

International Atomic Energy Agency

Introduction: Background, contents and objectives

Naohiko Otsuka IAEA Nuclear Data Section

2013-08-27

N.Otsuka: 2013 EXFOR Compilation Workshop

Nuclear Data for Application

- Nuclear energy systems (e.g., new design, critical safety)
- Dosimetry (e.g., neutron dose estimation)
- Shielding
- Medical isotope production
- Material analysis

etc.

(Also utilized in *basic science*, e.g., astronuclear physics)

2

Generation IV Reactor (GEN IV - Next Generation)

GEN IV International Forum (GIF)

Argentine, Canada, China, EU, France, Japan, Korea, Russia, South Africa, Switzerland, UK, USA (Secretariat: NEA)

GEN IV Reactors (Rio de Janeiro, 2002)

- Very-high-temperature reactor (VHTR)
- Supercritical-water-cooled reactor (SCWR)
- Molten-salt reactor (MSR)
- Gas-cooled fast reactor (GFR)
- Sodium-cooled fast reactor (SFR)
- Lead-cooled fast reactor (LFR)

Highly Economical, Enhanced safety, Minimal waste, Proliferation resistant

N.Otsuka: 2013 EXFOR Compilation Workshop

2013-08-27

3

Images from Wikipedia

International Atomic Energy Agency 🐧

Target Accuracy in New Reactor Design

Target accuracy is a concept to ensure *safe* and *economic* design of new reactor cores.

Safety

Economy

Example:

Target accuracies for design of a fast reactor core in Japan:

- Criticality (k_{eff}) ±3% (1 σ)
- Na void reactivity worth $(\pm 20\%, 2\sigma)$
- Doppler reactivity worth $(\pm 14\%, 2\sigma)$

Model and inputs for *reactor design calculation* must be accurately prepared to meet the target accuracy.

N.Otsuka: 2013 EXFOR Compilation Workshop

. .

Modelling of Reactor System (Burning Chain)

An isotope to another isotope through *reaction* or *decay e.g.*, ²³⁵U(n,2n)²³⁴U (reaction) ²³⁹Np \rightarrow ²³⁹Pu + e⁻ + v_e (β decay)

5

N.Otsuka: 2013 EXFOR Compilation Workshop

Nuclear Data to Solve Fission Energy System

Nuclear data as inputs for the coupled equations (i=1,n):

 $\int \sigma_i$: <u>cross section</u> for reaction from isotope i to other isotopes

 $\int \lambda_i : \frac{1}{\lambda_i} \cdot \frac{1}{\lambda_i} \cdot \frac{1}{\lambda_i} \cdot \frac{1}{\lambda_i} \cdot \frac{1}{\lambda_i} = \ln 2 / T_{1/2}$

Propagation of uncertainty from (independent) nuclear data { Δx_i } to reactor parameters ΔX_{reac} in linear approximation: $\sum_i (S_i \cdot \Delta x_i) = \Delta X_{reac}$, where $S_i = (\partial X_{reac} / \partial x_i) -$ "sensitivity coefficient".

Target Accuracy of Nuclear Data

Error propagation from nuclear data to reactor quantity:

 $\sum_{i} (S_i \cdot \Delta x_i) = \Delta X_{reac}$

Target accuracy ΔX_{reac} and sensitivity coefficients {S_i} <u>constrain</u> the target accuracies of nuclear data { Δx_i }.

→ Motivation for nuclear data improvements by new experiments and evaluations

Table 30. ADMAB: uncertainty reduction requirements
needed to meet integral parameter target accuracies

