Workshop on Data Compilation, IAEA, Vienna, May 25th, 2011

"Systematic studies of nuclear reactions using EXFOR" --- from a viewpoint of a database user ---

- Contents:
 - Introduction
 - EXFOR and σ_R etc
 - An ex. of systematic analyses: necessity of "HE" data
 - BS Approxi. of nuclei
 - σ_{NN}^{total} in EXFOR
 - Summary

The black-sphere picture as a reference frame

A. Kohama (RIKEN Nishina C.)

Ref. *Phys. Rev.* **C69**, 064316 (2004). *Phys. Rev.* **C72**, 024602 (2005). *J. Phys. Soc. Japan* **76**, 044201 (2007). *Phys. Rev.* **C78**, 061601 (2008).

Self-introduction

- I am ...
 - a nuclear theorist majoring nuclear reactions.
- Research interest:
 - Nuclear radii, density distributions, ...
- Approach:
 - Based on the systematic analyses of plenty of reaction data involving stable nuclei, we lighten up the structure and reaction mechanism of unstable nuclei.

- I am a "Data lover".
 - One of the heavy-users of EXFOR.
 - Members of JCPRG and N.
 Otsuka helped me in collecting data including "missing" data.
 - Prof. Kato has suggested me to join this WS.

EXFOR is powerful

- Databases support systematic analyses
 - use EXFOR
 - Data: $d\sigma_{\rm el}(p+A)/d\Omega$, $\sigma_{\rm R}(p+A)$, $\sigma_{\rm R}(A+A)$, ...
- EXFOR is very powerful for our systematic analyses.

Key Quantities

- ☆ Scattering amplitude: $f_{pA}(q)$.
- Differentiated quantities:
- ► Differ. cross sec.: $d\sigma_{el}/d\Omega = |f_{pA}(q)|^2$. sensitive to density distribution (radius, diffuseness)
- Analyzing power: A_y.

- Integrated quantities:
- Total elas. scat. cross sec.: $\sigma_{el} = \int d\Omega / f_{pA}(q) |^2.$
- Total cross sec.: $\sigma_{tot} = (4\pi/k) Im f_{pA(pN)}(q).$
- Total reac. cross sec.: $\sigma_R = \sigma_{tot} - \sigma_{el}$. sensitive to radius and diffuseness. Tail?
- > Interaction cross sec.: $\sigma_{I} = \sigma_{R} - \sigma_{inel}$. structure info.!

Importance of σ_R

- Physics side:
 - Nuclear geometrical size, eg., r_m
 - Isotope dep. of r_m \rightarrow Sym. Energy coef. L
 - − Energy dependence
 → density distribution?

- Practical side:
 - Estimation of the reaction rate in simulation codes:
 - eg., FULKA, GEANT, PHITS (Particle and Heavy Ion Transport code System). http://phits.jaea.go.jp/

For PHITS, see
H. Iwase, K. Niita and T. Nakamura, J. Nucl. Sci. Technol. 39, 1142 (2002).
K. Niita, T. Sato, H. Iwase, H. Nose, H. Nakashima, L. Sihver, Radiat. Meas. 41, 1080 (2006).

Fraunhofer diffraction in Optics

 int **Diffraction with a hole** embedded in an infinitely extended screen.

• Diffract. pattern: $|f(q)|^2$ Diffraction of He-Ne Laser = 632.8 [nm]. $(slit width) = 250 [\mu m].$ Thanks to Y. Matsuo (RIKEN) for this experiment. Photo by K. Oyamatsu. Feb.20, 2004

 $f(q) = ipa J_1(qa) / q.$

Ref. "The Classical theory of fields" L. D. Landau & E. M. Lifshitz

The contemporary black-sphere model and the black-sphere cross section formula

in collaboration with K. Iida (Kochi U.) and K. Oyamatsu (Aichi Shukutoku U.)

Phys. Rev. C69, 064316 (2004).

"Kurotama" in Japanese

The contemporary black-sphere model Estimate only the strong interac. contribution.

- Determine the blacksphere radius as;
- Geometrical cross section: $\sigma_{BS} = \pi a^2$.

 $-a = 1.2135 A^{1/3}$ fm for $T_p > 800$ MeV.

No parameter!

σ_R in EXFOR

- Total reaction cross section
 - = non-elastic cross section (NON)
 - = total cross section
 (TOT)
 - total elastic cross section ("EL")

- Lots of data have been already compiled incl. very recent ones.
- *cf.* antiproton data
 - Recently compiled
 thanks to the effort of
 N. Otsuka and JCPRG.

Data: W. Bauhoff, *At. Data Nucl. Data Tables*, **35**, 429 (1986). A. Auce *et al.*, *Phys. Rev.* **C 71**, 064606 (2005).

The size of the black sphere changes with T_p

The region where incident proton probes will change according to the change of the black-sphere radius.

Which part is probed?

Correspondence of the BS radius to the "real" density.

 $L' \Leftrightarrow \rho_0^{-1} \int_{-\infty}^{\infty} dz' \rho_N(\vec{b}, z')$

projectile path length L' \cong mean-free path

 $\langle r^2 \rangle^{1/2}$

4 r [fm

 $= 4.64 \, [fm]$

¹²⁰Sp

 n_c

8

6

r = a

• The radius "*a*" can be regarded as a "reaction radius", inside which the reaction with incident protons occurs.

projectile

K.Iida, A.K., K.Oyamatsu, J. Phys. Soc. Japan 76, 044201 (2007).

0.20

0.15

0.10

0.05

0.00

a

 $\rho_0/2$

2

Density Distribution $ho({
m r})~[{
m fm}^{-3}]$

Estimation of the path length L'

$$L'=2\sqrt{R^2-a^2}.$$

- The "real" density is approximated by *the trapezoidal density* with the standard diffuseness.
- D: the surface thickness (= 2.2 fm)

Normalization:

$$A = \frac{4\pi\rho_0}{3} \left(R^3 - \frac{3}{2}DR^2 + D^2R - \frac{1}{4}D^3 \right).$$

"Optical" depth of nuclei is the key

• Introduce nuclear optical depth: $\tau = L'/\{1/(\sigma_{pN} n_c)\} = \sigma_{pN} n_c L',$ which is assumed to be T_p -independent. This is similar to $\int_{l} dl[\sigma_{pn} n_n(\mathbf{r}) + \sigma_{pp} n_p(\mathbf{r})],$

Assume: $\tau = \mathcal{O}(1)$, *i.e.*, The black-sphere radius "*a*" corresponds to a radius at which the mean-free path of incident protons is of the order of the length of the penetration.

Construction of BS-cross-sect. formula

$$\sigma_R \cong \pi a(T_p)^2 \cong \pi a_0^2 \left(1 + \frac{\Delta a}{a_0}\right)^2.$$

• Express $\Delta a/a_0$ in terms of $\Delta \sigma_{pN}/\sigma_{pN0}$ using τ being T_p -indep. *i.e.*, $\Delta \tau = 0$, and

$$\Delta\left(\frac{\tau}{\bar{\sigma}_{pN}}\right) = \Delta(n_c L').$$

•
$$\Delta a = a(T_p) - a_0$$
.

the value at 800 MeV.

$$\Delta X = X - X_0,$$

>
$$X_0$$
 is
 $X (= a, \sigma_{pN}, n_c, L')$
at 800 MeV.

Destination: $\Delta a/a_0 = \Delta \sigma_{pN}/\sigma_{pN0} \times (T_p$ -independent terms).

Formula for reaction cross section

T_p -dep. is driven by σ_{pN} through the nucl. optical depth.

