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1 Error Propagation

1.1 Basic Formulae

• dx = x− 〈x〉
• δx = (x− 〈x〉)/〈x〉
• VarianceVxx = 〈(x− 〈x〉)2〉 = 〈dx · dx〉 = 〈x2〉 − 〈x〉2

• CovarianceVxy = 〈(x− 〈x〉)(y− 〈y〉)〉 = 〈dx · dy〉 = 〈xy〉 − 〈x〉〈y〉
• Standard deviation∆x =

√
Vxx

• Fractional standard deviationfx = ∆x/〈x〉
• Fractional covariancevxy = Vxy/(〈x〉〈y〉) = 〈(x− 〈x〉)(y− 〈y〉)〉/(〈x〉〈y〉) = 〈δx · δy〉
• Correlation coefficientcxy = Vxy/

√
VxxVyy

• For linear combinationp =

n∑

i=1

apixpi andq =

n∑

i=1

aqixqi,

Vpq =

n∑

i, j=1

apiaq jVi j , Vpp =

n∑

i=1

a2
piVii + 2

n∑

i=1

n∑

j>i

apiap jVi j ,

whereVi j is the covariance betweenxpi andxq j.

• For product/quotient functionp =

∏m
k=1 xpk∏n

k=m+1 xpk
andq =

∏m
k=1 xqk∏n

k=m+1 xqk
,

vpq ∼
n∑

k=1

cpq,k fxpk fxqk, vpp ∼
n∑

k=1

f 2
xpk

,

if correlation betweenxpk andxql exists only whenk = l (correlation coefficientcpq,k).

• For general function,p = (xp1, xp2, ..., xpn) andq = (xq1, xq2, ..., xqn),

Vpq ∼
n∑

i, j=1

gpigq jVi j , Vpp ∼
n∑

i=1

g2
piVii ,

wheregpi = (∂p/∂xpi)xpi=〈xpi〉,gq j = (∂q/∂xq j)xq j=〈xq j〉, Vi j is the covariance betweenxpi andxq j.
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1.2 Measurement of Lengths by Gauge Blocks*1

An experimenter, a “Mr.A.”, has to determine two markings on a length scale of distances from a fixed zero
point, x1 = 35 mm andx2 = 60 mm (see Fig. 1). For this experiment he uses three gauge blocks of defined

Fig. 1:

length and with well known variances:

Gauge block Length Std.Dev. Variance
[mm] [ µm] [ µm2]

l1 = 50 0.05 Var(l1)=0.0025
l2 = 15 0.03 Var(l2)= A1-1
l3 = 10 0.02 Var(l3)= A1-2

(A-1)

The first marking is obtained by using the gauge blockl1 and subtracting the lengthl2, while the second
marking is reached by adding tol1 the length ofl3, I.e.:

x1 = l1 − l2,
x2 = l1 + l3.

(A-2)

By using the uncertainty propagation rules:

Var(x1) = 0.0034,
Var(x2) = A1-3 .

(A-3)

“Mr.A.” states his final result as:
Std.Dev.

x1 = 35 mm A1-4 µm,
x2 = 60 mm A1-5 µm.

(A-4)

What he has be done appears correct. We will however come back to this point later.
Some time after this experiment one is interested in an additional quantity,x3, which defines the distance

between both markings set by “Mr.A.” (see Fig. 2). Two colleagues of “Mr.A.”, “Mr.B.” and “Mr.C.”, are
engaged to establishing this new quantity. They proceed using different methods.

“Mr.B.” uses the same set of gauge blocks as “Mr.A.” and can establish that the distancex3 can be
reproduced by addition of the length of the gauge blocksl2 andl3. He obtains

x3 = l2 + l3 = 25 mm,
and

Var(x3) = Var(l2) + Var(l3) = A1-6 µm2.

(A-5)

*1Extraction from Ref. [1] with minor modification.
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Fig. 2:

At the same time, “Mr.C.” uses the information given by “Mr.A.” in Eq. (A-2) and (A-3) and calculates:

x3 = x2 − x1 = 25 mm,
and

Var(x3) = Var(x2) + Var(x1) = A1-7 µm2.