			Uncer	rtainty (%)			
Isotope	Cross-Section	Energy range	Initial	Req	uired		
			Initial	λ=1	λ≠1 ^(a)		
D	σ_{fiss}	6.07 - 0.498 MeV	20	3	3		
Pu256	ν	1.35 - 0. 183 MeV	7	3	3		
Du230	σ _{capt}	498 - 2.03 keV	12	4	3		
Fu239	σ_{inel}	6.07 - 0.498 MeV	25	5	6		
	Gcapt	183 - 67.4 keV	14	6	6		
Pu240	σ_{fiss}	2.23 - 0.498 MeV	6	2	2		
	ν	1.35 - 0.498 MeV	4	2	2		
Dv241	σ _{capt}	1.35 - 0. 183 MeV	20	7	7		
Fu241	σ_{fiss}	6.07 MeV-22.6 eV	15	2	2		
D::242	σ _{capt}	24.8 - 9.12 keV	35	10	10		
Fu242 σ _{fiss}		6.07 - 0.498 MeV	20	4	4		
	σ _{capt}	498 - 0.454 keV	6	3	3		
Np237	$\sigma_{\rm fiss}$	6.07 - 0.183 MeV	8	2	2		
	σ_{inel}	2.23 - 0.183 MeV	25	5	6		
	σ _{capt}	1.35 MeV- 0.454 keV	8	2	2		
Am241	σ_{fiss}	6.07 – 0.183 MeV	10	1	1		
Alli241	ν	6.07 - 1.35 MeV	2	1	1		
	σ_{inel}	6.07 – 0.183 MeV	25	4	5		
Am242m	σ_{fiss}	1.35 MeV- 9.12 keV	17	5	5		
		A ACAR TE A LOUT TO					

Report NEA/WPEC-26 (OECD, 2008)

Neutron-Induced Reaction Cross Section

Evaluation of Cross Section (σ)

²³⁸U(n,γ)²³⁹U (neutron capture by uranium-238) cross section

It is now common to provide evaluated cross sections with their uncertainties.

N.Otsuka: 2013 EXFOR Compilation Workshop

Least-squares with variance (standard deviation $\Delta \sigma$) $\chi^2 = \Sigma_i (\sigma_{eva} - \sigma_{exp,i})^2 / (\Delta \sigma_{exp,i})^2 + \Sigma_i (\sigma_{eva} - \sigma_{the,i})^2 / (\Delta \sigma_{the,i})^2 = min$

Least-squares with covariance (V) $\chi^{2} = \Sigma_{ij} \left(\sigma_{eva} - \sigma_{exp,i}\right) \left(\mathbf{V}^{-1}_{exp,ij}\right) \left(\sigma_{eva} - \sigma_{exp,j}\right) + \Sigma_{ij} \left(\sigma_{eva} - \sigma_{the,i}\right) \left(\mathbf{V}^{-1}_{the,ij}\right) \left(\sigma_{the} - \sigma_{the,i}\right) = \min$

Experimental uncertainty $\Delta \sigma_{exp}$ and covariance V_{exp} are essential for proper weighting of each experimental data point σ_{exp} !

N.Otsuka: 2013 EXFOR Compilation 2013-08-27 10 International Atomic Energy Agency Workshop

Simple Evaluation: Averaging of Experimental Data

Evaluation of the best estimate from experimental data sets (averaging) for

 $\sigma_1 \pm \Delta \sigma_1$ and $\sigma_2 \pm \Delta \sigma_2$.

If two experiments are independent (i.e., $cov(\sigma_1, \sigma_2)=0$), the least squares prescription gives

$$\begin{cases} <\sigma>= (\sigma_1 w_1 + \sigma_2 w_2) / (w_1 + w_2) \\ (\Delta <\sigma>)^2 = 1/(w_1 + w_2) \end{cases}$$

with $w_1 = (1/\Delta\sigma_1)^2$, $w_2 = (1/\Delta\sigma_2)^2$ (simple weighted mean).

N.Otsuka: 2013 EXFOR Compilation Workshop

11

Average from Two Independent Measurements

Formula:

$$\begin{cases} <\sigma>= (\sigma_1 w_1 + \sigma_2 w_2) / (w_1 + w_2) \\ (\Delta <\sigma>)^2 = 1/(w_1 + w_2) \\ \text{with } w_1 = (1/\Delta\sigma_1)^2, w_2 = (1/\Delta\sigma_2)^2 \end{cases}$$

Example:

	Experiment 1	Experiment 2
σ	100.0 mb	100.0 mb
Δσ	5.0 mb (5%)	5.0 mb (5%)

The weighted average is $100.0 \pm 3.5 \text{ mb} (3.5\%)$. Averaging (i.e., repetition of the experiment) improved the uncertainty.