Proton - stable nucleus

$$\sigma_{\rm R}(T_p, A) = \pi a^2(T_p, A) = \pi a_0^2 \left(1 + \frac{\Delta a}{a_0}\right)^2, \ T_p > 100 \,{\rm MeV}$$

$$\Delta a = \left(\frac{\rho_0 a_0}{D n_{c0}} - \frac{a_0}{L'_0} \frac{dL'}{da}\right|_0^{-1} \frac{\Delta \overline{\sigma}_{pN}}{\overline{\sigma}_{pN0}} a_0$$

$$\overline{\sigma}_{pN} = (Z/A)\sigma_{pp} + (1 - Z/A)\sigma_{pn}$$

$$X_0 : X(= \overline{\sigma}_{pN}, a, n_c, L') \text{ at } T_p = 800 \text{ MeV}$$

$$\Delta X = X - X_0$$

$$L' = 2\sqrt{R^2 - a^2}$$

$$R = R_0 + D/2 - R_0 (1 + 12R_0^2/D^2)^{-1}$$

$$D = 2.2 \text{ fm}, \rho_0 = 0.16 \text{ fm}^{-3}, R_0 = (3A/4\pi\rho_0)^1$$

 $n_{c0} = 0.9(\sigma_{pN0}L_0)$

target Larger σ_{pN}

3

Bird's-eye view

$$\Delta \overline{\sigma}_{pN}^{total} = \overline{\sigma}_{pN}^{total}(T_p) - \overline{\sigma}_{pN0}^{total}.$$

is small for $T_p > 100$ MeV.

No energy dependent adjustable parameter

— different from fitting formulas

From K. Iida

cf. PHITS

In the EXFOR manual,

"a less complete compilation of charged-particle-induced reaction data."

Based on the discussion with N. Otsuka (IAEA)

You will find "Cross Sections and related quantities".

E-dep. of p+n total cross sections

"observable" or "deduced value"?

- $\sigma_{pp}^{\text{total}}$ > It is an ill-definition
 - It is an ill-defined quantity, not an observable.
 It is a deduced quantity.
 - Due to the coulomb interaction, it must be diverge.
 - Procedure of Coulomb subtraction should be accompanied by some uncertainties.

- $\sigma_{np}^{\text{total}}$ or $\sigma_{pp}^{\text{total}}$ \succ "n on p" is an observable.
 - This serves as the standard values of cross sections.
 - The highest incident energy is limited.
 - "p on n" is not an observable.
 - It is a deduced quantity.
 - The target will be deuterons. The contribution from the target proton should be subtracted out.

🥹X4/Servlet: Select - Mozilla Firefox	
ファイル(E) 編集(E) 表示(V) 履歴(S) ブックマーク(B) ツール(T) ヘルブ(H)	
(X4/Servlet: Select +	*
() http://www-nds.iaea.org/exfor/servlet/X4sSearch5	🟫 👻 🤁 🚨 👻 Amazon.co.jp 🖉 🍙
🙍 よく見るページ 🧐 Firefox を使いこなそう 🔊 最新ニュース 💿 Portable Apps.com 🚦	PortableApps.com News
Request #19135	
Data Selection	
Retrieve © Selected © Unselected © All Reset	
Output: FEXFOR EXFOR+ Bibliography TAB C4 I	□ PlotC4
Plot: Quick-plot (cross-sections only) Advanced plot [how Narrow Energy (ontional), eV: Min: Advanced plot [how	w-to] Convert ratios (if any) to cross sections using [IAEA-standards,2006]
n Display Wash Author	1 Energy verge of Deints Deference
	I Energy range, ev Fornes Reference
()1) $> > 1-H-1(P,T0T), S1G, MSC C4:$	MF=3 MT=?
Quantity: [CS] Cross section	
1 🔽 Info X4 X4+ X4± T4 1979 P.Schwa	<pre>11er+ 1.79e8 5.55e8 9 J,NP/A,316,317,193</pre>
REACTION (1-H-1(P,TOT),,SIG(,MSC)	
#(1-H-1(P,TOT),,SIG,,MSC) Quantity: [CS] Cro	
Process: [IOI] Iotai E2 - outgoing particle energy QVL'-Q value LVN - level number	request vexamples.1234367.
LVL - level energy EDG - energy degradation MOM - linear momentum	Submit Reset Help
Page generated: 2011/05/08,06:27:16 by X4-Servlet on www-nds.iaea.org Project: "Multi-platform EXFOR-CINDA-ENDF", VZerkin, IAEA-NDS, 1999-2010	Target 🔽 H-0; H-1
Request from: kd111099003026.ppp-bb.dion.ne.jp (111.99.3.26)	Reaction 🔽 P.TOT
SEXFOR Request #20741/2965	Quantity 🔽 cs
output Data	Product
format <u>Data</u> (Size)	
EXFOR Text (7Kb) ZIP (3Kb) Generate: X4± X4s C5	Author(c)
Bibliography html (3Kb) BibTeX (1Kb)	
Computational	Publication year
C4 LST (117Kb)	Accession # 🗖 💦 🖓
	✓ Extended
orry, "Advanced plotting" was not successful	
- plotting of the given data type is not yet implemented	
- no data to be plotted	

My current concern with $\sigma_{NN}^{\ total}$

- Below the π-threshold:
 (total) = (elastic)
- While in EXFOR even below π-threshold;
 - 1-H-1(N,EL)1-H-1,,SIG,1-H-1(N,TOT),,SIG
 - Different data sets appear, but the same sets should appear.
- At high energy, $\sigma_{pn}^{\text{total}} \approx \sigma_{np}^{\text{total}}$?

- Extrapolation is inevitable
 - EL: integrated angular distribution of elastic differential cross section.
 Extrapolation to zero degree to subtract the Coulomb.
 - TOT: Extrapolation of angular distribution of elastic differential cross section to zero degree and adopt the optical theorem.

I believe that σ_{NN}^{total} is important as a measure of the strength of NN-int. and hope to be compiled properly.

EXFOR is powerful and evolving DB

- I have illustrated an example of the systematic analyses of high energy processes using EXFOR.
 - Compilation of high energy data is very helpful.
 - Please be careful for high energy data and for reactions involving particles other than nucleons.
- Message: Databases, such as EXFOR, must be evolving forever with the users.
 - Nuclear reaction data is one of the valuable common properties of human being!
- Special thanks to N. Otsuka (IAEA) & the members of Nuclear Reaction Data Centre (JCPRG) @ Hokkaido Univ. for the data collection.

Thank you very much!