(A-6)

At first glance the situation looks frustrating. The two experimenters “Mr.B.” and “Mr.C.” have both
done correct work and obtained the different results of Eq. (A-5) and Eq. (A-6), respectively. What
happened? To understand that we have to go back to the first experiment of “Mr.A.”. Looking at Eq. (A-2)
we recognize that “Mr.A.” used in both the determination ofx1 as well asx2 the length of the gauge block
l1. Further, looking at Eq. (A-3) and (A-4), we find that the information ofl1 being common to bothx1 and
x2 was not communicated in the final results, The whole information is only given if we replace Eq. (A-3)
by:

Var(x1) = Var(l1) + Var(l2),
Var(x2) = Var(l1) + Var(l3),

Cov(x1, x2) = Var(l1).
(A-7)

The complete covariance matrix (inµm2) is then:

(
Var(x1) Cov(x2, x1)
Cov(x1, x2) Var(x2)

)
=

 0.0034 A1-8
A1-9 A1-10

 . (A-8)

With this information the final result of Eq. (A-4) should be written:

Std.Dev.
x1 = 35 mm 0.058µm
x2 = 60 mm 0.054µm

Correlation Matrix A1-11 A1-12
A1-13 A1-14

 (A-9)

From Eq. (A-9) we recognize thatx1 andx2 are not independent since their correlation coefficient is 0.80.
Due to the symmetry of the correlation matrix it is in most cases sufficient to state only the upper or lower
half of this matrix.

Using this complete information the procedure of “Mr.C.” shown in Eq. (A-6) changes and “Mr.C.”
would obtain:

x3 = x2 − x1 = 25 mm,
and

Var(x3) = Var(x2) + Var(x1) − 2 Cov(x1, x2) = A1-15 µm2.

(A-10)
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1.3 Direct (Absolute) Measurement of Neutron Cross Section*2

One of the methods for cross section determination is the activation of defined materials in well-known
neutron fields and the subsequent deduction of a cross sectionσ from the induced radioactivity. The rela-
tionship is:

σi =
Ai

εi

1
Ni

1
φi

(A-11)

with i being an index indicating a specific material and type of reaction.Ai is the measured counting rate,
Ni is the number of contributing atoms andφi is the neutron flux density at the position of the probe during
the irradiation process. We assume a mono-energetic neutron field of the energy,En, so thatσi = σi(En).
The efficiency of the detector,εi , used in measuring the radioactivity depends on the energy of the gamma
rays produced in a specific neutron reaction, i.e.εi = ε(Eγi).

We assume that three different reaction cross sections were measured in the same mono-energetic neu-
tron field. i.e.,φ1 = φ2 = φ3. A complete list of the various components contributing to the uncertainty of
Eq. (A-11) of all three experiments is as follows:

Table 1:

Rel.Std.Dev.(in %)

i = 1 2 3

Ai 0.5 1.0 0.3

εi 1.6a 2.2a 1.3a

φi 2.0b 2.0b 2.0b

aCorrelation coefficients: Cor(ε1, ε2)=0.8,

Cor(ε1, ε3)=0.5,

Cor(ε2, ε3)=0.9
bFully correlated (same neutron field !)

The uncertainty contribution fromNi is usually very small and can therefore be neglected. In most cases
the various components contributing to the uncertainty of a single experiment (fixedi) can be defined in such
a way that there are no correlations between components belonging to the same measurement. We see from
Table 1 that no vertical correlations exist only horizontal ones, namely between components belonging to
different experiments.

Regarding the quoted correlations in more detail, we observe no correlation between the measured
counting rates. This indicates that the uncertainty due to counting statistics dominates all other uncertainty
components which may contribute to the total uncertainty of the radioactivity measurement. The particular
correlations between the various efficiencies are attributed to the relationship describing the efficiency. The
neutron flux density is the same for all three experiments, and so must be taken into account by a correlation
coefficient of 1.

Using the definitions

dxi = xi − 〈xi〉, (A-12)

δxi = dxi/xi , (A-13)

*2Extraction from Ref. [1] with minor modification.
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we can express the deviation from the expected value of Eq. (A-11) as

dσi =
∂σi

∂Ai
dAi +

∂σi

∂εi
dεi +

∂σi

∂φi
dφi , (A-14)

and therefore we can formally write the relative deviations from the expected values as

δσi = δAi − δεi − δφi . (A-15)

The estimates of the variances and covariances are given by forming the expected values〈δσi δσi〉 and
〈δσi δσ j〉 respectively,with due regardto the signs of Eq. (A-15).

We have no vertical correlations which means that terms of the form of〈δAi δεi〉 and 〈δAi δφi〉 and
〈δεi δφi〉 do not exist.

