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1 Error Propagation
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Basic Formulae
dx = Xx—(X)
OX = (X = (X)) /(%)
VarianceVyy = (X — (X))?) = (dx - dx) = (X?) — (X)?
CovarianceVyy = ((x = ())(y = ())) = (dx- dy) = (Xy) = (XXy)
Standard deviationx = vV
Fractional standard deviatidiy = Ax/(X)
Fractional covarianceyy = Vyy/((X)Xy)) = ((X = XY = <Y/ ((XKY)) = (06X - dY)
Correlation cofficientcyy = Vyy/ \/VixVyy

For linear combinatiomp = Z apiXpi andg = Z AgiXgi»

Vpg = Z pi8q;Vij, Vpp = Z ag Vi + ZZ Z apidp;Vij»

i,j=1 i=1 j>i
whereV;; is the covarlance betwee«a. andxgj.
ey X e
For produgtguotient functionp = i Xok andq = M
Hk_m+1 Xpk [ Ti=mi1 Xax

Zcqufxpk xqr Vpp ~ Z fxpk'

if correlatlon betweernxpy andxq| exists only wherk = | (correlation cofficientcpgk).

For general functionp = (xpl, Xp2, --» Xpn) ANAQ = (Xq1, Xg2, --» Xgn),

Z Opidq;jVij» Vpp ~ Z gp|V||,

i,j=1
wheregp; = (6p/(‘3xp.)xp,_(xpl>,gqJ = (00/0%q))x=(xq» Vij IS the covariance betweedy; andXxg;.



1.2 Measurement of Lengths by Gauge Blocks

An experimenter, a “Mr.A.”, has to determine two markings on a length scale of distances from a fixed zero
point, x; = 35 mm andx, = 60 mm (see Fig. 1). For this experiment he uses three gauge blocks of defined
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length and with well known variances:
Gauge block Length  Std.Dev. Variance
[mm] [ ] [ 4]
I = 50 0.05 Var(;)=0.0025 (A-1)
I = 15 0.03 Varly)=| Al-1
I3 = 10 0.02 Var(3)= Al-2

The first marking is obtained by using the gauge blhcind subtracting the length, while the second
marking is reached by adding tpthe length ofl3, I.e.:

Xp =1y =1z,
Xo = |1 + |3. (A-Z)

By using the uncertainty propagation rules:

Var(x;) = 0.0034

Var(x) = . (A-3)

Std.Dev.
xp =35mm |Al-4|um, (A-4)
X2 =60 mm |Al-5|um.

What he has be done appears correct. We will however come back to this point later.

Some time after this experiment one is interested in an additional quagtityhich defines the distance
between both markings set by “Mr.A.” (see Fig. 2). Two colleagues of “Mr.A.”, “Mr.B.” and “Mr.C.", are
engaged to establishing this new quantity. They proceed usffegetit methods.

“Mr.B.” uses the same set of gauge blocks as “Mr.A.” and can establish that the distanaa be
reproduced by addition of the length of the gauge bldglendls. He obtains

“Mr.A.” states his final result as:

X3 =1l +13=25mm
and (A-5)
Var(xs) = Var(l,) + Var(ls) = U,

*1Extraction from Ref. [1] with minor modification.
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At the same time, “Mr.C.” uses the information given by “Mr.A.” in Eq. (A-2) and (A-3) and calculates:

X3 = Xo— X1 =25mm
and (A-6)
Var(xz) = Var(xp) + Var(xy) = un?.

At first glance the situation looks frustrating. The two experimenters “Mr.B.” and “Mr.C."” have both
done correct work and obtained thefdrent results of Eq. (A-5) and Eg. (A-6), respectively. What
happened? To understand that we have to go back to the first experiment of “Mr.A.”. Looking at Eq. (A-2)
we recognize that “Mr.A.” used in both the determinatiorxpfis well asx, the length of the gauge block
[1. Further, looking at Eq. (A-3) and (A-4), we find that the informatiom,dfeing common to botk; and
X2 was not communicated in the final results, The whole information is only given if we replace Eq. (A-3)
by:

Var(x;) = Var(ly) + Var(l,),
Var(xp) = Var(l1) + Var(l3), (A-7)
Cov(xg, X2) = Var(l1).

The complete covariance matrix (@m?) is then:

(Var(xl) Cov(Xy, X1) )_( 0.0034 |A1-8 ) (A-8)
Cov(xi, X)) Var(xo) - Al1-10| J°

With this information the final result of Eq. (A-4) should be written:

Std.Dev. Correlation Matrix
X, =35mm 0058m ( A1-11 A1-12) (A-9)

X2 = 60 mm 0054um Al-13| [Al-14

From Eqg. (A-9) we recognize that andx, are not independent since their correlationfiont is 0.80.
Due to the symmetry of the correlation matrix it is in most caséicsent to state only the upper or lower
half of this matrix.

Using this complete information the procedure of “Mr.C.” shown in Eq. (A-6) changes and “Mr.C.”
would obtain:

X3 =Xo— X =25mm
and (A-10)
Var(xs) = Var(xp) + Var(xy) — 2 Cov(xs, Xo) = | A1-15|um?.