Backup slides

Whtp://www-ndisea.org/ordor/archide/sectors/archide/sector/archid/archide/sectors/archide/sectors/archide/secto	and the second	erpreted, IAEA-NDS. 2	2006 +								÷.	
XXBXX-J Frence KER/CR2 ABE-1-X PertubleApsecon PertubleApsecon XXBXX-J Frence KER/CR2 ABE-1-X PertubleApsecon PertubleApsecon XXBXX-J C I.S I.S XXXX-J S I.S I.S XXXX-J S I.S I.S XXXX-J S I.S I.S I.S XXXX-J S I.S I.S I.S I.S XXXX-J S I.S I.S I.S	6 3 6) http://www-nds.jae	a.org/exfor/servle	t/X4sGetSuber	nt?reax=20747&sut	1D=100493003+=	:1	े - वो	a Amazon.co.ir	ĩ		
A type The All Code () Tell () <thtell ()<="" th=""> Tell () <thtell ()<="" th=""></thtell></thtell>		い。 「」 (図) Eirefox を使い	- かえる 🔽 長報-		table Appe com	Portable Appe com 1	Newo		•			
ENERCONDUM 3 SUBJECT A0453002 20100406 20100610 2010062 A065 SUBJECT A0453002 20100406 20100610 2010062 A065 SUBJECT A0453002 20100406 20100610 A065 SUBJECT CLH-41(2HE-6(T)T), SIG, MSC) (WON), SIG) SUBJECT SUBJECT SUBJECT SUBJECT SUBJECT <	3.	2. 1.5	1.		(abie-hpps.com	1 or table Apps.com 1	INCONS					
BRDENET Add Sold 201006100 201006100	ENDCOMMON	3										
BIB S 2 BIB S S BIB S S BIB S S BIB Mile S BIB Mile S BIB Mile S BIB Mile S BIB S S S S S S S S S S S S S S S S S	ENDSUBENT	62 A0493003 20	0100406 2010	0610 2010	0602 40	68 DEL CETON			ATA MAAL			
<pre>EXACTION 1((1-H-1(2-HE-6,TOT),SIC,HSC) (2-HE-6(P,IO),SIC,HSC) Muclear interaction part 2((1-H-1(2-HE-6,ION),SIC)=(2-HE-6(P,NON),SIC)) 3((1-H-1(2-HE-6,RON),SIC)=(2-HE-6(P,NON),SIC)) 3((1-H-1(2-HE-6,RON),SIC)=(2-HE-6(P,NON),SIC)) 3((1-H-1(2-HE-6,RON),SIC)=(2-HE-6(P,NON),SIC)) 3((1-H-1(2-HE-6,RON),SIC)=(2-HE-6(P,NON),SIC)) 3((1-H-1(2-HE-6,RON),SIC)=(2-HE-6(P,NON),SIC)) Muclear interaction part 4(1-H-1(2-HE-6,F)T),SIG,MSC) Quantity:[CS] Cross section 4(1-H-1(2-HE-6,F)T),SIG,MSC) Quantity:[CS] Cross section 4(A0450,CG),SIG QUANTITY:[CS</pre>	BIB	5	21			REACTION	1((1-H-1	L(2-HE-6,IUI)	,,SIG,,MSC)	-		
(2-H2-6(r,107), 2512, H85(7) Nuclear interaction part (1-H-1(2-HE-6, X00),, S10) + (2-HE-6(P, N0N),, S10) (1-H-1(2-HE-6, XD),, S10, H2-HE-6(P, N0N),, S10) 2(1-H-1(2-HE-6, XD),, S10, MSC) (2-HE-6(P, NDN),, S10, H2-HE-6, S10,, MSC)) Nuclear interaction part (2-HE-6(P, N0N),, S1G, MSC) #(1-H-1(2-HE-6, XD),, S1G, MSC) (2-HE-6(P, NDN),, S1G, MSC) #(1-H-1(2-HE-6, NDN),, S1G, MSC) (2-HE-6(P, NDN),, S1G, MSC) #(2-HE-6(P, NON),, S1G, MSC) (2-HE-6(P, NDN),, S1G, MSC) #(2-HE-6(P, NDN),, S1G, MSC) (2-HE-6(P, NDN),, S1G, MSC) #(2-HE-6(P, NON),, S1G, MSC) (2-HE-6(P, NDN),, S1G, MSC) #(2-HE-6(P, NDN),, S1G, MSC) (2-HE-6(P, NDN),, S1G) #(2-HE-6(P, NDN),, S1G, MSC) (2-HE-6(P, NDN),, S1G) #(2-HE-6(P, NDN),, S1G) (2-HE-6(P, NDN),, S1G) #(1-H-1(2-HE-6, NDN),, S1G) (2-HE-6(P, NDN),, S1G)	REACTION	1((1-H-1(2-HE-6,)	TOT),,SIG,,MSC) =			(Z-HE-C	5(P,101),,51G	,,MSC))			
2(1-H-1(2-HE-6, NON), SIG) 2(1-H-1(2-HE-6, NON), SIG) 3(1-H-1(2-HE-6, ND1)-H-1, SIG, MSC) (2(1-H-1(2-HE-6, ND1)-H-1, SIG), MSC) Willer interaction part (1-H-1(2-HE-6, ND1)-H-1, SIG), MSC) Willer interaction part (1-H-1(2-HE-6, ND1)-H-1, SIG), MSC) Willer interaction part (1-H-1(2-HE-6, ND1), SIG), Quantity: [CS] Cross section # (2-HE-6(P,EI), SIG), MSC) Quantity: [CS] Cross section # (2-HE-6(P,EI), 2-HE-6, SIG, MSC) Quantity: [CS] Cross section # (2-HE-6(P,EI), 2-HE-6, SIG, MSC) Quantity: [CS] Cross section # (2-HE-6(P,EI), 2-HE-6, SIG, MSC) Quantity: [CS] Cross section # Creation of anylia differential Cross section # Creation of anylia differential cross section Submit Reset Help Willer interaction parateles was used in Submit Reset Help Deradi of Eluber calculation Su		(2-HE-6(P,TOT),	SIG, MSC))				Nucles	ar interaction	n part	P COD NON	GTOLL	
31(1-H-1(2-HE-6, ZL),1-H-1, SLO, MEC)= 31(1-H-1(2-HE-6, ZL),1-H-1, SLO, MEC)= (2-HE-6(P, CT), SLG, MSC) Walter interaction part #(1-H-1(2-HE-6, SLO, C), Quantity: [CS] Cross section #(1-H-1(2-HE-6, SLO, MSC)) #(1-H-1(2-HE-6, SLO, SLG, MSC)) Quantity: [CS] Cross section #(1-H-1(2-HE-6, NON), SLO) Quantity: [CS] Cross section #(2-HE-6(P, NON), SLO) Quantity: [CS] Cross section #(2-HE-6(P, NED), SLO, MSC) Quantity: [CS] Cross section #(2-HE-6(P, NON), SLO) Quantity: [CS] Cross section #(2-HE-6(P,	2	2((1-H-1(2-HE-6,1	NON),,SIG)=(2-	HE-6(P,NON)	,,SIG))		2((I-H-)	L(2-HE-6,NUN)	,,SIG)=(2-H	MCC) -	,,516))	
(2-HE-6 (P, BL) 2-HE-6, STG, MSC)) Wulcar interaction part wulcar interaction part #(1-H-1(2)-HE-6, TOT), SIG, MSC) Quantity: [CS] Cross section # (1-H-1(2)-HE-6, TOT), SIG, MSC) Quantity: [CS] Cross section # (1-H-1(2)-HE-6, TOT), SIG, MSC) Quantity: [CS] Cross section # (1-H-1(2)-HE-6, NON), SIG Quantity: [CS] Cross section # (1-H-1(2)-HE-6, NON), SIG Quantity: [CS] Cross section # Process: [INON] Nonelastic (= total minus elastic) # (1-H-1(2)-HE-6, SIG, MSC) Quantity: [CS] Cross section # Quantity: [LS] class section # (1-H-1(2)-HE-6, NON), SIG Quantity: [CS] Cross section # Quantity: [SG] Cross section # (1-H-1(2)-HE-6, NON), SIG Quantity: [CS] Cross section # Quantity: [SG] Cross section # (1-H-1(2)-HE-6, NON), SIG Quantity: [CS] Cross section # Quantity: [MSC] Approximate definition only, see text General purpose modifier for ABALYSIS Glassic uncertainties. Strapolation of ampliar differential cross section =Note==This is approximate definition only, see text General purpose modifier for ABALYSIS Fabrero Strin minus elastic cross section # (H-0: H-1 # (H-0: H-1 BreavABALYS (BR-1) The errors given include statistical and systematical uncertainties. Quantity (CS Quantity (CS Product 1		3((1-H-1(2-HE-6,	EL)1-H-1,,SIG,	,MSC) =			3((I-H-1	L(2-HE-6,EL)1	-H-1,,51G,,	msc)=		
AUXIERAT Interaction part # (1+1/2(2+E-5,10T),SIG,MSC) Quantity: [CS] Cross section # (1+1/2(2+E-5,NON),SIG), Quantity: [CS] Cross section # (1+1/2(2+E-5,NON),SIG), Quantity: [CS] Cross section # (2+H-6(P,TOT),SIG,MSC) Quantity: [CS] Cross section # (2+H-6(P,ED		(2-HE-6(P,EL)2-H	HE-6,,SIG,,MSC	())			(2-HE-6	5(P,EL)2-HE-6	,,SIG,,MSC)	,		
<pre># Process: [TOT] Total # (1+H1(2+HE-6,IOT),SIG,MSC) Quantity: [CS] Cross section # (1+H1(2+HE-6,NON),SIG) Quantity: [CS] Cross section # (1+H1(2+HE-6,NON),SIG) Quantity: [CS] Cross section # (2+HE-6(P,TOT),SIG,MSC) Quantity: [CS] Cross section # (1+H1(2+HE-6,NON),SIG) Quantity: [CS] Cross section # (2+HE-6(P,TOT),SIG,MSC) Quantity: [CS] Cross section # (1+H1(2+HE-6,NON),SIG) Quantity: [CS] Cross section # (1+H1(2+HE-6,NON),SIG) Quantity: [CS] Cross section # (2+HE-6(P,TOT),SIG,MSC) Quantity: [CS] Cross section # (2+HE-6(P,TOT),SIG,MSC) Quantity: [CS] Cross section # (1+H1(2+HE-6,NON),SIG) Quantity: [CS] Cross section # (2+HE-6(P,TOT),SIG,MSC) Quantity: [CS] Cross section # (1+H1(2+HE-6,NON),SIG) Quantity: [CS] Cross section # (2+HE-6(P,TOT),SIG,MSC) Quantity: [CS] C</pre>		#(1-H-1(2-HE-6.TO	T)SIGMSC)	Ouantity: [CS	S1 Cross section		#/1 U 1	(2 UE 6 TOT) 6	ion part	upptitus FCC	1 Croce cost	tine
#(2+H=6(P,T),SIG,MSC) Quantity: [CS] Cross section *		# Process:	[TOT] Total				#(I-U-T	(2-HE-6,101),,3	1 Total	inautria (CS	of Cross sect	aor