With 〈δAi δA j〉 = 0, i.e. no correlation between the measured count rates we can immediately write:

Rel.Var.(σi) = 〈δσi δσi〉 = 〈δAi δAi〉+ 〈δεi δεi〉 + 〈δφi δφi〉,
Rel.Cov.(σi , σ j) = 〈δσi δσ j〉 = 〈δεi δε j〉 + 〈δφi δφ j〉. (A-16)

The relative covariance matrix (in %2) is then

i = 1
i = 2
i = 3



A2-1
2

+ 1.62 + 2.02

A2-2 × 1.6× 2.2 + 2.02 A2-3
2

+ 2.22 + 2.02

A2-4 × 1.6× 1.3 + 2.02 A2-5 × 2.2× 1.3 + 2.02 A2-6
2

+ 1.32 + 2.02


(A-17)

=


6.81
6.82 9.84
5.04 6.57 5.78

 .

The final result can also be stated as:

Measured Rel.Std.Dev.
quantity %
σ1 A2-7
σ2 A2-8
σ3 A2-9

Correlation
Matrix

A2-10
A2-11 A2-12
A2-13 A2-14 A2-15

 .
(A-18)
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1.4 Relative Measurement of Neutron Cross Sections*3

The example presented here is based on an experiment of Cf-252 spectrum averaged cross sections pub-
lished by Kobayashi and Kimura [2, 3]. Our example contains a small subset of the complete analysis: the
ratio measurement of the27Al(n,p) cross section relative to the27Al(n,α) cross section and a ratio measure-
ment of the24Mg(n,p) cross section relative to the115In(n,n’) cross section. The symbolσi stands for the
spectrum averaged cross section. The results were:

σ2

[
27Al(n,p)

]
/ σ1

[
27Al(n,α)

]
= 4.797,

σ4

[
24Mg(n,p)

]
/ σ3

[
115In(n,n’)

]
= 0.009651.

(A-19)

Using the definition of Eq. (A-11) one can write such ratios as with

σi/σ j = Pi/P j (A-20)

with

Pi =
Ai

εi

1
Ni

∏

l

kl
i . (A-21)

The product of thekl
i -terms stands for corrective terms necessary to reduce the measured quantities to the

simple form of Eq. (A-11). The complete list of all uncertainty contributions and their correlations is
given in Table 2. The principle of such measurements is the parallel irradiation of two different foils in the
same neutron field and subsequent counting of the induced radioactivities. The experimentally determined
quantitiesPi of Eq. (A-21) are terms of the formσi φi . The unknown neutron flux density is eliminated by
forming the ratio.

Table 2: List of the Uncertainty Components (from Ref. [2])

Uncertainties (in %) due to Symbol Run - 1 Run - 2
27Al(n,α) 27Al(n,p) 115In(n,n’) 24Mg(n,p)

No. 1 2 3 4
Counting statistics Ai 1.6 2.0 1.0 3.2
Efficiency εi 1.1a 1.4a 2.2a 1.1a

Geometrical factor kG
i 2.0b 2.0b 2.0b 2.0b

Half life kT
i 0.2c - - 0.2c

Mass determination Ni 0.1d 0.1d 0.1 0.2
Back scattering kB

i 0.7e 1.0e 1.0e 0.7e

Irradiation and colling time kH
i 0.1 1.8 0.1 0.1

Gamma ray attenuation kS
i 0.5f 0.5 1.0 0.5f

Gamma ray intensity kJ
i 0.1g 1.0 1.0 0.1g

Others kR
i 1.0 1.0 1.0 1.0

a Cor(ε1, ε4) = 1.00, Cor(ε1, ε3) = Cor(ε3, ε4) = 0.80, Cor(ε1, ε2) = Cor(ε2, ε4) = 0.94, Cor(ε2, ε3) = 0.95
b,e Fully correlated
c, f ,g Fully correlated (same product nucleus)
d Fully correlated (same foil)

In Table 2 the uncertainties of theAi are regarded as being independent. I.e., uncertainties due to effects
such as the determination of photo-peak area or background subtraction, which would establish correla-
tions, were neglected compared with the counting statistics. The efficiency correlations (a) come from the

*3Extraction from Ref. [1] with minor modification.
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interpolation procedure used to determine the efficiency (more details on that are given in subsection E.4.2
of [1]). The correction of the geometrical factor is the same for all measurements, and so the corresponding
uncertainties show full correlation (b). The uncertainties of the back-scattering correction are different but,
as the source of the back-scattering (room walls) is the same, the quantities must be assumed to be fully
correlated (e). The measurements no. 1 and no. 2 are based on the mass determination of a common
aluminium foil, therefore the correlation is 100% (d).

