (correctness)

Objective

- * Make EXFOR an easy accessible and correct database, available in computational format. This enables:
 - More efficient data evaluation
 - Easy and extensive validation of model codes
 - More feedback from users to EXFOR maintainers.

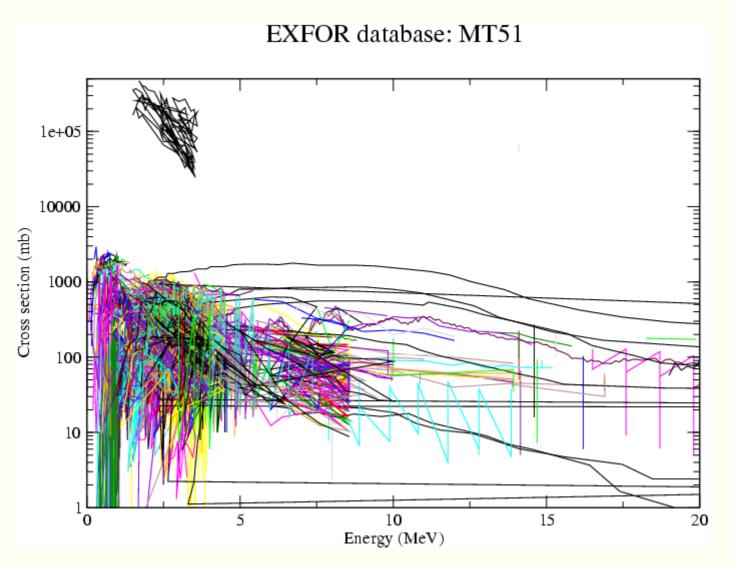
Problems

- * Too much flexibility for compilers to use the EXFOR format?
 - Various nuclear reactions are stored with 2 or more different identifiers (format harmonization needed!)
 - Not all data can be consistently processed into normal x-y-dy format
 - Many entries unprocessable for current database conversion codes

Are some data "lost" forever?

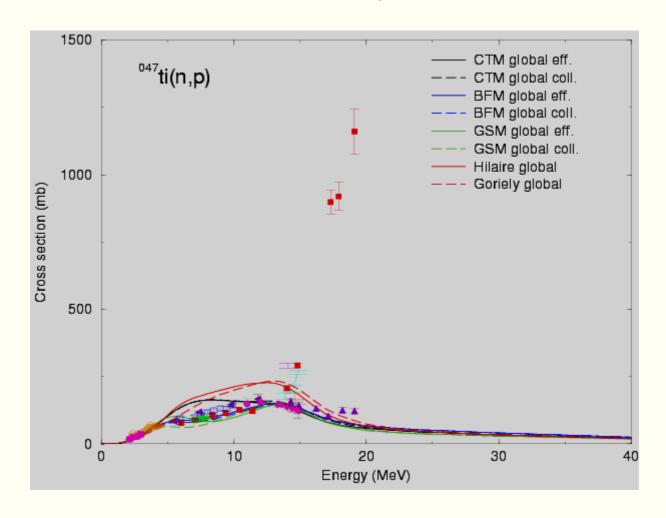
- * Two main problems:
 - Errors in, and wild grow of, format
 - Errors in values themselves

Why is it a problem?

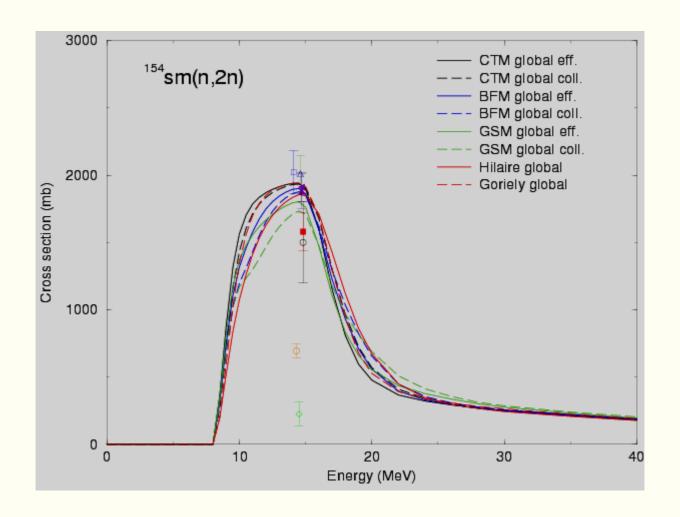

- * All other aspects of nuclear data evaluation are well automated:
 - Robust nuclear model codes
 - 2. Plotting software
 - 3. Checking, processing software
 - 4. `Scriptwise' nuclear data evaluation
- * Exp. data retrieval should not become the delaying factor
- * Evaluator needs access to all data
- * Covariance evaluation requires access to all data
- * Experimentalist deserves appropriate credit.