# C1-H2(2-HE-6,NON),S1G) Quantity: [CS] Cross section # (2-HE-6(F,IOH),S1G) Quantity: [CS] Cross section # Process: [NON] Nonelastic (= total minus elastic) # (2-HE-6(F,IOH),S1G) Quantity: [CS] Cross section # Process: [LO] Harding (= CS] Cross section # Process: [NON] Nonelastic (= total minus elastic) # Process: [LO] Harding (= CS] Cross section # Process: [NON] Nonelastic (= total minus elastic) # Process: [LO] Harding (= CS] Cross section # Process: [NON] Nonelastic (= total minus elastic) # Process: [LO] Harding (= CS] Cross section # Process: [NON] Nonelastic (= total minus elastic) # Catheder calculation See RE-REF. Integration See RE-REF. Integration See RE-REF. Integration Glauber calculation REL-REF (N, .6.) Alkhazov+ .0, NP/A, 712, 269, 2002) Datai of clauber calculation Section REP-RDE 1 3 REMOMIN 1 3 REMOMIN 1 3 REMOMIN 3 Atta 6 Data 161.3 198.9 MB MB MB MB MB MENT 3 MBMENTET 3 MBMENT 3		#(2-HE-6(P,TOT),,S	IG,,MSC) Quar	ntity: [CS] Cr	oss section		# /2 UE	(PTOCESS: [IUI	J IOCAL MCC) Output	itui lool on		
#(2-HE-6(PNON),SIG) Quantity: [CS] Cross section #(1-H-1(2-HE-6,NON),SIG) Quantity: [CS] Cross section #(2-HE-6(PNON),SIG) Quantity: [CS] Cross section # #(2-HE-6(PEL)2-HE-6,SIG,MSC) Quantity: [CS] Cross section # Modifier: [MSC] Approximate definition only, see REAL-REF Integration Iberia extrapolated 0 deg angular differential # Cross section with the optical theorem Closal cross section minus elastic cross section Strapolation of angular differential cross section Submit Reset Help Target [V +0; H-1 # Reaction [V He-6,NON Quantity [V CS] Product [Quantity [V CS] Common 1 3 BN HB HB MB HB HB MBO		#(1-H-1(2-HE-6,NC	N),,SIG) Quant [NON] Nonelastic	tity: [CS] Cro (= total min	us elastic)		#(2-00-	(P, IUT), SIG,	MSC) Quant		oss section	
<pre>#(1++1(2+HE-6,E)1++1,SIG,MSC) Quantity:[CS] Cross section # Process: [Lt[Edits cattering #(2+HE-6(PEL)2+HE-6,SIG,MSC) Quantity:[CS] Cross section # Modifier: [MSC] Approximate definition only, see text General purpose modifier for ANALYSIS # Iffective nucleon-nucleon parameters was used in Glauber calculation. See REI-REF. IDerived from extrapolated 0 deg angular differential cross section with the optical theorem Clotal cross section inus elastic cross section 3# xtrapolation of angular differential cross section 3# xtrapolation of angular differential cross section 3# xtrapolation of angular differential cross section (A0493.006) to 0 deg by the Glauber model and integration. # U, C.D. Althacovt, J, NP/A, 712, 269, 2002) Detail of Glauber calculation BRE-NNLYS (IABLE).Table 2 (Office) (IABLE).Table 2 (Office) 1 3 EN NDATA 6 1 DATA 1 EP-T DATA 2EDP-T 2DATA SERP-T 3 NB N</pre>		#(2-HE-6(P,NON),,	SIG) Quantity:	[CS] Cross se	ection		*(T-U-T	(Z-HE-6,NON),;	(I Manalactia /	ty: [CS] Cro	iss section	
<pre># Process: [EL] Elastic scattering # C1-HE-6(FL)2+HE-6, S(G,MSC) Quantity: [CS] Cross section # Modifier: [MSC] Approximate definition only, see REACTION text ==Note==This is approximate definition only, see text General purpose modifier for ANALYSIS Effective nucleon-purpose modifier for ANALYSIS Effective nucleon-purpose definition only, see text General purpose modifier for ANALYSIS Effective nucleon-purpose modifier for Clauber calculation. See REL-REF. Derived from extrapolated 0 deg angular differential cross section with the optical theorem 2Total cross section mainus elastic cross section (A0493.006) to 0 deg by the Clauber model and integration. REL-EFF (M,, C. D. Alkhasov+, J, MP/A, 712, 269, 2002) Detail of Clauber calculation REL-ANALYS (ERP-T) The errors given include statistical and systematical uncertainties. STATUS (IBRP-T) The errors given include statistical and systematical uncertainties. STATUS (IBRP-T) IDATA 2ERP-T 2DATA 3ERP-T 3 NB N</pre>		#(1-H-1(2-HE-6,EL)1-H-1,,SIG,,MS(C) Quantity:	[CS] Cross sec	tion	#	Process: [NON	ij Nonelastic (,= total minu	is elasuc)	
************************************		# Process: #/2.45.6/0.5132.45	EL] Elastic scatte	ering Ouentity: IC:	SI Croce contine							
ANALYSIS Fifective nucleon-muleon parameters was used in Glauber calculation. See REL-REF. LDerived from extrapolated 0 deg angular differential cross section minus elastic cross section SExtrapolation of angular differential cross section (A0493.006) to 0 deg by the Glauber model and integration. REL-REF (N,, 6. D. Alkhasovt, J,NP/A,712,269,2002) Detail of Glauber calculation ERR-ANALYS (ERR-T) The errors given include statistical and systematical uncertainties. STATUS (TABLE). Table 2 (DEP,A0493006) Angular differential cross section HNDFIE 21 COMMON 1 3 PATA 6 1 MEV/A 721. ENNOTHERN 33 HB MB MB MB MB MB MB MB MB MB MB MB MB HB MB MB MB MB MB MB MB HB MB MB MB MB MB MB MB MB HB MB MB MB MB MB MB MB MB HB MB MB MB MB MB MB MB HB MB MB MB MB MB MB MB MB HB MB MB MB MB MB MB MB MB MB HB MB MB MB MB MB MB MB MB MB MB HB MB MB MB MB MB MB MB MB MB MB HB MB MB HB MB MB HB MB		# Modifier:	[MSC] Approxim	ate definition	only, see REAC	FION text ==Note	==This is app	roximate definition o	only, see text Ger	neral purpose m	nodifier for	
Glauber calculation. See REL-REF. Liberived from extrapolated 0 deg angular differential cross section with the optical theorem 270tal cross section angular differential cross section minus elastic cross section (A0493.006) to 0 deg by the Glauber model and integration. REL-REF (N,,G.D.Alkhazov+,J,NP/A,712,269,2002) Detail of Glauber calculation REN-MALKY SIRP.T The errors given include statistical and systematical uncertainties. STATUS (TABLE). The errors given include statistical and systematical uncertainties. STATUS (TABLE). The include statistical and systematical uncertainties. STATUS (TABLE). The errors given include statistical and systematical uncertainties. STATUS (TABLE). The errors given include statistical and systematical uncertainties. STATUS (TABLE). The errors given include statistical errors section ENDEDE 21 COMMON 1 AUTA 1 PATA 1 PATA 1 PATA 1 PATA 1 PATA 1 PATA 1 PATA 3 ENDEMTRY 2 CALL COMMON 3 HDB MB MB MB MB MB ENDEMTRY 2 CALL COMMON 3 ENDEMTRY 2 CALL COMMON 3 CALL C	ANALYSIS	Effective nucled	on-nucleon par	ameters was	s used in		1		943 1	10 - 83		
Interved from extrapolated 0 deg angular differential cross section Cross section with the optical theorem 2Total cross section minus elastic cross section 3Extrapolation of angular differential cross section integration. REL-REF (N,, C.D. Alkhazov+, J, NP/A, 712, 269, 2002) Detail of Clauber calculation ERR-ANALYS (REN-T) The errors given include statistical and systematical uncertainties. STATUS (TABLE). Table 2 (DEP, A0493006) Angular differential cross section CONTION 1 1 3 ENDELE 21 CONTION 1 1 3 IND CONTION 3 DATA 6 198.9 4.6 161.3 3.7 198.9 4.6 198.9 4.6 198.9 4.6 198.9 4.6 198.9 10 198.9 4.6 198.9 3 INDENTEY 2		Clowbox coloulot	den DET								20000000	
ZTotal cross section minus elastic cross section Strarapolation of angular differential cross section (A0493.006) to 0 deg by the Clauber nodel and integration. RRL-REF (N, G.D. Alkhazort, J, NP/A, 712, 269, 2002) Detail of Clauber calculation RRR-ANALYS (ERP-T) The errors given include statistical and systematical uncertainties. STATUS (TABLE). Table 2 (DEP, A0493006) Angular differential cross section HNDEIN 21 COMMON 1 3 EN MBV/A 721. HNDCOMMON 3 DATA 6 1 DATA 1ERP-T 1DATA 2ERP-T 2DATA 3ERP-T 3 MB MB MB MB MB MB MB 196.9 4.6 161.3 3.7 37.6 1.2 HNDENTEY 2 HNDENTEY 2		Giauber carculat	cion. See RML-	REF.								