The product nucleus,24Na, is the same for both reactions27Al(n,α) and24Mg(n,p), therefore all un-
certainty components depending on the common radioactive decay, half life and mass attenuation must be
fully correlated (c, f-g). Finally one should comment that uncertainty sources should normally be specified
better than under the title ”Others”, as given in Table 2.

We can express the deviation from the expected value of Eq. (A-21) as

dPi = (∂Pi)/(∂Ai)dAi + (∂Pi)/(∂εi)dεi + (∂Pi)/(∂Ni)dNi +
∑

l

(∂Pi)(∂kl
i )dkl

i , (A-22)

and therefore we can formally write Formally we can write

δPi = δAi − δεi − δNi +
∑

l

δkl
i (A-23)

As Table 2 shows no vertical correlations, the relative covariance of the measuredPi is

〈δPi δP j〉 = 〈δAi δA j〉 + 〈δεi δε j〉 + 〈δNi δN j〉 +
∑

l

〈δkl
i δk

l
j〉, (A-24)

i.e. we have no mixed terms between the components of Eq. (A-23).
What we want to determine is the covariance matrix of the ratios

R12 = P2/P1,
R34 = P4/P3.

(A-25)

With
δR12 = δP2 − δP1,
δR34 = δP4 − δP3,

(A-26)

we obtain
〈δR12 δR12〉 = 〈δP2 δP2〉 + 〈δP1 δP1〉− 2〈δP1 δP2〉,
〈δR34 δR34〉 = 〈δP4 δP4〉 + 〈δP3 δP3〉− 2〈δP3 δP4〉,
〈δR12 δR34〉 = 〈δP1 δP3〉 + 〈δP2 δP4〉− 〈δP1 δP4〉 −〈δP2 δP3〉.

(A-27)

We recognize from Eq. (A-27) that we need the complete relative covariance matrix of thePi to be able to
deduce the relative covariance matrix of the ratios. Since Table 2 contains the complete information about
the uncertainty components and correlations of thePi , the generation of this relative covariance matrix is
straightforward, as shown in Table 3. With the result of Table 3 we can determine the relative covariance
matrix (in %2) of the measured ratios shown in Eq. (A-27) as

( 〈δR12 δR12〉 〈δR12 δR34〉
〈δR34 δR12〉 〈δR34 δR34〉

)
=

(
13.72 −1.14
−1.14 17.87

)
. (A-28)

The final result is then given by:

Ratio Rel.Std.
Dev. %

σ2

[
27Al(n,p)

]
/ σ1

[
27Al(n,α)

]
= 4.797 3.70

σ4

[
24Mg(n,p)

]
/ σ3

[
115In(n,n’)

]
= 0.009651 A3-1

Correlation
Matrix(× 100)(

100
A3-2 100

) .
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Table 3: Combination of the Various Uncertainty Components

〈δAi δA j〉
i = 1

2
3
4



1.62

0 2.02

0 0 1.02

0 0 0 3.22


j = 1 2 3 4

+

〈δεi δε j〉

A3-3
2

A3-4 × 1.1× 1.4 A3-5
2

A3-6 × 1.1× 2.2 0.95× A3-7 × 2.2 A3-8
2

A3-9 × 1.1× 1.1 0.94× A3-10 × 1.1 0.80× 2.2× 1.1 A3-11
2



+

〈δkG
i δkG

j 〉

A3-12
2

A3-13
2

A3-14
2

A3-15
2

A3-16
2

A3-17
2

A3-18
2

A3-19
2

A3-20
2

A3-21
2



+

〈δkT
i δkT

j 〉

0.22

0 0
0 0 0

0.22 0 0 0.22


+

〈δNi δN j〉

A3-22
2

A3-23
2

A3-24
2

A3-25
2

A3-26
2

A3-27
2

A3-28
2

A3-29
2

A3-30
2

A3-31
2



+

〈δkB
i δk

B
j 〉

0.72

0.7× 1.0 1.02

0.7× 1.0 1.0× 1.0 1.02

0.7× 0.7 1.0× 0.7 1.0× 0.7 0.72


+

〈δkH
i δkH

j 〉

A3-32
2

A3-33
2

A3-34
2

A3-35
2

A3-36
2

A3-37
2

A3-38
2

A3-39
2

A3-40
2

A3-41
2



+

〈δkS
i δk

S
j 〉

0.52

0 0.52

0 0 1.02

0.52 0 0 0.52


+

〈δkJ
i δk

J
j 〉

0.12

0 1.02

0 0 1.02

0.12 0 0 0.12


+

〈δkR
i δk

R
j 〉

1.02

0 1.02

0 0 1.02

0 0 0 1.02



=

〈δPi δP j〉

9.58
6.16 16.46
6.64 7.93 13.86
6.00 6.15 6.64 17.29


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2 Weighted Average and Least-Squares