12

N.Otsuka: 2013 EXFOR Compilation Workshop

Partial Uncertainties – Numerical Example

$$\begin{bmatrix} \sigma_1 = N_1 / (n_1 \rho_1) \\ \sigma_2 = N_2 / (n_2 \rho_2) \end{bmatrix}$$

International Atomic Energy Agency

	Experiment 1	Experiment 2	Source of uncertainty
σ	100.0 mb	100.0 mb	
Δσ	<mark>5.0</mark> mb (5%)	<mark>5.0</mark> mb (5%)	Total (5 ² =4 ² +3 ²)
$\Delta \sigma_{N}$	4.0 mb (4%)	4.0 mb (4%)	product <i>counting</i>
Δσ _ρ	3.0 mb (3%)	3.0 mb (3%)	sample density counting
Δσ _n	(negligible)	(negligible)	beam <i>counting</i> (assumed as negligible)
< σ >	$100 \pm$	3.5 mb	

Repetition of *counting* (measurements of N, ρ , n) improves the uncertainty. (For random variable x, $\Delta x/x \sim x^{-1/2}$ for normal distribution.)

N.Otsuka: 2013 EXFOR Compilation Workshop

Uncertainty Determined by Other Measurement

Sometimes the same sample material is used by several experiments without repetition of sample density counting.

(d)

	Experiment 1	Experiment 2	Source of uncertainty
σ	100.0 mb	100.0 mb	
Δσ	5.0 mb (5%)	5.0 mb (5%)	total
$\Delta \sigma_{N}$	4.0 mb (4%)	4.0 mb (4%)	product counting
Δσ _ρ	3.0 m	b (3%)	sample density counting (measured in Exp. 1 only)
Δσ _n	(negligible)	(negligible)	beam counting

The Exp. 2 assumed that $\rho_2 = \rho_1$, namely Probability density $P(\rho_1, \rho_2) = P(\rho_1)\delta(\rho_1 - \rho_2)$, where δ is Dirac's delta function.

What is the influence of the assumption (correlation) on error propagation?

N.Otsuka: 2013 EXFOR Compilation	2012 09 27	14	International Atomic Energy Agency	\$	
Workshop	2013-00-27	14		a l	ر ح

Modification to Weighted Average Formula

Weighted average without correlation exists

$$\begin{cases} \langle \sigma \rangle = (\sigma_{1} w_{1} + \sigma_{2} w_{2}) / (w_{1} + w_{2}) \\ \text{with } 1/w_{1} = (\Delta \sigma_{1})^{2} , 1/w_{2} = (\Delta \sigma_{2})^{2} \\ (\Delta \langle \sigma \rangle)^{2} = 1/[(\Delta \sigma_{1})^{2} \cdot (\Delta \sigma_{2})^{2}] / [(\Delta \sigma_{1})^{2} + (\Delta \sigma_{2})^{2}] \\ 100 \pm 3.5 \text{ mb} \end{cases}$$

Weighted average with correlation (same sample density)

$$\begin{cases} <\sigma >= (\sigma_1 w_1 + \sigma_2 w_2) / (w_1 + w_2) \\ \text{with } 1/w_1 = (\Delta \sigma_1)^2 - \operatorname{cov}(\sigma_1, \sigma_2), \ 1/w_2 = (\Delta \sigma_2)^2 - \operatorname{cov}(\sigma_1, \sigma_2), \\ (\Delta <\sigma >)^2 = [(\Delta \sigma_1)^2 \cdot (\Delta \sigma_2)^2 - \operatorname{cov}(\sigma_1, \sigma_2)^2] / [(\Delta \sigma_1)^2 + (\Delta \sigma_2)^2 - 2\operatorname{cov}(\sigma_1, \sigma_2) \\ 100 \pm 4.1 \text{ mb} \end{cases}$$