1.3 Direct (Absolute) Measurement of Neutron Cross Sectioit

One of the methods for cross section determination is the activation of defined materials in well-known
neutron fields and the subsequent deduction of a cross secfiam the induced radioactivity. The rela-
tionship is:
nofll (11)
& Ni éi
with i being an index indicating a specific material and type of react#oris the measured counting rate,
N; is the number of contributing atoms aagdis the neutron flux density at the position of the probe during
the irradiation process. We assume a mono-energetic neutron field of the éhgrgy,thato; = o(E,).
The dficiency of the detectog;, used in measuring the radioactivity depends on the energy of the gamma
rays produced in a specific neutron reaction, d;e e(E,;).
We assume that threeftlirent reaction cross sections were measured in the same mono-energetic neu-
tron field. i.e.,¢1 = ¢» = ¢3. A complete list of the various components contributing to the uncertainty of
Eq. (A-11) of all three experiments is as follows:

Table 1:

Rel.Std.Dev.(in %)

i = 1 2 3
A | 05| 10| 03
§ | 16|22 |13
¢ | 2.0 | 2.00 | 2.0
aCorrelation cofiicients: Coré, )=0.8,
Cor(e, €3)=0.5,
Cor(e, €3)=0.9

bFully correlated (same neutron field )

The uncertainty contribution from; is usually very small and can therefore be neglected. In most cases
the various components contributing to the uncertainty of a single experimentiffoaatdbe defined in such
a way that there are no correlations between components belonging to the same measurement. We see from
Table 1 that no vertical correlations exist only horizontal ones, namely between components belonging to
different experiments.

Regarding the quoted correlations in more detail, we observe no correlation between the measured
counting rates. This indicates that the uncertainty due to counting statistics dominates all other uncertainty
components which may contribute to the total uncertainty of the radioactivity measurement. The particular
correlations between the variouieiencies are attributed to the relationship describing fieiency. The
neutron flux density is the same for all three experiments, and so must be taken into account by a correlation
codficient of 1.

Using the definitions

dXi
0Xi

X — (%), (A-12)
dxi/x;, (A-13)

*2Extraction from Ref. [1] with minor modification.



we can express the deviation from the expected value of Eqg. (A-11) as

_ 90, 90, 90, )
= A dA; + 76 deg + 6, doi, (A-14)

doi

and therefore we can formally write the relative deviations from the expected values as
oo = OA — 8¢ — 0¢;. (A-15)

The estimates of the variances and covariances are given by forming the expected&aluies) and
(60 60j) respectivelywith due regardo the signs of Eq. (A-15).

We have no vertical correlations which means that terms of the forfd/Afde) and (6A 6¢;) and
(86 6¢i) do not exist.

With (6A; 6A;) = 0, i.e. no correlation between the measured count rates we can immediately write:

Rel.Var.¢g) = (60 6y =  (OA SA)Y+ (06 de) + (O O¢), (A-16)
Rel.Cov.¢r,0j) = (60 o)) = (06 O€j) + (0¢i 00;).
The relative covariance matrix (in%sis then
i=1 2 +1.6%+2.0°
i=2 | [A22]x16x22+207 [A2:3] +222+202
= 2
=3 | [A2-4]x16x13+20? [A2-5|x22x13+2.0? +132 4202
(A-17)
6.81
= 6.82 984
504 657 578
The final result can also be stated as:
Measured Rel.Std.Dev. Correlation
guantity % Matrix
o1 A2-7 A2-10 (A-18)
o2 A2-8 A2-11| |A2-12 .
o3 A2-9 A2-13| |A2-14] [A2-15]




1.4 Relative Measurement of Neutron Cross Sectiong

The example presented here is based on an experiment of Cf-252 spectrum averaged cross sections pub-
lished by Kobayashi and Kimura [2, 3]. Our example contains a small subset of the complete analysis: the
ratio measurement of tiéAl(n,p) cross section relative to tRéAl(n,«) cross section and a ratio measure-

ment of the?*Mg(n,p) cross section relative to th&In(n,n’) cross section. The symbej stands for the
spectrum averaged cross section. The results were:

o2 ZAI(n,p)] | o1 ZSAKn,a)] =4.797, (A-19)
oa|P*Mg(n,p) / os|In(nm)| = 0009651
Using the definition of Eq. (A-11) one can write such ratios as with
oifoj = Pi/P (A-20)
with A1
P=2 5K (A-21)

The product of thek}-terms stands for corrective terms necessary to reduce the measured quantities to the
simple form of Eq. (A-11). The complete list of all uncertainty contributions and their correlations is
given in Table 2. The principle of such measurements is the parallel irradiation of fiigoedit foils in the

same neutron field and subsequent counting of the induced radioactivities. The experimentally determined
guantitiesP; of Eq. (A-21) are terms of the foram; ¢;. The unknown neutron flux density is eliminated by
forming the ratio.

Table 2: List of the Uncertainty Components (from Ref. [2])

Uncertainties (in %) due tg Symbol Run-1 Run -2
ZIAIIn, @) | ?7Al(n,p) | *®In(n,n’) | #*Mg(n,p)
No. 1 2 3 4

Counting statistics A 1.6 2.0 1.0 3.2
Efficiency € 1.2 1.4 2.2 1.12
Geometrical factor k® 2.0° 2.0° 2.0° 2.0°
Half life K |0z - - 0.2
Mass determination N 0.19 0.9 0.1 0.2
Back scattering kP 0.7 1.0 1.0 0.7
Irradiation and colling time| k' 0.1 1.8 0.1 0.1
Gamma ray attenuation kS 0.5f 0.5 1.0 0.5f
Gamma ray intensity k? 0.1¢ 1.0 1.0 0.19
Others R 1.0 1.0 1.0 1.0