2.1 Basic Formulae

• For two quantitiesy1 andy2 related by the covariance matrixV, the off-diagonal weighted averagep
and its variance (∆p)2 are

* p =
(V22 − V12)y1 + (V11 − V12)y2

V11 + V22 − 2V12

* (∆p)2 =
V11V22 − V2

12

V11 + V22 − 2V12

• If parametersp0 (covarianceM0) for modelling (fitting) functiony ∼ f (p) are updated by experi-
mental data pointsy (covarianceV), updated fitting parametersp and its covarianceM are

* p = p0 + M0Gt(GM0Gt + V)−1(y− y0),

* M = M0 − M0Gt(GM0Gt + V)−1GM0,

wherey0= f (p0) andG is ∂ f /∂p|p=p0.

2.2 Peelle’s Pertinent Puzzle

Two experimental data pointsy1 = 1.5 andy2 = 1.0 were obtained for a physical quantity. They were
derived from count ratesA1 andA2 and a common normalization factorN by y1 = NA1 andy2 = NA2. The
fractional uncertainty∆A1/A1 = ∆A2/A2 = 10%, while the fractional uncertainty∆N/N = 20%.

If we treat both the count rate and normalization factor as uncorrelated between two measurements, the
fractional covariance matrix betweeny1 andy2 becomes

v =

 B1-1
0.00 B1-2

 , (B-1)

and the corresponding covariance matrix is

V =

 B1-3
0.0000 B1-4

 . (B-2)

Therefore the weighted-average becomesp = B1-5 and its standard deviation is∆p= B1-6 .
If we treat the count rate as uncorrelated while the normalization factor as fully correlated,

v =

(
0.05

B1-7 B1-8

)
, (B-3)

and the corresponding covariance matrix is

V =

(
0.1125
B1-9 B1-10

)
. (B-4)

Therefore the weighted-average becomesp = B1-11 and its standard deviation is∆p= B1-12 . Namely
the weighted-average becomes lower than both experimental data points if we consider the correlation
property of the normalization factor - Peelle’s Pertinent Puzzle (PPP) found by Robert Peelle (ORNL) in
1987 [4].
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2.3 Evaluation of Spectrum-Averaged Cross Sections*4

We assume that two independent experiments exist (performed by different experimenters) of cross sections
averaged over a Cf-252 neutron spectrum. Our aim is to combine both these data sets to obtain the most
consistent “best” set of data. The first experiment comprises the data of two reactions:

Table 4: Experiment No. 1

Neutron Spectrum-Averaged Rel.Std.Dev. Correlation

Reaction Cross Section % Matrix (× 100)
235U(n,f) 1215 mb 1.79 100
239Pu(n,f) 1790 mb 2.26 59 100

In the second experiment the cross section of the reaction235U(n,f) is measured twice (using a slightly
different method in the second case), and, instead of the absolute cross section of239Pu(n,f) a ratio mea-
surement relative to235U(n,f) was performed.

Table 5: Experiment No. 2

Neutron Reaction Spectrum-Averaged Rel.Std.Dev. Correlation

(Ratio) Cross Section (Ratio) % Matrix (× 100)
235U(n,f) 1205 mb 2.25 100
235U(n,f) 1203 mb 3.02 80 100
239Pu(n,f)/235U(n,f) 1.500 1.33 −19 −5 100

A first glance at Table 5, makes one astonished why an average value of the first and second measure-
ment was not taken. In principle it is not difficult to calculate such an average (also with regard to existing
covariances). However, an average can only be formed if no further correlations to any other data exist of
the data contributing to the average. If we look at Table 5 we recognize correlations between the first as
well as the second data and the third data. In such a case the average would ignore the existing correlation
to the third data. This means that an average, which is (as will be shown later) equivalent with the least
squares procedure, cannot be calculated for a subset of the total data contributing to the least squares.

Thus the given example demonstrates two important aspects of the data evaluation process:

a) the combination of data of the same type which have been determined more than once

b) the connection between absolute and relative cross section data.