15

N.Otsuka: 2013 EXFOR Compilation Workshop

2013-08-27

 $\sigma_1 + \Lambda \sigma_2$

Impact of Correlated Source of Uncertainty

	Experiment 1	Experiment 2		
σ	100.0 mb	100.0 mb		
Δσ	5.0 mb (5%)	5.0 mb (5%)		
$\Delta \sigma_{N}$	4.0 mb (4%)	4.0 mb (4%)		
Δσ _ρ	3.0 mb (3%)	3.0 mb (3%)		
	(counted in bo	th experiments)		
Δσ _n	(negligible) (negligible			
< σ >	100 ± <mark>3.5</mark> mb			

Experiment 1	Experiment 2			
100.0 mb	100.0 mb			
5.0 mb (5%)	5.0 mb (5%)			
4.0 mb (4%)	4.0 mb (4%)			
3.0 m	b (3%)			
(counted in or	ne experiment)			
(negligible)	(negligible)			
$100 \pm 4.1 \text{ mb}$				

Conclusion:

Uncertainty is <u>less improved</u> if a primary measurable was not determined independently.

Correlation within Single Experiment

Example: Cross section measurement at various beam energy with renormalization factor **C** and subtraction of background **B**

Typical correlated source within one experiment

- Common sample characterization(n)
- Common normalization factor (C)
- Common background subtraction (B)

Average within Single Experiment

18

Correlation in Various Steps of Data Reduction

Information on uncertainties and correlation performed by experimentalists are essential for further evaluation. \rightarrow EXFOR Compilation!

N.Otsuka: 2013 EXFOR Compilation Workshop

Which Data Sets Shall We Trust?

Which data set is better? We cannot answer if components considered in each set is not known.

EXFOR compilers are responsible to avoid this trouble.

2013-08-27

20

Documentation: Journal Article

⁵¹V(n,p)⁵¹Ti cross sections published in a journal (Ann. Nucl. Energy)

0306-4549/84 \$3.00 + 0.00 Ann. nucl. Energy, Vol. 11, No. 12, pp. 623-627, 1984 Table 2. Sources of experimental error Pergamon Press Ltd Printed in Great Britain Magnitude (%) ${}^{51}V(n,p){}^{51}Ti$ ${}^{51}V(n, \alpha){}^{48}Sc$ Source MEASURED ACTIVATION CROSS SECTIONS BELOW 10 MeV FOR THE ⁵¹V(n, p)⁵¹Ti AND ⁵¹V(n, α)⁴⁸Sc REACTIONS Random Errors Exposure, waiting and count D. L. SMITH, J. W. MEADOWS and I. KANNO* times 0.2 Nª y-Ray vield 0.3 - 47.80.5-22.6 Applied Physics Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, 0.7 - 1.5Fission yield 0.1 - 0.2Extrapolation correction 1--2 0.5 Background fission correction N-3* 1-3 Background activation 0.2 - 1.2N-0.5* Geometric corrections 1.5 1.5 (mbarn Systematic Errors Decay half-life 0.1 0.1 - 0.2238U content of monitor SECTION Sources of Ó. deposit 2 2 51V content of the samples 0.2 0.2 uncertainty U deposit thickness correction 0.8 CROSS 0.80.0 y-Ray counting efficiency 2.4 y-Ray decay branch factor t N^{a.b} Orientation of sample for 0.001 counting Nª N^{a,b} Neutron-source properties 2 2 Room-return fission events Nª N^{*} Neutron-scattering NEUTRON ENERGY (MeV) corrections 14 - 211.3 - 1.6Geometric corrections 1.5 1.5 Because of the size limitation, Average neutron energy determination 0.5-19.5 2.6-12.2 uncertainties are often expressed by " N = negligible. ^b Uncertainty included in 7-ray counting efficiency determination. their ranges (not for each data point).

N.Otsuka: 2013 EXFOR Compilation Workshop

Documentation: Laboratory Report (Full Info.)