SExtrapolation of angular differential cross section (A0493.006) to 0 deg by the Clauber model and integration. REL-REF (N,,G.D.Alkhasov+,J,NP/A,712,269,2002) Detail of Clauber calculation ERR-ANALYS (RER-T) The errors given include statistical and systematical uncertainties. STATUS (TABLE).Table 2 (DEP,A04093006) Angular differential cross section RMDETE 21 COMMON 1 3 NEW/A 721. RNCOUNION 3 DATA 6 1 DATA 18 MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB		IDerived from ex	trapolated 0 the the ontica	deg angular theorem	differential							
A0493.006) to 0 deg by the Glauber model and integration. REL-REF (N,, G.D. Alkhazov+, J, NP/A, 712,269,2002) Detail of Glauber calculation RRR-ANALYS (RRP-ANALYS) (RRP-ANALYS) <td></td> <td>IDerived from ex cross section wi 2Total cross sec</td> <td>tion. See RBL- strapolated O ith the optica</td> <td>REF. deg angular al theorem astic cross</td> <td>differential</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		IDerived from ex cross section wi 2Total cross sec	tion. See RBL- strapolated O ith the optica	REF. deg angular al theorem astic cross	differential							
REL-REF (N, C, D, Alkhazov+, J, NP/A, 712, 269, 2002) Detail of Glauber calculation BRR-ANALYS (RR-T) The errors given include statistical and systematical uncertainties. STATUS (TABLE). Table 2 (DEP, A0493006) Angular differential cross section RNDBIB 21 COMMON 1 RN HEV/A 721. RNDCOMMON STATU G 1 DATA 6 1 DATA 6 1 DATA 1 1 1 2 Publication year Publication year Publication # Publication #		lDerived from ex cross section wi 2Total cross sec 3Extrapolation of	xtrapolated O ith the optica ction minus el of angular dif	deg angular deg angular d theorem astic cross ferential c	differential s section cross section		Г	Re	equest	Examples:	1234567	
Detail of Clauber calculation BRR-ANALYS BRR-ANALYS BRR-ANALYS STATUS (TABLE).Table 2 (DEP,A0493006) Angular differential cross section HNDBTB 21 COMMON 1 STATUS RN HEV/A 721. HNDCOMMON 3 DATA 6 1 DATA IERR-T IDATA IERR-T IDATA IERR-T IDATA IERR-T IDATA IENDENT 198.9 4.6 161.3 3.7 STATUS INDENTRY 2		IDerived from ex- cross section wi 2Total cross sec 3Extrapolation ((A0493.006) to integration	xtrapolated 0 ith the optica ction minus el of angular dif 0 deg by the	REF. deg angular 1 theorem astic cross ferential c Glauber mod	differential s section cross section del and			Re	equest	Examples:	1234567	
RRR-ANALYS (ERR-T) The errors given include statistical and systematical uncertainties. STATUS (TABLS).Table 2 (DEP,A0493006) Angular differential cross section RNDEIB 21 COMMON 1 1 3 RN	REL-REF	IDerived from ex cross section wi 2Total cross sec (A0493.006) to integration. (N,,G.D.Alkhazot	<pre>ston. See RML- ktrapolated 0 ith the optica ction minus el of angular dif 0 deg by the y+,J,NP/A,712,</pre>	REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002)	differential section cross section del and			Re	equest Submit	Examples:	1234567 Help	
SYSTEMATICAL Undervalues. STATUS (TABLE). Table 2 (DBP,A0493006) Angular differential cross section ENDERIE 21 COMMON 1 3 EN HEV/A 721. ENDCOMMON 3 DATA 6 1 DATA 1ERR-T 1DATA 2ERR-T 2DATA 3ERR-T 3 ME ME ME ME ME ME 198.9 4.6 161.3 3.7 37.6 1.2 ENDCATA 3 ENDENTRY 2	REL-REF	lDerived from ex- cross section wi ZTotal cross sec (A0493.006) to integration. (N,,G.D.Alkhazov Detail of Glaub	<pre>ston. See RM- ktrapolated 0 ith the optica ction minus el of angular dif 0 deg by the y+,J,NP/A,712, per calculatio</pre>	REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n	differential section cross section del and			Re Target	equest Submit ₩ H-0; H-1	Examples:	1234567. Help	 »
(DEP,A0493006) Angular differential cross section ENDEIE 21 COMMON 1 3 EN HEV/A 721. ENDCOMMON 3 DATA 6 1 DATA 6 1 DATA 6 1 DATA 6 1 DATA 1 ERR-T 1DATA 2 2 2 VI CS Product COMMON 3 DATA 1 ERR-T 1DATA 2 2 VI COMMON 3 Product COMMON 3 ENDCATA 3 ENDSUBENT 33 ENDENTRY 2 Common Common <	REL-REF ERR-ANALYS	lDerived from ex- cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazov Detail of Glauk (ERR-T) The error	<pre>ston. see RM- ktrapolated 0 ith the optica ction minus el of angular dif 0 deg by the r+,J,NP/A,712, per calculatio ors given incl</pre>	AEF. deg angular 1 theorem astic cross ferential o Glauber mod 269,2002) n ude statist	: differential s section rross section del and tical and			Re Target Reaction	Submit Front H-0; H-1	Examples:	1234567. Help	 »
ENDBIB 21 COMMON 1 3 EN Energy from to HEV/A	REL-REF ERR-ANALYS STATUS	lDerived from ex- cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazor Detail of Glauk (ERR-T) The error systematical und (TABLE) Table 2	<pre>ston. see RE- ktrapolated 0 ith the optica tion minus el of angular dif 0 deg by the r+,J,NP/A,712, ser calculatio ors given incl certainties.</pre>	REF. deg angular 1 theorem astic cross ferential o Glauber mod 269,2002) n ude statist	: differential s section rross section del and del and			Re Target Reaction	Equest Submit I H-0; H-1 I He-6,NON	Examples:	1234567. Help	 »
COMMON 1 3 EN Energy from to MEV/A 721. ENDCOMMON 3 DATA 6 1 DATA 6 1 DATA 1DATA 2ER-T 2DATA MB MB MB MB 198.9 4.6 161.3 3.7 198.9 4.6 161.3 3.7 ENDSUBENT 3 ENDSUBENT 33 END STRET 32 END STRET 2	REL-REF ERR-ANALYS STATUS	lDerived from ex- cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazor Detail of Glaub (ERR-T) The error systematical uno (TABLE). Table 2 (DEP,A0493006) J	<pre>ston. See AB- ktrapolated 0 ith the optical stion minus el of angular dif 0 deg by the y+,J,NP/A,712, per calculatio prs given incl certainties. Angular differ</pre>	REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cross	: differential s section rross section del and cical and ss section			Target Reaction Quantity	Submit F H-0; H-1 He-6, NON CS	Examples: <u>Reset</u>	1234567. Help	 » »
MEV/A 721. RNDCOMMON 3 DATA 6 1 DATA 1BRR-T 1DATA 2ERR-T 2DATA 1BR MB MB <td>REL-REF ERR-ANALYS STATUS ENDBIB</td> <td>Derived from ex- cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazot Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21</td> <td><pre>ston. See ARL- ktrapolated 0 ith the optical tion minus el of angular dif 0 deg by the y+,J,NP/A,712, oer calculatio ors given incl certainties. Angular differ</pre></td> <td>REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros</td> <td>differential s section ross section del and cical and ss section</td> <td></td> <td></td> <td>Target Reaction Quantity Product</td> <td>Submit Submit H-0; H-1 He-6, NON CS</td> <td>Examples: <u>Reset</u></td> <td>1234567. Help</td> <td> » »</td>	REL-REF ERR-ANALYS STATUS ENDBIB	Derived from ex- cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazot Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21	<pre>ston. See ARL- ktrapolated 0 ith the optical tion minus el of angular dif 0 deg by the y+,J,NP/A,712, oer calculatio ors given incl certainties. Angular differ</pre>	REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros	differential s section ross section del and cical and ss section			Target Reaction Quantity Product	Submit Submit H-0; H-1 He-6, NON CS	Examples: <u>Reset</u>	1234567. Help	 » »