Cor(e1, &) = 1.00, Corey, €3) = Cor(es, e4) = 0.80, Coréy, 2) = Cor(ez, €4) = 0.94, Core, €3) = 0.95

a
b,e Fully correlated

¢, f,g Fully correlated (same product nucleus)
d Fully correlated (same foil)

In Table 2 the uncertainties of ti#¢ are regarded as being independent. |.e., uncertainties dffedtse
such as the determination of photo-peak area or background subtraction, which would establish correla-
tions, were neglected compared with the counting statistics. fuéeacy correlations (a) come from the

*3Extraction from Ref. [1] with minor modification.



interpolation procedure used to determine tiieiency (more details on that are given in subsection E.4.2

of [1]). The correction of the geometrical factor is the same for all measurements, and so the corresponding
uncertainties show full correlation (b). The uncertainties of the back-scattering correctioffarendibut,

as the source of the back-scattering (room walls) is the same, the quantities must be assumed to be fully
correlated (e). The measurements no. 1 and no. 2 are based on the mass determination of a common
aluminium foil, therefore the correlation is 100% (d).

The product nucleus”Na, is the same for both reactioA%I(n,«) and?*Mg(n,p), therefore all un-
certainty components depending on the common radioactive decay, half life and mass attenuation must be
fully correlated (c, f-g). Finally one should comment that uncertainty sources should normally be specified
better than under the title "Others”, as given in Table 2.

We can express the deviation from the expected value of Eq. (A-21) as

dP; = (9P)/(OA)DA + (9P))/(9e)de + (IP)/(ON)AN; + D" (OP7)(K))dK, (A-22)
|

and therefore we can formally write Formally we can write
6P, = 6A — 66 — 6N + Z 5K (A-23)

|

As Table 2 shows no vertical correlations, the relative covariance of the medused
(6P, 5P)) = (5A SA)) + (56 €5} + (SNy 6Nj) + > (5K oK), (A-24)
|

i.e. we have no mixed terms between the components of Eq. (A-23).
What we want to determine is the covariance matrix of the ratios

Riz = P2/Py,

A-25
Ras = P4/Pa. ( )
With

O0Ry2 = 6P, — 6P,

O0R34 = 6P4 — 6P, (A-26)
we obtain

(0R12 0R12) = (6P2 6P2) + (6P1 6P1)—  2(6P1 6P2),

<5R34 5R34> = <6P4 5P4> + <6P3 5P3>— 2<6P3 5P4>, (A-27)

(6R12 6R34) = (6P1 6P3) + (6P2 6P4)— (6P1 6Py —(6P2 6P3).
We recognize from Eq. (A-27) that we need the complete relative covariance matrix@ftthbe able to
deduce the relative covariance matrix of the ratios. Since Table 2 contains the complete information about
the uncertainty components and correlations ofRhehe generation of this relative covariance matrix is
straightforward, as shown in Table 3. With the result of Table 3 we can determine the relative covariance
matrix (in %) of the measured ratios shown in Eq. (A-27) as

(0R12 0Ryz) (SRi20Res) | 1372 -1.14
(6Rsa 6R12) (SRsa0Rsa) |~ \ —1.14 1787 |

The final result is then given by:

(A-28)

Ratio Rel.Std. Correlation
Dev. % Matrix(x 100)
o2 |7Anp)|  / o[TAlnG| = 4797 370 (100 )
oa|P*Mg(np)| / o3[In(nn)] = 0009651 |A3-1] |A3-2] 100



Table 3: Combination of the Various Uncertainty Components

(dei O€j)
: SA 2
IRRET I ,
2 0 20 . | [A34]x11x14
2
S o0 182 - x11x22 095x x 2.2 )
i= 1 2 3 4 [A3-9]x11x11 094x[A3-10]x11 080x22x 11

(5K? oK) ST T , (6Ni oNj)
2 g ;
2 5 0.22 <K J> 2 2
[Az-15] [A3-16] [A317] o2 o o [A3-25] [A3-26] [A3-27]
[as18] [As-19] [A320] [A321] ' [As28] [as20] [A330[ [A331

‘2

(oK okt

(0B okB) 2
072 ] A3-32 ) .
+ ] 07x10 102 + A3-33 A3-34

2 2
8:;: (1J:3 ]:I:gi (1):3 1olxo 07 072 [A335 ‘2 336 ‘2 [A387 A )
|A3-38] [A3-30] [A3-40] [A3-41]

‘2

(6k® 5k?) (6K ok?) (5K oK)

0.5° 0.12 1.02
+ 0 08 + 0 102 + 0 102
0 0 102 0 0 102 0 0 102
052 0 0 052 012 0 0 012 0 0 0 102
(6Pi 6P})
9.58
= | 616 1646

6.64 793 1386
600 615 664 1729



2 Weighted Average and Least-Squares

2.1 Basic Formulae

e For two quantitiey; andy, related by the covariance matnk the df-diagonal weighted average
and its variance/Ap)? are
* p= (V22 = Vi2)y1 + (Vi1 — Vi2)y2
Vi1 + Va2 = 2Vpo
* (Ap)? = V11Var = V3,
Vi1 + Va2 = 2Vpo

e If parametersy (covarianceMg) for modelling (fitting) functiony ~ f(p) are updated by experi-
mental data pointg (covarianceV), updated fitting parametegsand its covariancé are

* p=po+ MG (GMoG' + V) Ly - yo),
* M = Mo — MoG{(GMoG' + V)G Mo,

whereyo="f(pp) andGis df/dp P-Po-

2.2 Peelle’s Pertinent Puzzle

Two experimental data poingg = 1.5 andy, = 1.0 were obtained for a physical quantity. They were
derived from count rate&; andA, and a common normalization factirby y; = NA; andy, = NA;. The
fractional uncertainth\A; /A; = AA/A; = 10%, while the fractional uncertaintyN/N = 20%.