Data

Table 3: Explicit Values for Variable Error Components^a

K₆

NC

N

N

N

N

N

N

N

N

N

N

N

N

N

Ν

N

N

0.3

0.3

0.3

0.2

0.2

0.3

0.3

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.6

0.6

0.7

0.8

0.9

0.9

0.9

 s_{10}

2.0

2.1

2.1

2.0

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

1.9

2.0

2.0

2.0

2.0

1.9

1.9

1.9

1.9

1.8

1.8

1.8

1.7

1.7

1.7

1.6

1.6

1.6

1.6

1.6

1.6

1.6

1.5

1.5

1.5

1.5

1.4

1.4

512

14.9

7.9

19.5

14.8

10.2

6.6

4.9

6.3

5.5

7.0

3.6

3.6

1.7

2.1

4.9

2.3

0.5

1.3

2.0

4.2

2.4

1.9

3.2

2.6

2.5

1.8

1.5

1.3

1.2

1.1

1.1

1.1

1.0

0.9

0.9

0.9

0.9

0.9

0.9

0.8

1.1

1.0

Same experimental work documented	Pointb	K2	<u>K-3</u>	K4	Ks
	2	47.8	0.8	2.0	NC
in a laboratory report	3	20.4	0.8	2.0	N
	4	13.7	0.8	2.0	N
	5	4.2	0.7	2.0	N
	6	2.5	0.7	2.0	N
	7	2.2	0.7	2.0	N
	8	1.8	0.7	2.0	N
ANT /NDM_95	9	1.5	0.7	2.0	N
ANL/ NDM-85	10	1.2	0.7	2.0	N
	11	1.0	0.7	2.0	N
MEASUREMENT OF THE SLV(P P)51T1 BEACTION CROSS	12	1.0	0.7	2.0	N
SECTION CROSS	13	1.0	0.7	2.0	N
SECTION FROM THRESHOLD TO 9.3 MeV BY THE	14	0.9	0.7	2.0	N
ACTIVATION METHOD*	15	0.8	0.7	2.0	N
	16	0.7	0.7	2.0	0.1
hu	17	0.7	0.9	2.0	0.2
by	18	0.7	1.0	2.0	0.2
Donald I Smith Isman V Marken and	19	1.1	1.5	1.0	0.5
Jonard L. Smith, James W. Meadows and Ikuo Kanno**	20	1.0	1.5	1.0	0.5
June 1984	21	0.8	1.3	1.0	0.5
	22	0.7	1.2	1.0	0.6
	23	0.7	1.2	1.0	0.7
	24	0.6	1.2	1.0	0.8
	25	0.6	1.2	1.0	1.0
	20	0.5	1.1	1.0	0.8
All partial uncortaintios are	28	0.5	1.0	1.0	0.8
All partial uncertainties are	29	0.5	1.0	1.0	0.8
	30	0.4	0.9	1.0	0.9
	31	0.4	0.8	1.0	1.0
(alven for each data point	32	0.4	0.9	1.0	1.0
	33	0.4	0.8	1.0	1.0
	34	0.3	0.0	1.0	1.0
But they are not computer	35	0.4	0.7	1.0	1.5
Dut they are not computer	36	0.3	0.7	1.0	1.5
	37	0.3	0.8	1.0	2.0
	38	0.3	0.7	1.0	2.0
readable	39	0.3	0.7	1.0	2.0
	40	0.3	0.8	1.0	2.5
	41	0.3	0.8	1.0	2.5
	42	0.3	0.7	1.0	