Approach

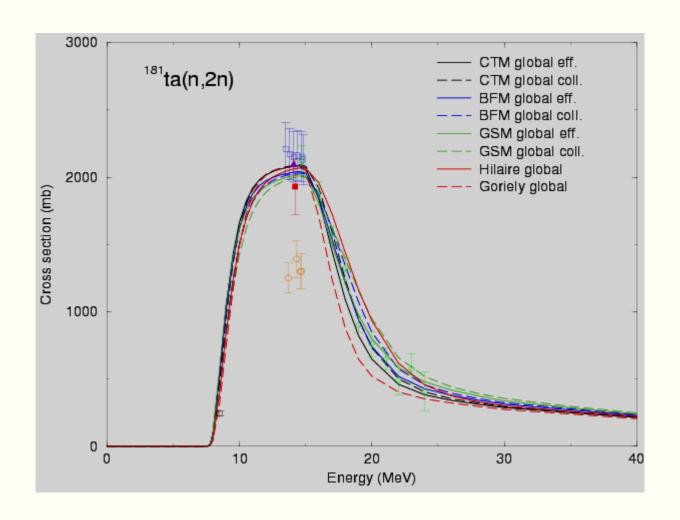
- Use format converters and checking routines
 - Record how many % is converted
 - E.g. check for negative cross sections
 - E.g. check for xs > 4 barns for E > 0.1 MeV
- * Some errors are obvious just by plotting the values
- * Use the power of nuclear model codes:
 - Chi-square checks
 - Visual inspection



SG-30, IAEA, October 10-11, 2007



See www.talys.eu


SG-30, IAEA, October 10-11, 2007

SG-30, IAEA, October 10-11, 2007

SG-30, IAEA, October 10-11, 2007

Deliverables

- * EXFOR database in computational format. Annual, or more frequent, releases in increasing quality and completeness (also for "mother" database)
 - Responsible: Data Centers
 - Input: Users
- * Final report:
 - Status in 2007
 - Description of improvements and tools
 - Final status in 2009

Milestones

* 6 months:

- Collect and compare all software that processes EXFOR(X4toC4, JANIS, etc.) and merge this into one strategy for conversion into computational format.
- Correction of EXFOR with first lists of errors (Forrest, Koning, etc.)

* 12 months:

Computational library #1: All cross sections

Milestones

- * 24 months:
 - Computational library #2: All cross sections
 + angular distributions + single- and
 double-differential energy spectra +
 everything else

Conclusions

- * Steps to take:
 - Make the entire EXFOR database available in computational format (First step!!!)
 - Repair the errors
- * This will enable:
 - Much more efficient evaluation of data files
 - Minimal delay between publication of experiments and their adoption in data files
 - More efficient nuclear model code validation

A short history of SG-30

- * April 20 2007: SG-30 approved at WPEC meeting (compromise: remove quality flagging)
- * June 2007: Initial emails sent:
 - Lots of moral support
 - Mailing list created: sg30@nea.fr
 - About 30-40 members of mailing list
- June/July 2007: Extended C4 format by V. Zerkin.
 Bilateral communication with A. Koning

A short history of SG-30

- * July 2007: Correction/investigation of AK's first list of errors by S. Dunaeva and O. Schwerer.
- * September 2007:
 - Statistical tests by Emmeric Dupont
 - Preparing JANIS for SG-30 by NEA
 - October 10-11 2007: first SG-30 meeting at IAEA

A list of problems

- Obvious (?) dimensional errors: barns instead of millibarns, eV instead of MeV, etc.
- * More than one identifier to store data: e.g. (n,inl) and (n,x)0-NN-1, etc. (to be solved in X4 or X4toC4?)
- * Reporting (n,inl) as (n,n'gamma) data and vice versa.
- * Storage of fission yields as (n,f) (MF3,MT18) data, e.g. entries O0777 and O0020
- * Ratio's given as cross sections (e.g. entry 21863)
- Incomprehensible reaction strings in X4 (e.g. entry O1004, Heinz 2003, 1 GeV p + U238)

A list of problems

- How to identify the level for (n,inl) to a specific level automatically?
- High energy proton reactions: residual products given as many, many subsections
- X4toC4 translation problems if uncertainties are suddenly missing inside a data block
- Total cross sections labeled as isomeric and vice versa.
- Change of nuclear reaction inside a data block and NO change of sub ID (e.g. entry O0290)