Workshop on EXFOR Compilation, 2013, Vienna

Covariance analysis of the measured ⁴⁰Ca(n, tot) cross sections up to 20 MeV

Zhang Yue, Xu Ruirui, Liu Tingjin China Nuclear Data Center

Science and Technology on Nuclear Data Laboratory

Aug-28-2013

1 Background

- 2 **Evaluations of Experimental Data**
- **3 Recommendations and Covariance**
- 4 Summary

Background — Why covariance?

- **Covariance:** $Cov(X,Y) = \iint (X \langle X \rangle) (Y \langle Y \rangle) f(X,Y) dXdY$
- The requirements are growing
- **Covariance data in evaluation libraries**

Library	Numbers of nuclei with covariance
ENDF/B-VII.1	189
JENDL-4.0	95
JEFF-3.1	36

- The main research methods:
- Deterministic method
- Monte Carlo

Background ——Why ⁴⁰Ca(n, tot) cross sections?

- Calcium is widely existed in environment
 - ⁴⁰Ca is a typical structural nuclide
- (n, tot) cross section is the basic quantity of the neutron induced nuclei interactions
- Characters of ⁴⁰Ca(n, tot) cross section
 - representative structures
 - > obvious regional features
 - > abundant experimental data
 - visual divergences on experimental data

Background —— Existing data

Reaction	Year	Sets	En_min(MeV)	En_max(MeV)	Points
$^{40}Ca(n, tot)$	1967 ~ 2010	11	0.04	600	10093
^{nat} Ca(n, tot)	1949 ~ 2001	43	2.11e-9	559	17859

All the evaluations have no covariance.

Background — Experimental Principle

Experimental principle:

$$\sigma_T = -\frac{1}{nl} \ln \frac{R_i - B_i}{R_o - B_o}$$

- Experimental methods:
 - > TRN (transmission method) / TRN+ TOF (time-of-flight)
- Sources of errors:
 - ➤ statistics,
 - ➢ background,
 - > neutron flux monitoring and normalizing,
 - ➢ inscattering correction,
 - > counting rate loss correction,
 - ➤ sample shape and impurities, ...

Background —— **Problems** facing

- How to evaluate both the cross section and its covariance self-consistently?
- to distinguish which measurements are more reliable
- to re-estimate errors those are not given very clear
- to recommend credible values
- to give appropriate error bars
- to give appropriate associations, avoiding "little errors, big correlations"

The energy range is divided to two parts, called structural and smooth regions, respectively.

1 Background

2 **Evaluations of Experimental Data**

- **3 Recommendations and Covariance**
- 4 Summary

- sets of experiments with different peaks and valleys
- Processing: recommending one set of experimental data as evaluated total CS
 - Recommend qualifications:
 - > wide energy covering,
 - good energy resolution,
 - obvious peak and valley positions,
 - ➤ clear error analysis, ...
 - Data recommended
 - ▶ 1968 S. Cierjacks+ (for natCa)

EXFOR information: Energy Region

- ➤ Year: 1968
- > Author: S. Cierjacks, P. Forti, and D. Kopsch, et. al.
- Energy Region: 0.5 ~ 30 MeV
- **>** Points: 5113
- ➢ Method: TOF (57.5m)
- Inc-Source : (EVAP) U(d,nx)-reaction with a broad neutron spectrum in the energy region from 0.3 to 30 MeV
- Detector: (SCIN) liquid scintillator (Ne-213), 9 cm diam., 1 cm thick viewed by an xp-1040 photo tube
- **Err-Analys:** .Total error given is an upper limit (3.00 percent).
 - .The statistical error runs from better than 1 percent to about 3 percent in most of the channels.

Data processing:
➤ recommended the cross section values
➤ re-estimated the errors: systematic error: 1%

statistic error: 1~2.8% total error: 1.4~3%

mergered the data for covariance energy points (4000+ points are too much), holding the main structures

- > To avoid systematic deviation of the recommendation , other experiments are considered
- > All the measurements are smoothed , systematic errors maintained

The smoothed recommendation is compared with the expected mean value

Negligent error :

