

Cross section measurements of charged particle induced reactions: Possible systematic errors

Sándor Takács

Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary

Evaluation of experimental data

Activation technique

$$N(t) = N_t N_b \sigma \frac{1}{\lambda} \left(1 - e^{-\lambda t_b} \right)$$

- *N_t* number of target nuclei on a unit area (1/cm²)
- N_b number of bombarding particle for unit time (1/s) (constant)
- λ decay constant (1/s)
- t_b irradiation time (s)
- σ cross section (mb)

$$T_{\gamma} = \varepsilon_d \varepsilon_{\gamma} \Delta N$$

$$T_{\gamma} = \varepsilon_{d} \varepsilon_{\gamma} \Delta N = \varepsilon_{d} \varepsilon_{\gamma} N_{t} N_{b} \sigma \frac{1}{\lambda} \left(1 - e^{-\lambda t_{b}}\right) e^{-\lambda t_{c}} \left(1 - e^{-\lambda t_{m}}\right)$$

$$\sigma = \frac{T_{\gamma}\lambda}{\varepsilon_d \varepsilon_{\gamma} N_t N_b (1 - e^{-\lambda t_b}) e^{-\lambda t_c} (1 - e^{-\lambda t_m})}$$

How does the systematic error of different parameters influence the final result?

- Number of events counted N (peak area, background, interferences)
- > Beam current $I(\mu A)$ (black current, secondary electrons, fluctuation)
- Incident beam charge Q (mC)
- Incident energy E (MeV) (incident energy, stopping, straggling)
- Number of target nuclei per unit volume n (1/cm³) (density)
- > Target thickness x (cm) (average thickness, surface roughness)
- > Detector solid angle $\Delta \Omega$ (sr)
- Detector efficiency *E_d* (geometry factor)
- Irradiation time t_b (s)
- > Cooling time t_c (s) (should be optimized)
- > Measuring time t_m (s) (live time, real time, dead time)

Nuclear data used

- ➤ Half life T_{1/2} (s)
- Decay branching ratio _{Ed} (%)
- Gamma energy E (MeV)
- > Gamma intensity I_{γ} (%)
- > Target isotope abundance I_t (%)
- Reference cross sections (monitor reactions)
- Data can be taken from different on-line libraries

Detector efficiency

Detector efficiency

For medical isotopes $E_{\gamma} < 200 \text{keV}$

General values 3 – 7 %

Low energy, can be above 10 %

Contributes linearly

Easy to correct

Generally not published

Specific for the experiment

Branching ratios

Gamma branching ratio

Taken from data libraries Contributes linearly Easy to correct Generally published Not experiment specific

Target nuclides

Number of target nuclides

Can be determined by different methods Contributes linearly Generally published Average thickness, surface roughness, pin holes, cracks, deformation Easy to correct (influences the energy scale) Specific for the experiment

Beam current

Number of bombarding particles

Determined from the collected charge or beam current Contributes linearly Generally published Easy to correct Specific for the experiment

Time dependence

Irradiation time Cooling time Measuring time

Do not contribute linearly

Generally t_b is given, t_c and t_m are not given

Correction is not easy

Considering the half lives of medical radio isotopes the possible systematic errors of time parameters is minimal.

Uncertainty of half life

Do not contribute linearly Taken from data libraries

Generally published

$$\sigma = \frac{I_{\gamma}\lambda}{\varepsilon_{d}\varepsilon_{\gamma}N_{t}N_{b}(1-e^{-\lambda t_{b}})e^{-\lambda t_{c}}}$$

 $\pi(\Lambda)$

In the lack of time information correction is not easy

irradiation time: $0.1 \text{ T}_{1/2}$ measuring time: $0.1 \text{ T}_{1/2}$

Reaction	T _{1/2} of product nucleus		E _γ (MeV)	l _γ (%)		Useful range (MeV)
²⁷ Al(p,x) ²⁴ Na	14.96 h	14.997 h	1368.6	100		30 - 100
²⁷ Al(p,x) ²² Na	2.6y		1274.5	99.94		30 - 100
^{nat} Ti(p,x) ⁴⁸ V	15.98 d		983.5 1312.0	99.99 97.49	99.98 98.2	4.5 - 30
^{nat} Ni(p,x) ⁵⁷ Ni	1.5 d	1.48 d	1377.6 127.2	77.9 12.9	81.7 16.7	15 - 50
^{nat} Cu(p,x) ⁶³ Zn	38.1 min	38.47 min	669.8 962.2	8.4 6.6	8.2 6.5	4.5 - 50
^{nat} Cu(p,x) ⁶² Zn	9.26 h	9.18 h	596.7	25.7	26	14 - 60
⁶⁵ Cu(p,n) ⁶⁵ Zn	244.1 d	243.93 d	1115.5	50.75	50.04	3 - 100

Changes in nuclear data TECDOC - NuDat2.7 (2013)

Experimental data with uncovered systematic errors

Thank you for your attention