If we treat both the count rate and normalization factor as uncorrelated between two measurements, the
fractional covariance matrix betwegnandy, becomes

i ] _
V—[ 0.00 ’ (B

and the corresponding covariance matrix is

_( ]
| 0.0000 ‘

Therefore the weighted-average becomes| B1-5] and its standard deviation igp=| B1-6|.
If we treat the count rate as uncorrelated while the normalization factor as fully correlated,

Ve ( 0.05 ) (B-3)

and the corresponding covariance matrix is

V- ( 0.1125 ) (B-4)

Therefore the weighted-average becomes |B1-11|and its standard deviation isp=| B1-12|. Namely
the weighted-average becomes lower than both experimental data points if we consider the correlation

property of the normalization factor - Peelle’s Pertinent Puzzle (PPP) found by Robert Peelle (ORNL) in
1987 [4].

(B-2)



2.3 Evaluation of Spectrum-Averaged Cross Section$

We assume that two independent experiments exist (performedtbyetit experimenters) of cross sections
averaged over a Cf-252 neutron spectrum. Our aim is to combine both these data sets to obtain the most
consistent “best” set of data. The first experiment comprises the data of two reactions:

Table 4: Experiment No. 1

Neutron | Spectrum-Averaged Rel.Std.Dev.| Correlation
Reaction Cross Section % Matrix (x 100)
235J(n,f) 1215 mb 1.79 100

23%pu(n,f) 1790 mb 2.26 59 100

In the second experiment the cross section of the reatifbl{n,f) is measured twice (using a slightly
different method in the second case), and, instead of the absolute cross seétfBu@f,f) a ratio mea-
surement relative t&*°U(n,f) was performed.

Table 5: Experiment No. 2

Neutron Reaction | Spectrum-Averaged| Rel.Std.Dev.| Correlation
(Ratio) Cross Section (Ratio % Matrix (x 100)
235U(n,f) 1205 mb 2.25 100

235U(n,f) 1203 mb 3.02 80 100
239pu(n,fy?3%U(n,f) 1.500 1.33 -19 -5 100

A first glance at Table 5, makes one astonished why an average value of the first and second measure-
ment was not taken. In principle it is notfficult to calculate such an average (also with regard to existing
covariances). However, an average can only be formed if no further correlations to any other data exist of
the data contributing to the average. If we look at Table 5 we recognize correlations between the first as
well as the second data and the third data. In such a case the average would ignore the existing correlation
to the third data. This means that an average, which is (as will be shown later) equivalent with the least
squares procedure, cannot be calculated for a subset of the total data contributing to the least squares.

Thus the given example demonstrates two important aspects of the data evaluation process:

a) the combination of data of the same type which have been determined more than once
b) the connection between absolute and relative cross section data.

In our example we regard the data of the first experiment (Table 4) as an initial estimates of the final data
Po, i,€.:

_ ( oy =1215 4730 ) (B-5)

7 i) @ vo=( (g3

*4Extraction from Ref. [1] with minor modification.
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and the data of the second experiment (Table 5) as “experimentay’data

1205 7.351E+ 2
y:[ 1203 ] with V= B3-3| [B3-4 (B-6)
1.500 B3-5| [B3-6] [B3-7]

The vectoryy which represents the fit function at the parameter estimatéesthen:

o, =1215
Yo=| o1=1215 s (B-7)
0'2/0'1 =1473
and theG matrix is given by:
80’1/60'1 50’1/80’2 1 0
G= (90'1/60’1 (30'1/(90'2 = 1 0 . (B-8)
do2/o1)/001  O(o2/01) /002 —oo/0? 1oy

The first column of Eq. (B-8) corresponds to the first parametgrand the second column to the second
parameterg,, while the rows correspond to the data 1 to 3. The data no. 1 and no. 2 are identical (within
their uncertainties) with the first parameter, so we have unity as both first elements of the first column and a
corresponding zero in the second column. Data no. 3 (the ratio measurement) depends on both parameters
which is expressed in the corresponding derivatives in row 3, columns 1 and 2.

Inserting the results of Eq. (B-5) - (B-8) in the least squares formalism, we obtain as a final result:

1210 2850
p:( 1805) and M :( 3490 7829 ) (B-9)

Table 6: Evaluated Data

Neutron | Spectrum-Averaged Rel.Std.Dev.| Correlation Matrix
Reaction Cross Section % (x 100)
235U(n,f) B3-8/mb B3-10 B3-12
23%py(n,f) B3-9|mb B3-11 B3-13] |B3-14|

11



2.4 Carbon Resonance Energy by Two TOF Measurement Data [5]

The energy of the 2080 keV carbon resonance was measured at Harwell by James [6]. The neutron res-
onance energ¥; (eV) obtained by thé-th run ( = 1, 2) is related with the flight path length (m) and
time-of-flightt; (usec) by