- The errors can't be discovered and avoided by single experimenter, performing in sets measure system divergences, unknowable reasons,.
- > Different from statistics and systematic errors.
- Negligent error calculation

for two measurements, $x \pm \delta_x$, $y \pm \delta_y$, let g=y-x, $\delta_g = (\delta_x^2 + \delta_y^2)^{1/2}$ Introduce λ $p(\overline{g}|\lambda) = \frac{\lambda^{1/2}}{\delta_g} \exp\left[-\frac{\lambda}{2}(\overline{g}/\delta_g)^2\right]$ $\overline{\lambda} = \begin{cases} 1/[(g/\delta_g)^2 - 1) & \text{for } |g| \ge \delta_g \\ \infty & \text{for } |g| \le \delta_g \end{cases}$ $\overline{g} = \begin{cases} g(1 - \delta_g^2/g^2) & \text{for } |g| \ge \delta_g \\ 0 & \text{for } |g| \le \delta_g \end{cases}$ negligent error $\overline{\delta}_g = \begin{cases} \delta_g(1 - \delta_g^2/g^2)^{1/2} & \text{for } |g| \ge \delta_g \\ 0 & \text{for } |g| \le \delta_g \end{cases}$

Ref 1: CHAO, Y. "A New Approach to the Adjustment Group of Cross Section Fitting Integral Measurement s", Nuclear Science and Engineering, 72, 1 (1979).

Negligent error :

Defined as middle-range correlation, the correlative coefficient depends on the distance between two points. Gauss factor is adopt.

 $Err_{neg} = \rho_{ij} \cdot \Delta \sigma_i \cdot \Delta \sigma_j$

errors formation:

$$Err_{tot}^2 = Err_{sys}^2 + Err_{sta}^2 + Err_{neg}^2$$

 Err_{sys} long distance association
 Err_{neg} middle distance association
 Err_{sta} no association

Evaluations of Exp. Data —— smooth region

- 20 sets measurements
- rejected those depart obviously from others (2 sets)
- Analyzed errors for each set of data carefully
- Error analysis principles:
 - subjecting to original reference
 - Judging from experimental conditions

Evaluations of Exp. Data — smooth region

Year	Author	Reaction	Points	Err_t(%)	Err_sta(%)	Err_sys(%)	Remarks	
1972	F.G.Perey	nCa-0	156/3501	1.99-3.24	0.97-2.73	1.74	background 0.1%, dead time1%, flux normalizing 1%, others1%	
1952	J.H.Coon	nCa-0	1/1	1.83	1 1.53 single point, rejected		single point, rejected	
1960	J.M.Peterson	nCa-0	1/4	1.71	0.82	1.5	Original err_sys 0.5%, 1.5% estimated	
1958	J.P.Conner	nCa-0	6/6	1.70-1.82	0.89-1.1	1.45	no error information, 1.45% estimated	
1967	E.G.Bacon Jr	nCa-0	3/7	1.38-1.72	0.95-1.4	1	few points, no error information, rejected	
1980	D.C.Larson	nCa-0	106/685	1.46-1.96	1.07-1.68	1	no error information, 1% estimated	
2001	W.P.Abfalterer	nCa-0	69/467	1.25-1.6	0.75-1.21	1	no error information, 1% estimated	
1968	S.Cierjacks	nCa-0	90/5113	1.38-1.45	0.95-1.05	1	Same processing as structural region	
1964	F.Manero	nCa-0	45/61	1.5-2.0	1-1.66	1.12	Background, inscattering correction, and others	
1968	F.Guarrini	nCa-0	1/1	1.7	1	1.38	Background, inscattering correction, and others	
1970	I.Angeli	nCa-0	1/1	1.63	1.43	1	no error information, 1% estimated	
1971	I.Angeli	nCa-0	1/1	1.89	1.60	1	no error information, 1% estimated	
1971	D.G.Foster Jr	nCa-40	34/244	2.12-2.47	0.692-1.45	2	no error information, 1% estimated	
1986	H.S.Camarda	nCa-40	5/17	1.15-1.40	0.57-0.98	1	Flux normalizing, background, sample thickness	
1977	A.N.Djumin	nCa-40	1/1	1.57	0.5	1.5	single point, rejected	
2010	R.Shane	nCa-40	7/69	1.31-1.37	0.85-0.93	1	no error information, 1% estimated	

Evaluations of Exp. Data —— smooth region

- Values recommended:
 - fitting curve obtained from spline fit code SPCC

Err analysis:

> In our opinion,

Recommended systematic errors shouldn't less than any single Err_sys!

- About weighted Err_sys adopt.
- > No negligent errors.

Ref 2:

Liu T, Zhou H. The Spline Fitting for Multi-Sets of Correlative Data. Communication of Nuclear Data Progress. 1994, 11: 116.