0.3

0.7

1.0

2.5

Documentation: EXFOR entry

SUBENT	12898002	20120710		ERR-1	ERR-7	ERR-8	ERR-9	ERR-10	ERR-11
BIB	4	32		ERR-12	ERR-13	ERR-14	ERR-16		
REACTION	((23-V-51(N,	<pre>P)22-TI-51,,SIG)/(92-U-238(N,F),</pre>	,SIG))	PER-CENT	PER-CENT	PER-CENT	PER-CENT	PER-CENT	PER-CENT
•••				PER-CENT	PER-CENT	PER-CENT	PER-CENT		
FLAG	(1.) 7Li(p,n)7Be source		0.2	1.5	0.1	2.	0.2	0.8
	(2.) 2H(d,n)	3He source		2.4	1.	2.	1.5		
ERR-ANALYS	Uncertainty	due to orientation of sample for	counting	ENDCOMMON		6	0		
	was treated	as negligible.		DATA	1	L4	45		
	(ERR-T)	Total uncertainty		EN	EN-RSL-FW	DATA	ERR-S	ERR-SYS	ERR-T
	(ERR-S)	Total random uncertainty in rat	io	ERR-2	ERR-3	ERR-4	ERR-5	ERR-6	ERR-15
	(ERR-SYS)	Total systematic uncertainty		ERR-17	FLAG				
	(ERR-1,,,U)	Exposure, waiting and counting	times(0.2%)	MEV	MEV	NO-DIM	PER-CENT	PER-CENT	PER-CENT
	(ERR-2,,,U)	0.320-MeV gamma ray yield	(0.3-47.8%)	PER-CENT	PER-CENT	PER-CENT	PER-CENT	PER-CENT	PER-CENT
	(ERR-3,,,U)	Fission yield	(0.7-1.5%)	PER-CENT	NO-DIM				
	(ERR-4,,,U)	Extrapolation correction	(1-2%)	2.856	0.095	9.075 E-	06 47.9	15.6	50.4
	(ERR-5,,,U)	Background fission correction	(<3%)	47.8	0.8	2.0			2.0
	(ERR-6,,,U)	Background activation	(0.2-1.2%)	14.9	1.				
	(ERR-7,,,U)	Geometric corrections	(1.5%)	2.957	0.094	1.966 E-	05 20.6	9.2	22.6
	(ERR-8,,,F)	51Ti decay half life	(0.1%)	20.4	0.8	2.0			2.1
	(ERR-9,,,F)	238U content of monitor deposit	(2%)	7.9	1.				
	(ERR-10,,,F)	51V content of samples	(0.2%)	3.057	0.094	2.575 E-	05 15.9	20.1	25.6
	(ERR-11,,,F)	Uranium deposit thickness corre	ction(0.8%)	15.7	0.8	2.0			2.1
	(ERR-12,,,F)	Gamma-ray counting efficiency	(2.4%)	19.5	1.				
	(ERR-13,,,F)	51Ti gamma-ray decay branch fac	tor (1%)	3.158	0.092	7.369 E-	05 6.7	15.5	16.9
	(ERR-14,,,P)	Neutron source properties	(2%)	6.2	0.7	2.0			2.0
	(ERR-15,,,P)	Neutron scattering corrections	(1.4-2.1%)	14.8	1.				
	(ERR-16,,,F)	Geometric corrections	(1.5%)	3.258	0.090	1.441 E-	04 4.9	11.2	12.2
	(ERR-17,,,F)	Average neutron energy	(0.5-19.5%)	4.2	0.7	2.0			1.9
COVARIANCE	ERR-14:			10.2	1.				
	No correlat	ion between p+7Li and and d+D po	ints.	3.359	0.087	2.354 E-	04 3.6	8.1	8.9
	Otherwise c	orrelation coefficient=100-10 dE		2.5	0.7	2.0			1.9
	(dE: energy	difference in MeV)		6.6	1.				
	ERR-15:			3.459	0.087	3.210 E-	04 3.4	6.7	7.5
	Correlation	coefficient=100-10 dE		2.2	0.7	2.0			1.9
	(dE: energy	difference in MeV)		4.9	1.				
				3.560	0.087	4.130 E-	04 3.2	7.8	8.4
ENDBIB	32	0							

Full information is available in computer readable form!!