Ei(Li.t) = (723Li/t)°. (B-10)
Two flight path lengthsl(; andL,) are considered as independent, while time-of-flightahdt,) are
decomposed to the uncorrelated pasténdt,) and fully correlated partyg) ast; = tm+tg andt, = tp+te.
The experimental data from the measurement are summarized in Table 7. According to the error propagation

Table 7:

Exp.No. | Li(m) | ALij(m) | Atn(usec) | Atg(usec) Ei (eV)

1 100 | 0.003 | 0.40x10°2 | 0.25¢10°2 | 2078.3k10°

2 50 0.006 | 0.40<10°% | 0.50<10°% | 2079.2x10°

formula for general functions, the covariance betwBeandE; (i, j = 1, 2) is given by
Vi = (9E1/0L1)? (AL)? + (9E1/0tr)? (Aty)?, (B-11)
Voo = (0E2/0L2) (AL2) + (9E2/t)” (ALY, (B-12)
Viz = (0E1/dt) (0E2/0t2) Vi, (B-13)

Note that all terms involving correlation between the flight path lengjha6d time-of-flight ) become
zero. These partial derivatives can be calculated by using Eq. (B-10), and we obtain the following covari-

ances:
vii = [B2-1[(f2 + f2), (B-14)
v = [B2:2[(f2 + f2), (B-15)
Vig = tltza (B-16)

wheref? = (ALi/Li)?, fZ = (Ati/6)? = (A6)?Ei/(723Li)% Vi, = Vit /(tat2) = Vi, VEIE2/(723L4Ly).
Two time-of-flightt; andt, are linear combinations af,, t.; andte. Following the error propagation
formula for linear combination, the covariandg, = (At;)?, Vi, = (Atz)? andVy,, are

Vi, = Vit + Viata = (Atm)? + (Ater)?, (B-17)
Vi, = Vi + Viote = (Atm)? + (Ate)?, (B-18)
Vi, = Vi, = (Atm)?. (B-19)

From these equations and Table 7, we can calculate the fractional variances of the resonance energies
v=V/(E:E):

3.90x 108
o ) ©20
which corresponds to
V= ( 0.168 )kev2 (B-21)
-

The df-diagonal weighted average of two resonance enefgies B2-8| keV, and its standard deviation
AE = keV. This average is lower than bo andE,.
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3 Usage of SOK (Simultaneous Evaluation on KALMAN)™

The SOK code requires :
1. experimental data (UNIT 10), data error (UNIT 11), and correlation matrices (UNIT 12)
2. prior parameters (UNIT 50) and their uncertainties (UNIT 51)
3. control data (UNIT 5)

where the UNITN is the FORTRAN logical unit number fof®. The correlation file (UNIT 12) is optional.
In this section, a data file allocated to UNNis called as “fort”.

3.1 Description of Experimental Data

An experimental database is separated into three files — cross sectioiglaty, their uncertaintiesg,,
Ao), and their correlation matrix. These three files are allocated to the FORTRAN logical UNITs of 10, 11,
and 12, respectively.

One measurement contains several data points. These cross section data and their errors are stored with
the following formats:

Cross section Data File — fort.10

(A43,1I5) TITLE, ND
(6E11.4) X(D,Y(),I=1,ND)

Data Error File —fort.11

(43X,1I5) ND
(6E11.4) (DUMMY, Z(I),I=1,ND)

whereTITLE is an arbitrary text\D is the number of energy points, Y, andZ are the energy, cross section,
and its uncertainty. The units of energies and cross sections are arbitrary, but the same units must be used
for all experimental data. I is positive, the uncertainty is a relative error. 1 is negative, this value is
interpreted as an absolute error. For exampl®3 is 3%, andZz=-0.1 represents 0.1.

A correlation matrix of the experimental data is read from UNIT 12.

Correlation File —fort.12

(43X,1I5) NC
DO I=1,NC
(12F6.3) Va*(I-1/2+3),1=1,1)

whereV is the correlation{1 < V < 1), andNC is the number of energy points. UsualN¢ must be the
same adiD, but one can omit the correlation data by settiidg®0.

A set of data describes one measurement of a reaction type. When there are several measurements of
various reaction types, those data are stored sequentially in fort.10, 11, and 12. The order of experimental

*SExtraction from Ref. [7] with minor modification.
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data is arbitrary, but the same order should be used for the data, error, and correlation files. The order of
experimental data is defined in the control data given in UNIT 5. When there are six experimental data sets
(three measurements of reactidantwo of reactiorB, and one ofC), the structure of the experimental data

files becomes as follows.

Data number 1 of Reactioh

Data number 2 of Reactioh

Data number 3 of Reactiol

Data number 1 of Reactid®

Data number 2 of Reactid®

Data number 1 of Reactioh

The followings are examples of the data files which contain three measurements.