721. 3 ENDCOMMON 3 DATA 6 1 DATA 1ERR-T 1DATA 2ERR-T 2DATA 3ERR-T 3 Publication year 1 <	REL-REF ERR-ANALYS STATUS ENDBIB COMMON	lDerived from ex- cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazov Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1	<pre>ston. See ARL- ktrapolated 0 ith the optical tion minus el of angular dif 0 deg by the option of the per calculation option of the certainties. Angular differ 3</pre>	REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros	differential s section cross section del and cical and ss section			Target Reaction Quantity Product	Submit Submit H-0; H-1 He-6, NON CS	Examples:	1234567	 » »
ENDCOMMON 3 DATA 6 DATA 6 DATA 1DATA 2ERR-T 2DATA BMB MB MB MB	REL-REF ERR-ANALYS STATUS ENDBIB COMMON EN MEV/A	lDerived from ex- cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazov Detail of Glaub (ERR-T) The erro systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1	<pre>ston. See ARF- ktrapolated 0 ith the optical of angular dif 0 deg by the of angular differ oper calculatio oper calculation oper given incl certainties. Angular differ 3</pre>	REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros	differential s section cross section del and cical and ss section			Target Reaction Quantity Product Ener	Submit Submit H-0; H-1 He-6,NON CS rgy from	Examples:	1234567	 » » »
DATA IERR-T IDATA 2ERR-T 2DATA 3ERR-T 3 ME MB MB MB MB MB 198.9 4.6 161.3 3.7 37.6 1.2 ENDDATA 3 XE XE Xeywords ENDSUBENT 33 Xeywords Xeywords ENDENTRY 2 Xeywords	REL-REF ERR-ANALYS STATUS ENDBIB COMMON EN MEV/A 721.	lDerived from ex cross section wi 2Total cross sec 3Extrapolation ((A0493.006) to integration. (N,,G.D.Alkhazow Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1	the set of	REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros	differential s section cross section del and cical and ss section			Target Target Reaction Quantity Product Ener Author(s)	Submit Submit H-0; H-1 He-6,NON CS	Examples: Reset	1234567. Help	 » » »
MB MB MB MB MB 198.9 4.6 161.3 3.7 37.6 1.2 ENDDATA 3 3 Xeression # Xeression # ENDSUBENT 33 Xeression # Xeression # ENDENTRY 2 Xeression # Xeression #	REL-REF ERR-ANALYS STATUS ENDBIB COMMON EN MEV/A 721. ENDCOMMON	lDerived from ex cross section wi 2Total cross sec 3Extrapolation ((A0493.006) to integration. (N,,G.D.Alkhazow Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1	the set of	REF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros	differential s section eross section del and cical and ss section			Target Target Reaction Quantity Product Ener Author(s)	Submit Submit H-0; H-1 He-6,NON CS	Examples:	1234567. Help	 » » » »
198.9 4.6 161.3 3.7 37.6 1.2 Extended ENDATA 3 3 Xeywords Xeywords ENDSUBENT 33 Xeywords Xeywords ENDENTRY 2 Xeywords Xeywords	REL-REF ERR-ANALYS STATUS ENDBIB COMMON EN MEV/A 721. ENDCOMMON DATA DATA	IDerived from ex- cross section wi 2Total cross sec 3Extrapolation ((A0493.006) to integration. (N,,G.D.Alkhazow Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1 3 6 KEDD-T IDATA	trapolated 0 (trapolated 0 (th the optica ction minus el of angular dif 0 deg by the of,J,NP/A,712, per calculatio ors given incl certainties. Angular differ 3 1 2EDD-T	ALF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros 2014	differential section cross section del and cical and ss section	8	F	Target Target Reaction Quantity Product Ener Author(s) Publication year	Submit Submit H-0; H-1 He-6,NON CS	Examples:	1234567. Help	 » » » »
ENDDATA 3 ENDSUBENT 33 ENDENTRY 2 Keywords Expert	REL-REF ERR-ANALYS STATUS ENDBIB COMMON EN MEV/A 721. ENDCOMMON DATA DATA EN	Classer Calcula Iberived from ex- cross section wi 2Total cross sec 3Extrapolation ((A0493.006) to integration. (N,,G.D.Alkhazov Detail of Claub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1 3 6 IERR-T IDATA ME MB	trapolated 0 (trapolated 0 (th the optica ction minus el of angular dif 0 deg by the 0 deg deg the 0 deg by the 0 deg deg the 0 deg deg the 0 deg deg deg deg deg 0 deg deg deg deg 0 deg deg deg deg 0 deg deg deg deg 0 deg deg deg deg deg 0 deg deg deg deg deg deg 0 deg	ALF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros 2DATA MB	differential s section eross section del and sical and ss section <u>3ERR-T</u> MB	8	F	Target Target Reaction Quantity Product Ener Author(s) Publication year Accession #	Submit Submit H-0; H-1 He-6,NON CS G rgy from	Examples:	1234567. Help	 » » » » » »
ENDENTRY 2	REL-REF ERR-ANALYS STATUS ENDBIB COMMON EN MEV/A 721. ENDCOMMON DATA DATA DATA NB 198.9	IDerived from ex- cross section wi- 2Total cross sec- 3Extrapolation ((A0493.006) to integration. (N,,G.D.Alkhazov Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1 3 6 IERR-T IDATA MB MB 4.6 161.3	ton. See AL- «trapolated 0 ith the optical ction minus el of angular dif 0 deg by the r+,J,NP/A,712, per calculatio per calculatio per calculatio per calculatio per calculatio per calculation per c	ALF. deg angular 1 theorem astic cross iferential of Clauber mod 269,2002) n ude statist ential cross 2DATA MB 37.6	: differential s section rross section del and tical and ss section 3ERR-T MB 1.2	8	F	Target Target Reaction Quantity Product Ener Author(s) Publication year Accession #	Submit Submit H-0; H-1 He-6,NON CS CS rgy from	Examples:	1234567. Help	 » » » »
Lapon	REL-REF ERR-ANALYS STATUS ENDBIB COMMON EN MEV/A 721. ENDCOMMON DATA DATA DATA MB 198.9 ENDDATA	IDerived from en cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazov Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1 3 6 IERR-T IDATA MB MB 4.6 161.3 3 0	ton. See AB- «trapolated 0 ith the optical ction minus el of angular dif 0 deg by the v+,J,NP/A,712, per calculatio cors given incl certainties. Angular differ 3 1 2ERR-T MB 3 3.7	ALF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cross 2DATA MB 37.6	: differential s section rross section del and cical and ss section 3ERR-T MB 1.2	3	F	Target Target Reaction Quantity Product Ener Author(s) Publication year Accession #	Submit Submit H-0; H-1 He-6,NON CS CS CS CS CS CS CS CS CS CS	Examples:	1234567. Help	 » » » » »
	REL-REF ERR-ANALYS STATUS ENDBIB COMMON EN MEV/A 721. ENDCOMMON DATA DATA DATA DATA IS8.9 ENDDATA ENDSUBENT ENDENT PY	IDerived from en cross section wi 2Total cross sec 3Extrapolation of (A0493.006) to integration. (N,,G.D.Alkhazov Detail of Glaub (ERR-T) The error systematical und (TABLE).Table 2 (DEP,A0493006) J 21 1 3 6 IERR-T IDATA MB MB 4.6 161.3 3 33 2	ton. See AB- «trapolated 0 ith the optical ction minus el of angular dif 0 deg by the v+,J,NP/A,712, per calculatio ors given incl certainties. Angular differ 3 1 2ERR-T MB 3 3.7	ALF. deg angular 1 theorem astic cross ferential c Glauber mod 269,2002) n ude statist ential cros 2DATA MB 37.6	: differential s section rross section del and cical and ss section 3ERR-T MB 1.2	3	F	Target Reaction Quantity Product Ener Author(s) Publication year Accession #	Submit Submit H-0; H-1 He-6, NON CS CS CS CS CS CS CS CS CS CS	Examples: <u>Reset</u> to to s	1234567. Help	 » » » »