N.Otsuka: 2013 EXFOR Compilation Workshop

New EXFOR Formats for Correlation Properties

	Corr.	8.96 MeV	9.46 MeV																						
σ		21.71 mb	98.13 mb																						
$\Delta\sigma_{total}$		0.99 mb	7.24 mb																						
$\Delta \sigma_{\text{intensity}}$	Corr.	0.4	9 %																						
$\Delta\sigma_{half-life}$	Corr.	0.3	9 %	ERR-ANALYS	(ERR-T) T (ERR-1,C)	otal uncert gamma inter	ainty sity	(0.49%)																	
$\Delta \sigma_{\text{efficiency}}$	Corr.	1.5	5%																		%	(ERR-2,C) (ERR-3,C)	halt-life absolute HI	Ge efficie	(0.39%) ency(1.5%)
$\Delta \sigma_{\text{statistics}}$	Uncorr.	0.33 mb	2.10 mb	ENDBIB	(ERR-S,U)	statistics 8	3 0																		
				COMMON ERR-1 PER-CENT 0.49 ENDCOMMON DATA EN MEV 8.96 9.46	ERR-2 PER-CENT 0.39 EN-ERR MEV 0.09 0.13	3 ERR-3 PER-CENT 1.5 3 5 DATA MB 21.71 98.13	3 0 9 ERR-S MB 0.33 2.10	ERR-T MB 0.99 7.24																	
N.Otsuka: 2013 Workshop	EXFOR Compi	lation 20	013-08-27	24	Inter	national Atomic	c Energy Ager																		

New NDS EXFOR Web Tool to Construct Covariances

25

N.Otsuka: 2013 EXFOR Compilation Workshop

Background of This Workshop

- Evaluators have to provide evaluated cross sections with their uncertainties / correlations for future applications e.g., nuclear energy, dosimetry.
- The evaluation of uncertainties / correlations strongly relies on those in experimental data.
- New formats and new tools for EXFOR are ready.
- EXFOR compilers (not evaluators!) are responsible to collect necessary information from experimentalists.
- Compilers should know what will be useful for evaluators.

Contents of the Workshop (27 – 28 August)

Contents:

- •Basic concepts probability distribution, mean, (co)variance etc.
- Error propagation linear combination, linear approximation
- Evaluation least-squares analysis, weighted average
- •**Topics** tools (Viktor), activation (Valentina, Sandor), transmission (Olena)

Goal:

- •To understand basic concepts.
- •To understand the usage of experimental covariance by users.
- •To understand correlation information must be in EXFOR.

Contents of the Workshop (27 – 28 August)

Remarks:

- Though I want to introduce concepts without equations, it is difficult within limited preparation time.
- It is probably not necessary to follow all equations.
- Correct my slides if you find any mistake (even after workshop)
- It is rather important to understand the role of variables (input for evaluators) which must be identified by EXFOR compilers in articles!

28

References

[WM2011]

W. Mannhart, "A small guide to generating covariance of experimental data", INDC(NDS)-0588 Rev. (2013).

A Small Guide to Generating Covariances of Experimental Data

Wolf Mannhart Physikalisch-Technische Bundesanstalt, Braunschweig, Germany May 2011

IAEA Nuclear Data Section, Vienna International Centre, A-1400 Vienna, Austria

Nuclear

[DS2012]

D.L.Smith, N.O., "Experimental nuclear reaction data uncertainties: Basic concepts and documentation, Nucl. Data Sheets.**113**(2012)3006.

N.Otsuka: 2013 EXFOR Compilation Workshop

2013-08-27

29

Social Event (28 August 19:00~)

$U4 \rightarrow U1 \rightarrow 35A$

N.Otsuka: 2013 EXFOR Compilation Workshop

2013-08-27

30

International Atomic Energy Agency

Contents of the Workshop (29 – 30 August)

Contents:

- •*New* tool GDgraph Ver.5.0 released by CNDC.
- •Updated tools CNPD (EXFOR Edit, InpGraph), JCPRG (GSYS), NDS
- Feedback from software users NDPCI

Goal:

1.To understand new functions of these tools.

2013-08-27

2.To provide feedback, bug reports to developers (face-to-face discussion is easier to discuss software issues!)

31