Japan Charged-Particle Nuclear Reaction Data Group

Department of Physics, Faculty of Science
Hokkaido University
060-0810 Sapporo, JAPAN

E-mail: services@jcprg.org
Telephone +81(JPN)-11-706-2684
Internet: http://www.jcprg.org/
Facsimile +81(JPN)-11-706-4850

Memo CP-E/116 (Revised)

Date: June 6, 2007
To: Distribution
From: OTSUKA Naohiko
Subject: Reference frame of analyzing powerand Rutheron

Angular distribution and analyzing power are related to count numbers as follows:

$$
\begin{aligned}
& \sigma(\theta)=C \Delta N(\theta) / \Delta \Omega(\theta) \\
& p A_{y}(\theta)=\left(\Delta N_{U}(\theta)-\Delta N_{D}(\theta)\right) /\left(\Delta N_{U}(\theta)+\Delta N_{D}(\theta)\right),
\end{aligned}
$$

where C is a constant, $\Delta N(\theta), \Delta N_{U}(\theta), \Delta N_{D}(\theta)$ are count numbers for unpolarized beam, beam polarized along +y and beam polarized along -y axis at a detector having solid angle $\Delta \Omega(\theta)$. p is beam polarization. The setting angle of the detector is $\theta_{\text {lab }}$ in the laboratory system and it is θ_{cm} in the center of mass system. Two angles in reaction $\mathrm{A}(\mathrm{a}, \mathrm{b}) \mathrm{B}$ are related by the relation:

$$
\tan \theta_{\mathrm{lab}}=\frac{\sin \theta_{\mathrm{cm}}}{\gamma+\cos \theta_{\mathrm{cm}}} \text {, where } \gamma=\sqrt{\frac{m_{\mathrm{a}} m_{\mathrm{b}}}{m_{\mathrm{A}} m_{\mathrm{B}}} \frac{E_{\mathrm{cm}}}{E_{\mathrm{cm}}+Q}} \text { and } E_{\mathrm{cm}}=\frac{m_{\mathrm{A}}}{m_{\mathrm{a}}+m_{\mathrm{A}}} E_{\mathrm{lab}}
$$

All count numbers does not depend on the reference frame ($=$ frame where measurement is done). $\Delta N_{\text {lab }}(\theta)=\Delta N_{\mathrm{cm}}(\theta)$ etc., but the solid angle depends on the reference frame: $\Delta \Omega_{\text {lab }}(\theta)=J$ $\Delta \Omega_{\mathrm{cm}}(\theta)$, where J for reaction is

$$
J=\frac{\left|1+\gamma \cos \theta_{\mathrm{cm}}\right|}{\left(1+\gamma^{2}+2 \gamma \cos \theta_{\mathrm{cm}}\right)^{3 / 2}} .
$$

Therefore angular distribution at the detector depends on the reference frame, i.e. $\sigma_{\text {lab }}(\theta)=$ $\sigma_{\mathrm{cm}}(\theta) / J$, while analyzing power at the detector does not depend on the reference frame, i.e. A_{y} ${ }_{\mathrm{lab}}(\theta)=\mathrm{A}_{y \mathrm{~cm}}(\theta)$. This means DATA-CM is useless for analyzing power. It is same for angular distribution of other polarization quantities. Were putherd ane value in the labora an an mose by same way.

Below I summarize the usage of data heading for angular distribution and analyzing power:

Angle (x)	Quantity (y)	Heading (x)	Heading (y)
$\theta_{\text {lab }}$	$\sigma_{\text {lab }}$	ANG	DATA
$\theta_{\text {lab }}$	$\sigma \mathrm{cm}$	ANG	DATA-CM
θ_{cm}	$\sigma_{\text {lab }}$	ANG-CM	DATA
$\theta_{\text {cm }}$	$\sigma \mathrm{cm}$	ANG-CM	DATA-CM
$\theta_{\text {tab }}$	\%	ANG	DATA
$\theta_{\text {emm }}$		ANG CM	DATA
$\theta_{\text {lab }}$	$A_{\text {y }}$	ANG	DATA
θ_{cm}		ANG-CM	DATA

The reference frame of quantity is often omitted by authors, and .JCPRG usually assumes the reference frame of the quantity given and reference frame of the angle are same for such data.

Distribution:

S. Babykina, CAJaD
F.E. Chukreev, CAJaD
O. Gritzay, KINR
J. Katakura, JAEA
V.N. Manokhin, CJD
A. Nichols, NDS
A. Ohnishi, JCPRG
O. Schwerer, NDS
V. Varlamov, CDFE
V. Zerkin, NDS
A. Blokhin, CJD
J.H. Chang, KAERI
S. Ganesan, BARC
H. Henriksson, NEA-DB
Y.O. Lee, KAERI
A. Mengoni NDS
P. Obložinský, NNDC
V. Pronyaev, CJD
S. Taova, VNIIEF
M. Wirtz, NDS

EXFOR, NEA-DB
M. Chiba, JCPRG
Z.G. Ge, CNDC
A. Kaltchenko, KINR
S. Maev, CJD
M. Mikhaylyukova, CJD
Y. Ohbayasi, JCPRG
D. Rochman, NNDC
T. Tárkányi, ATOMKI
H.W. Yu, CNDC