Fig. 1. Calculated p^{6} He elastic-scattering cross sections at $E_{p} = 721$ MeV versus the four-momentum transfer squared, taking into account either the single-scattering term (curve 1), or multiple-scattering terms (curve 2), or all scattering terms (curve 3). The experimental data [1,2] (dots) are also displayed.

Applications to other hadronic probes

$\sigma_{pp} vs. \sigma_{pbarp}$

• pbar + p

12 40. Plots of cross sections and related quantities

🕲 X4.	/Servlet: Help Re	action - Mozilla	Firefox			<u> </u>
6	http://www-nds	.iaea.org/exfor/s	ervlet/X4sReache	elp?Reac=&Targ=C	C-12;C-0	
FYF	OR Reactio	m				-
Taro	$C_1 C_1 C_2 C_1 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	Reaction= *				
Tura	301-0-12,0-0	recacuon-				
Clea	ar field					
Add	ar le co ch	e field				
4	AP,EL	AP, NON	<u>AP,X</u>			
2	KN, A	DIN THE	DIM NON	DIM DIM N	DIN TOT	
3	PIN, EL PIN Y	PIN, INL	PIN, NON	PIN, PIN+N	PIN, 101	
4	PIP.EL	PIP.INL	PIP.PIN	PIP.PIP	PIP.X	
5	G,2A	G,2P	G, ABS	G, D	G, EL	
	G, INL	G,N	G,N+A	G,N+P	G,N+P+A	
	G,N+X	G,P	G,P+A	G,P+N	G, PAI	
	<u>G, PIO</u>	<u>G, TOT</u>	<u>G,X</u>			
6	<u>N,0</u>	N, 2A	<u>N,2N</u>	N,2N+A	<u>N,2N+D</u>	
	N, 2N+P	<u>N, 3N</u>	N,A	N, A+ZN	N, A+D	
	N, A+N	N, A+N+P N, D +N	N, A+N+P+T	N, ABS	N, D	
	$\frac{N, D+X}{N + 2}$	$\frac{N}{N+N}$	N N+ 0+N	N N+0+P	N N+0+P+T	
	N,N+D	N,N+P	N, N+P+A	N, N+P+A+T	N,N+P+N	
	N, N+P+N+A	N,N+P+T	N,N+T	N.NON	N, P	
	N, P+2N	N, P+A	N, P+D	N, P+N	N, P+N+A	
	N, P+N+A+T	N, P+N+T	N,P+T	N,SCT	N, T	
	N, T+P	N, T+P+N	N, THS	N, TOT	N,X	
7	D,2-HE-2	D,2N+P	D,3-LI-6	D,3-LI-7	D, A	
	<u>D,D</u>	D,EL	D,HE2	D, HE2+N	D, INL	
	<u>D,N</u>	D,N+P	D, NON	<u>D, P</u>	<u>D,T</u>	
_	D, TOT	$\frac{D,X}{D,X}$	D 0D		D 4D	
8	P,2P	P,3-L1-6	P,3D D FI	P, 3N+3P	P,4P D.C.D	
	P,A D TNL	P,D D M	P,EL D MID	P,G D M+D+A	P,G+P D MIDIV	
	P.NON	P.P	$\frac{P_{1}}{P_{2}}$ P_{2}A	$P, P+\lambda$	P.P+D	
	P,P+T	P,P+X	P, PIN	P, PIN+X	P,PIP	
	P,PIP+N+X	P,PIP+X	P,T	P, TOT	P,X	
	P,X+2P	P,X+3P	P,X+P	P,X+PI	P,XN+4P	_
定て				m 1100		
761						