____*____1____*____2 ________ 3____*____4____*____5____5“____6____s e

1: Data 1 5

2: 1.4700E+01 6.7300E-01 1.6000E+01 4.5100E-01 1.7000E+01 3.6600E-01
3: 1.8000E+01 2.3400E-01 1.9000E+01 2.7300E-01

4: Data 2 14

5: 6.4200E+00 6.0000E-02 6.8000E+00 2.7000E-01 6.9600E+00 5.4000E-01
6: 7.0000E+00 4.7000E-01 7.2000E+00 5.1000E-01 7.2500E+00 7.9000E-01
7: 7.4500E+00 8.9000E-01 7.5800E+00 9.8000E-01 7.8200E+00 1.1100E+00
8: 7.8800E+00 1.0700E+00 8.4900E+00 1.2100E+00 8.9600E+00 1.3900E+00
9: 9.4800E+00 1.4600E+00 9.9700E+00 1.4900E+00
10: Data 3 10
11: 6.8900E+00 2.3300E-01 7.4100E+00 6.0400E-01 7.6700E+00 8.1100E-01
12: 7.9300E+00 8.7900E-01 8.1800E+00 9.9900E-01 8.4400E+00 1.0720E+00
13: 8.6900E+00 1.0290E+00 8.9400E+00 1.1560E+00 9.4400E+00 1.1710E+00
14: 9.9300E+00 1.2320E+00

____7':____1____7':____2____7':____3____7':____4____7':____5____',":____6____7':____7

1: Error 1 5

2: 1.4700E+01 6.1000E-02 1.6000E+01 1.8000E-01 1.7000E+01 2.0000E-01
3: 1.8000E+01 3.6000E-01 1.9000E+01 3.2000E-01

4: Error 2 14

5: 6.4200E+00 3.0000E-02 6.8000E+00 2.0000E-02 6.9600E+00 4.0000E-02
6: 7.0000E+00 3.0000E-02 7.2000E+00 4.0000E-02 7.2500E+00 5.0000E-02
7: 7.4500E+00 5.0000E-02 7.5800E+00 5.0000E-02 7.8200E+00 5.0000E-02
8: 7.8800E+00 5.0000E-02 8.4900E+00 5.0000E-02 8.9600E+00 5.0000E-02
9: 9.4800E+00 5.0000E-02 9.9700E+00 5.0000E-02

10: Error 3 10

11: 6.8900E+00-3.9000E-02 7.4100E+00-5.4000E-02 7.6700E+00-6.2000E-02
12: 7.9300E+00-4.8000E-02 8.1800E+00-4.1000E-02 8.4400E+00-5.2000E-02
13: 8.6900E+00-6.0000E-02 8.9400E+00-4.2000E-02 9.4400E+00-4.6000E-02
14: 9.9300E+00-4.4000E-02
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1: Correlation 1 5

2: 1.000

3: 0.111 1.000

4: 0.098 0.033 1.000

5: 0.055 0.019 0.016 1.000

6: 0.062 0.022 0.019 0.010 1.000

7: Correlation 2 0

8: Correlation 3 10

9: 1.000

10: 0.060 1.000

11: 0.070 0.132 1.000

12: 0.098 0.184 0.216 1.000

13: 0.131 0.245 0.287 0.402 1.000

14: 0.111 0.208 0.243 0.340 0.452 1.000

15: 0.092 0.173 0.202 0.283 0.376 0.318 1.000

16: 0.148 0.277 0.324 0.454 0.604 0.511 0.425 1.000

17: 0.137 0.256 0.300 0.420 0.558 0.472 0.393 0.631 1.000
18: 0.151 0.282 0.330 0.461 0.614 0.520 0.432 0.694 0.642 1.000

3.2 Description of Prior Parameters

The SOK code reads prior cross sections and their uncertainties from UNIT 50 and 51.

Prior Cross Section File — fort.50

(A43,1I5) TITLE, NE
(6E11.4) (EO(CI),PO(I),I=1,NE)

Prior Cross Section Error File — fort.51

(A43,1I5) TITLE, NE
(6E11.4) (DUMMY, PE(I),I=1,NE)

whereTITLE is an arbitrary textNE is the number of energy pointE® andP® are an energy and a Cross
section, an®E is a prior uncertainty. The uncertainties are relative errors. The units of energies and cross
sections must be the same as those of the experimental data read from UNITs 10 and 11.

Currently there is no way to give a prior covariance of the cross section. The uncertainties of the prior
cross sections are regarded as uncorrelated.

The above data describe one type of cross sections. When several cross sections are evaluated simulta-
neously, these data are concatenated and stored in fort.50 and 51. One cdfeteat @inergy points for
each cross section type. The number of cross sections is calculated automatically, and it is referred to as
NKIND in the code. The order of the cross sections in these files is used to specify the reaction type. These
numbers (from 1 t&lKIND) are an index of each reaction. The maximal numbe¥kaiND is 99.

The following examples present the data files which contain two cross section BgI@®£2). The
prior uncertainties assumed are 50% for all.
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1: Inelastic 1st level 24

2: 1.0000E-02 6.5979E+00 1.0000E-01 2.7476E+00 5.0000E-01 1.9889E+00
3: 7.5000E-01 1.6267E+00 1.0000E+00 1.4527E+00 1.2500E+00 1.3435E+00
4: 1.5000E+00 1.2662E+00 1.7500E+00 1.2078E+00 2.0000E+00 1.1615E+00
5: 2.2500E+00 1.0919E+00 2.5000E+00 1.0162E+00 3.0000E+00 8.3853E-01
6: 4.0000E+00 5.9353E-01 5.0000E+00 4.1736E-01 6.0000E+00 3.2365E-01
7: 8.0000E+00 1.7176E-01 1.0000E+01 1.0063E-01 1.2000E+01 3.4596E-02
8: 1.3000E+01 2.4942E-02 1.4000E+01 1.7562E-02 1.5000E+01 1.2131E-02
9: 1.6000E+01 8.2704E-03 1.8000E+01 3.7694E-03 2.0000E+01 1.7137E-03
10: Inelastic 2nd level 24
11: 1.0000E-02 0.0000E+00 1.0000E-01 0.0000E+00 5.0000E-01 1.3546E-01
12: 7.5000E-01 3.6810E-01 1.0000E+00 4.4806E-01 1.2500E+00 4.8766E-01
13: 1.5000E+00 5.1221E-01 1.7500E+00 5.2979E-01 2.0000E+00 5.4338E-01
14: 2.2500E+00 5.3302E-01 2.5000E+00 5.1264E-01 3.0000E+00 4.5885E-01
15: 4.0000E+00 3.5950E-01 5.0000E+00 2.7149E-01 6.0000E+00 2.2053E-01
16: 8.0000E+00 1.2464E-01 1.0000E+01 7.5152E-02 1.2000E+01 4.3703E-02
17: 1.3000E+01 3.1578E-02 1.4000E+01 2.2305E-02 1.5000E+01 1.5467E-02
18: 1.6000E+01 1.0586E-02 1.8000E+01 4.8735E-03 2.0000E+01 2.2361E-03