1 Background

2 **Evaluations of Experimental Data**

3 Recommendations and Covariance

4 Summary

Absolute covariance matrix

121 points, 0.1~10 MeV
 76 points, 10~20 MeV 45
 points.

Relative covariance matrix

Energy grids

Covariance matrix of correlation coefficient

• Over-calculated associations.

- 1 Background
- 2 **Evaluations of Experimental Data**
- 3 Recommendations and Covariance
 4 Summary

- Both the evaluated value and the covariance information are given based on experimental data.
- Provide one method to evaluate total cross sections of structural nuclei.
- Submit an idea to evaluate sets and numerous measurements with obvious divergences, considering the negligent error.
- Physical give associations in the smooth region, avoiding unreasonable systematical error and over-calculated associations.

Thank you !

Experimental principle:

- ightarrow n = the number of atoms per unit volume
- \succ *l* = the sample length
- > R_v , R_o = the counts within and without sample in a given time bin per beam monitor count
- > B_{i} , B_{0} = the background counts within and without sample per beam monitor count

✤ 结构区主要实验数据

0	1973	C.H.JOHNSON	Ca-40	En = 4.0103E-02~6.3951E+00 MeV
1	1971	D.G.FOSTER JR	Ca-40	En = 2.2510E+00~1.2949E+01 MeV
2	1980	D.C.LARSON	Ca-0	En = 1.9974E+00~1.3099E+01 MeV
3	1972	F.G.Perey	Ca-0	En = 2.0002E-01~1.3047E+01 MeV
4	1971	R.B.SCHWARTZ	Ca-0	En = 4.7670E-01~1.3070E+01 MeV
5	1968	S.CIERJACKS	Ca-0	En = 5.0016E-01~1.3018E+01 MeV
6	1967	G.ZAGO	Ca-0	En = 1.4010E+00~8.6500E+00 MeV
7	1967	J.D.REBER	Ca-0	En = 1.8180E+00~8.3430E+00 MeV
8	1966	L.A.GALLOWAY	Ca-0	En = 1.9960E+00~1.0060E+01 MeV
9	1971	D.G.FOSTER JR	Ca-0	En = 2.2510E+00~1.3112E+01 MeV
10	2001	W.P.Abfalterer	Ca-0	En = 5.2930E+00~1.3020E+01 MeV
11	1964	F.Manero+	Ca-0	En = 8.5200E+00~1.3060E+01 MeV

对两个测量值, x± δ_x , y± δ_y , 令 g=y-x, $\delta_g = (\delta_x^2 + \delta_y^2)^{1/2}$ (g是疏失误差(认为是统计变量)的一个样本,)则 $p(g|\bar{g}) = \frac{1}{\delta_g} \exp\left[-\frac{1}{2\delta_g^2} (g - \bar{g})^2\right]$

并引进疏失误差**不存在可信程度因子**λ (λ=∞表示疏失误 差不存在),

$$p(\overline{g}|\lambda) = \frac{\lambda^{1/2}}{\delta_g} \exp\left[-\frac{\lambda}{2} (\overline{g}/\delta_g)^2\right]$$

由此进行统计分析,给出了以下则最可几的 λ 、g、 δ _g为:

参考文献:

- 赵永安(NSE,72,1-8(1979));
- 刘廷进(系统疏失误差c,内部交流):

$$\begin{split} \overline{\lambda} &= \begin{cases} 1/[(g/\delta_g)^2 - 1) & \text{for } |g| \ge \delta_g \\ \infty & \text{for } |g| \le \delta_g \end{cases} \\ \overline{g} &= \begin{cases} g(1 - \delta_g^2/g^2) & \text{for } |g| \ge \delta_g \\ 0 & \text{for } |g| \le \delta_g \end{cases} \\ \overline{\delta}_g &= \begin{cases} \delta_g (1 - \delta_g^2/g^2)^{1/2} & \text{for } |g| \ge \delta_g \\ 0 & \text{for } |g| \le \delta_g \end{cases} \end{split}$$

上述各式的物理意义:

- 1) 当 $\overline{g} \leq \delta_{g}$ 时,疏失误差不存在;
- 2) 疏失误差 \overline{g} 始终小于两个值差的绝对值|g|;
- 3) 疏失误差 \bar{g} 的大小决定于 δ_g/g ,即两个量的误差越大、差别越小,疏失误差 \bar{g} 越小,当 $\delta_g=g$ 时,疏失误差 $\bar{g}=0$