• These options have never been appeared before!

pbar + A elastic scattering

$\sigma_{\rm R}$ of antiproton + A

V. Ashford et al., Phys. Rev. C 30, 1080 (1984).

Do we know σ_{NN}^{total} precisely?

- One may say "Yes!", but ...
- σ_{NN}^{total} is important, because it is a measure for the strength of the NN interaction.
- Practically, we need σ_{NN}^{total} for

$$f(0) = \frac{i + c_0}{4\pi} \sigma_{\rm NN}^{\rm total} |\boldsymbol{p}|.$$

- NN scattering amplitude
 4^{*π*}
 in the conventional multiple scattering theories,
 eg., KMT, Glauber.
- The contemporary black-sphere model needs $\sigma_{NN}^{\ \ total}$.
 - the formula is now being implemented to PHITS.

The SAID (SP07)

- The on-line Scattering Analysis Interactive Dial-in (SAID) facility.
- The SAID program gives several estimations of observables based on the partial-wave analyses of the latest compilation of nucleon-nucleon scattering data.

PHYSICAL REVIEW C 76, 025209 (2007)

Updated analysis of NN elastic scattering to 3 GeV

R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman

Center for Nuclear Studies, Department of Physics, The George Washington University, Washington, D.C. 20052, USA (Received 18 June 2007; published 16 August 2007)

A partial-wave analysis of *NN* elastic scattering data has been updated to include a number of recent measurements. Experiments carried out at the Cooler Synchrotron (COSY) by the EDDA Collaboration have had a significant impact above 1 GeV. Results are discussed in terms of the partial-wave and direct-reconstruction amplitudes.

SAID (SP07)

ARNDT, BRISCOE, STRAKOVSKY, AND WORKMAN

PHYSICAL REVIEW C 76, 025209 (2007)

Mozilla Firefox					
ァイル(E) 編集(E) 表示(V) 履歴(S) : ─────	ブックマーク(B) ツール(T) ヘルプ(H)				
🌖 🗁 🤁 🗶 🏠 http	o://gwdac.phys.gwu.edu/	🟠 👻 🎒 – Amazon.co.jp			
よく見るページ 📄 Firefox を使いこなそう 🔒	🔽 最新ニュース 💿 PortableApps.com 🔝 PortableApps.com News				
ttp://gwdac.phys.gwu.edu/					
CNS	CNS DAC Services [SAID Program]			
Data Analysis Center	 The SAID Partial-Wave Analysis Facility is New features are being added. Suggestion 	s based at GWU. Is for improvements are always welcomed.			
[See Instructions] Pion-Nucleon Pion-Pion-Nucleon Kaon-Nucleon Nucleon-Nucleon	Instructions for Using the Partial-Wave Analy	/ses			
Pion Photoproduction Pion Electroproduction Kaon Photoproduction Eta Photoproduction Eta-Prime Photoproduction Pion-Deuteron (elastic) Pion Deuteron to Proton+Proton	avigation bar allow the user to access a number of tact a member of our group if you are unfamiliar with nphysical, you may still get an answer (in accordance ort unexpected garbage-out to the management.				
Analyses From Other Sites Mainz (MAID – Analyses) Nijmegen (Nucleon-Nucleon OnLine) Bonn-Gatchina (Partial-Wave Analysis)	Note : These programs use HTML forms to run the SAID code. If unfamiliar with the options, run the default setup first. The output is an (edited) echo of an interactive session which would have resulted had you used the SSH version. If the default example fails to clarify the specific task you have in mind, we can help (just send an e-mail message).				
P.W.A	All programs expect energies in MeV units. All of the validity. Some are unstable beyond their upper energies. Increments: The programs will not allow an arbitration of the programs will not allow and programs wi	he solutions and potentials have limited ranges of ergy limits. Extrapolated results may not make much ary number of points to be generated. As a rule, stay			
πN PWA Workshop May 24-27, 2011	below 100. ACKNOWLEDGMENTS				
Washington, D.C.	The CNS Data Analysis Center is partially funded Jefferson Lab, with strong support from the GW No	l by the U.S. Department of Energy and the Thomas rthern Virginia Campus.			
William J. Briscoe Ron L. Workman	Washington University	http://gwdac.phys.gwu			

•

Which curve is more appropriate? Fitting vs. SAID

About 10 % deviation between the two!

Fitting: C. A. Bertulani and C. De Conti, Phys. Rev. C 81, 064603 (2010).

PHYSICAL REVIEW C 81, 064603 (2010)

Pauli blocking and medium effects in nucleon knockout reactions

C. A. Bertulani^{1,*} and C. De Conti^{2,†}

¹Physics Department, Texas A&M University-Commerce, Commerce, Texas 75428-3011, USA ²Campus Experimental de Itapeva, Universidade Estadual Paulista, 18409-010 Itapeva, SP, Brazi (Received 12 April 2010; published 3 June 2010)

• "We study medium modifications of the nucleonnucleon (*NN*) cross sections and their influence on the nucleon knockout reactions. ..."

$$\sigma_{pp} = \begin{cases} 19.6 + 4253/E - 375/\sqrt{E} + 3.86 \times 10^{-2}E \\ \text{(for } E < 280 \text{ MeV}), \end{cases}$$

$$32.7 - 5.52 \times 10^{-2}E + 3.53 \times 10^{-7}E^3 \\ -2.97 \times 10^{-10}E^4 \\ \text{(for } 280 \text{ MeV} \leqslant E < 840 \text{ MeV}), \end{cases}$$

$$50.9 - 3.8 \times 10^{-3}E + 2.78 \times 10^{-7}E^2 \\ + 1.92 \times 10^{-15}E^4 \qquad \sigma_{np} \end{cases}$$
(for 840 MeV \leq E \leq 5 GeV)

Least-squares fit to the data

It is hard to distinguish...: p+C

- Two curves
- We use
 - the same a_0
 - Two parameterizations
 - SAID (SP07)
 - Fitting by Bertulani

Data:

R. F. Carlson, At. Data Nucl. Data Tables, 63, 93 (1996).

A. Auce et al., Phys. Rev. C 71, 064606 (2005).

E > 100 MeV/nucl. Coulomb int. can be neglected.

Application to A+A reactions works

Water diffraction

出典:フリー百科事典『ウィキペディア(Wikipedia)』

http://ja.wikipedia.org/wiki/%E6%B0%B4%E9%9D%A2%E6%B3%A2