____7':____1____7'\'____2____7':____3____7':____4____7':____5____7':____6____-.':____7

1: Inelastic 1st level 24

2: 1.0000E-02 5.0000E-01 1.0000E-01 5.0000E-01 5.0000E-01 5.0000E-01
3: 7.5000E-01 5.0000E-01 1.0000E+00 5.0000E-01 1.2500E+00 5.0000E-01
4: 1.5000E+00 5.0000E-01 1.7500E+00 5.0000E-01 2.0000E+00 5.0000E-01
5: 2.2500E+00 5.0000E-01 2.5000E+00 5.0000E-01 3.0000E+00 5.0000E-01
6: 4.0000E+00 5.0000E-01 5.0000E+00 5.0000E-01 6.0000E+00 5.0000E-01
7: 8.0000E+00 5.0000E-01 1.0000E+01 5.0000E-01 1.2000E+01 5.0000E-01
8: 1.3000E+01 5.0000E-01 1.4000E+01 5.0000E-01 1.5000E+01 5.0000E-01
9: 1.6000E+01 5.0000E-01 1.8000E+01 5.0000E-01 2.0000E+01 5.0000E-01
10: Inelastic 2nd level 24

11: 1.0000E-02 5.0000E-01 1.0000E-01 5.0000E-01 5.0000E-01 5.0000E-01
12: 7.5000E-01 5.0000E-01 1.0000E+00 5.0000E-01 1.2500E+00 5.0000E-01
13: 1.5000E+00 5.0000E-01 1.7500E+00 5.0000E-01 2.0000E+00 5.0000E-01
14: 2.2500E+00 5.0000E-01 2.5000E+00 5.0000E-01 3.0000E+00 5.0000E-01
15: 4.0000E+00 5.0000E-01 5.0000E+00 5.0000E-01 6.0000E+00 5.0000E-01
16: 8.0000E+00 5.0000E-01 1.0000E+01 5.0000E-01 1.2000E+01 5.0000E-01
17: 1.3000E+01 5.0000E-01 1.4000E+01 5.0000E-01 1.5000E+01 5.0000E-01
18: 1.6000E+01 5.0000E-01 1.8000E+01 5.0000E-01 2.0000E+01 5.0000E-01

3.3 Description of Input Data

The input data controls the calculational flow and the sequence of the experimental data in fort.10, 11, and
12. Since the experimental database contains several measurements witfeteatdieaction types, the
database is divided into several blocks with the same reaction. The sequence of the blocks and the order of
the measurements within the block are defined in this input file.

(A80) TITLE

(415) NREAC,KCOVEX,KCTL1,KCTL2
DO I=1,NREAC

(1415 IEXP(I),NMSUR

(7E10.3) (EW(3),J=1,NMSUR)
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whereTITLE is the title of the calculation§REAC is the number of blocks in the experimental database.
The indexIEXP tells a type of reaction arklMSUR is the number of measurements in the block.

When the experimental database has the following structure, this database is divided into three blocks
— reaction typed\, B,andC — thenNREAC=3. Each block contains four, three, and two measurements,
thenNMSUR=4 for the reaction typé\, NMSUR=3 for B, andNMSUR=2 for C.

Data number 1 of Reactio
Data number 2 of Reactioh
Data number 3 of Reactiol
Data number 4 of Reactioh
Data number 1 of ReactidB
Data number 2 of Reactid®
Data number 3 of ReactidB
Data number 1 of Reactidd
Data number 2 of Reacticd

An integer number called an index is used to identify the reaction type. The index is the order of the
cross sections in fort.50 and 51. The first cross section in those files has the index of “1”, and the second
one is “27, and so on. If the experimental data is a ratio measurement which corresponds to a ratio of the
indexato b, this index is given as 100a + b.

Let us consider an example. In the case of evaluatidfrofand?38U fission cross sections, fort.50 and
51 contain their prior values in this order. The indexd6U is 1, while?38U is 2, thenNKIND becomes 2.

If the experimental database (fort.10, 11, and 12) contains one measurement which is a fission cross section
ratio of 228U to 2%°U, the index of the measuremeIiXP becomes 201, and the number of reaction block
becomedIREAC=1.

One can manipulate a weight of each measurememlibyfhe uncertainties of the corresponding ex-
perimental data are multiplied by the value Ef. If EW=0, the measurement is ignored. Usudlly is
unity.

KCOVEX, KCTL1, andKCTL2 are the flags. IKCOVEX=0, the SOK code does not read correlation data,
otherwise it reads correlation data from UNIT 12.)Atest can be done with the fl&fTL1. The SOK
code calculates thg? value wherkKCTL1=N. The cross sections and their uncertainties are read from UNIT
N andN + 1 with the same format as the data in fort.50 and 51. TherefoRgTiE1=50, it gives they?
value for the prior cross sections.RETL2=1, smoothly interpolated posterior cross sections are generated
by means of the cubic-spline interpolation.

An example of the input data is as follows:

B A By It e B 7
1: SOK INPUT DATA
2: 3 1 0 1
3: 1 4
4: 1.000E+00 1.000E+00 1.000E+00 1.000E+00
5: 2 3
6: 1.000E+00 0.0 1.000E+00
7: 102 2
8: 1.000E+00 1.000E+00
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The number of measurements is=94 + 3+ 2), and there are three block&REAC=3). The first block is
atype “1”, and there are four measurements. The next block is a type “2”. Three measurements are stored
in the file, but the second measurement is ignored. The last block contains two measurements, those are the
ratios of the cross sections “1” to “2".

3.4 Output

The SOK code printg? values and the number of data points for each measurement during execution,
and finally it prints the posterior cross sections and their uncertainties. The following is an example of the
output.

____:“:____1____:“:____2____:“:____3____:“:____4____:“:____5____:':____6____:':____7
1: Simultaneous Evaluation for JENDL-3.3
2: NUMBER OF DATA BLOCKS 6
3: NUMBER OF SPLINE KNOTS 211
4:
5: # 21463002 P.H.White 1965 6
6: *** EXP. DATA IGNORED *#*%¥¥%
7: CROSS SECTION :U233FIS
8: SQ.NO.: 1 REACT. : 1 POINTS: 0 SUM UP: 0
9: PARTIAL CHI SQ: 0.00000E+00 CUMULATIVE : 0.00000E+00
10:
11: # 21195002 P.H.White 1967 4
12: CROSS SECTION :U233FIS
13: SQ.NO.: 2 REACT. : 2 POINTS: 4 SUM UP: 4
14: PARTIAL CHI SQ: 9.14181E-06 CUMULATIVE : 9.14181E-06
812: 10563002 Behrens 107
813: CROSS SECTION :PU241FIS U235FIS
814: SQ.NO.: 162 REACT.: 3 POINTS: 92 SUM UP: 4661
815: PARTIAL CHI SQ: 1.06892E+02 CUMULATIVE : 1.56656E+04
816:
816: CHI-SQUARE TEST ! CHI - S = 1.56656E+04
817: DEGREE OF FREEDOM = 4450 RATIO = 3.52035E+00
818:
819: PARAMETER INITIAL FINAL ERROR
820:
821: .0000E-02 2.0520E+00 2.2717E+00 1.2846E+00

1 2
822: 2 3.0000E-02 2.0520E+00 2.0075E+00 8.5634E-01
823: 3 6.0000E-02 1.8110E+00 1.7804E+00 7.4145E-01

NN

1030: 209 1.7500E+01 2.3819E+00 2.3451E+00 2.1581E+00
1031: 210 2.0000E+01 2.3000E+00 2.1893E+00 2.7890E-+00
1032: 211 2.2000E+01 2.3000E+00 2.3086E+00 5.8164E+00

MM MMM

R R R
(AN AN A

The printed errors of the parameters are multiplied by the faq@/(n— m), but thisy? value is
approximate. To calculate the exaétvalue, repeat the same calculation KATL1=20.
The other information is written on files.
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UNIT contents

14 covariance matrices of the evaluated cross sections

15 evaluated cross sections and their errors

17 cubic-spline interpolated cross sectionX(ifL2=1)

20 evaluated cross sections (the same format as fort.50)

21 evaluated cross section errors (the same format as fort.51)
60+1 experimental data of reaction block™(I=1,NREAC)
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Al A2 | A3 Bl B2 B3
1 | 0.0009| 05| 4.23| 0.05 4 519.1
2 | 0.0004| 0.8 | -7 0.05 4 1636.5
3 | 0.0029| 1.0 | 1.1 | 0.1125 4 7.880E2
4 | 0.058 | 0.5 | 0.94| 0.0500| 5.09x 108 | 1.320E-3
5| 0054 | 09 | 1.4 | 1.154 | 319x1077 | -1.028E-1
6 | 0.0013| 0.3 | 0.80| 0.186 0.220 -3.624E-2
7 | 0.0063| 2.61| 1.4 | 0.04 1.379 3.980E-4
8 | 0.0025| 3.14| 2.2 | 0.05 2078.27 1210
9 | 0.0025| 2.40 | 1.00 | 0.0600 0.41 1805
10| 0.0029| 1.00 | 0.94 | 0.0500 1.40
11| 1.00 | 0.83| 1.1 | 0.882 1.56
12| 0.80 | 1.00| 2.0 | 0.218 100
13| 0.80 | 0.80| 2.0 74
14| 1.00 | 0.87| 2.0 100
15| 0.0013| 1.00| 2.0
16 2.0
17 2.0
18 2.0
19 20
20 2.0
21 20
22 0.1
23 0.1
24 0.1
25 0
26 0
27 0.1
28 0
29 0
30 0
31 0.2
32 0.1
33 0
34 1.8
35 0
36 0
37 0.1
38 0
39 0
40 0
41 0.1
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