In our example we regard the data of the first experiment (Table 4) as an initial estimates of the final data
p0, i,e.:

p0 =

(
σ1 = 1215
σ2 = 1790

)
and M0 =

(
473.0
B3-1 B3-2

)
, (B-5)

*4Extraction from Ref. [1] with minor modification.
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and the data of the second experiment (Table 5) as “experimental datay”:

y =


1205
1203
1.500

 with V =


7.351E+ 2

B3-3 B3-4
B3-5 B3-6 B3-7

 (B-6)

The vectory0 which represents the fit function at the parameter estimatesp0 is then:

y0 =


σ1 = 1215
σ1 = 1215
σ2/σ1 = 1.473

 , (B-7)

and theG matrix is given by:

G =


∂σ1/∂σ1 ∂σ1/∂σ2

∂σ1/∂σ1 ∂σ1/∂σ2

∂(σ2/σ1)/∂σ1 ∂(σ2/σ1)/∂σ2

 =


1 0
1 0

−σ2/σ
2
1 1/σ1

 . (B-8)

The first column of Eq. (B-8) corresponds to the first parameter,σ1, and the second column to the second
parameter,σ2, while the rows correspond to the data 1 to 3. The data no. 1 and no. 2 are identical (within
their uncertainties) with the first parameter, so we have unity as both first elements of the first column and a
corresponding zero in the second column. Data no. 3 (the ratio measurement) depends on both parameters
which is expressed in the corresponding derivatives in row 3, columns 1 and 2.

Inserting the results of Eq. (B-5) - (B-8) in the least squares formalism, we obtain as a final result:

p =

(
1210
1805

)
and M =

(
285.0
349.0 789.9

)
(B-9)

Table 6: Evaluated Data

Neutron Spectrum-Averaged Rel.Std.Dev. Correlation Matrix

Reaction Cross Section % (× 100)
235U(n,f) B3-8 mb B3-10 B3-12
239Pu(n,f) B3-9 mb B3-11 B3-13 B3-14
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2.4 Carbon Resonance Energy by Two TOF Measurement Data [5]

The energy of the 2080 keV carbon resonance was measured at Harwell by James [6]. The neutron res-
onance energyEi (eV) obtained by thei-th run (i = 1,2) is related with the flight path lengthLi (m) and
time-of-flight ti (µsec) by

Ei(Li , ti) = (72.3Li/ti)
2. (B-10)

Two flight path lengths (L1 and L2) are considered as independent, while time-of-flight (t1 and t2) are
decomposed to the uncorrelated part (tc1 andtc2) and fully correlated part (tm) ast1 = tm+tc1 andt2 = tm+tc2.
The experimental data from the measurement are summarized in Table 7. According to the error propagation

Table 7:

Exp.No. Li(m) ∆Li(m) ∆tm(µsec) ∆tci(µsec) Ei (eV)

1 100 0.003 0.40×10−3 0.25×10−3 2078.31×103

2 50 0.006 0.40×10−3 0.50×10−3 2079.20×103

formula for general functions, the covariance betweenEi andE j (i, j = 1,2) is given by

V11 = (∂E1/∂L1)2 (∆L1)2 + (∂E1/∂t1)2 (∆t1)2, (B-11)

V22 = (∂E2/∂L2)2 (∆L2)2 + (∂E2/∂t2)2 (∆t2)2, (B-12)

V12 = (∂E1/∂t1) (∂E2/∂t2) Vt1t2. (B-13)

Note that all terms involving correlation between the flight path length (L) and time-of-flight (t) become
zero. These partial derivatives can be calculated by using Eq. (B-10), and we obtain the following covari-
ances:

v11 = B2-1 ( f 2
L1

+ f 2
t1), (B-14)

v22 = B2-2 ( f 2
L2

+ f 2
t2), (B-15)

v12 = B2-3 vt1t2, (B-16)

where f 2
Li

= (∆Li/Li)2, f 2
ti = (∆ti/ti)2 = (∆ti)2Ei/(72.3Li)2, vt1t2 = Vt1t2/(t1t2) = Vt1t2

√
E1E2/(72.32L1L2).

Two time-of-flight t1 andt2 are linear combinations oftm, tc1 andtc2. Following the error propagation
formula for linear combination, the covarianceVt1t1 = (∆t1)2, Vt2t2 = (∆t2)2 andVt1t2 are

Vt1t1 = Vtmtm + Vtc1tc1 = (∆tm)2 + (∆tc1)2, (B-17)

Vt2t2 = Vtmtm + Vtc2tc2 = (∆tm)2 + (∆tc2)2, (B-18)

Vt1t2 = Vtmtm = (∆tm)2. (B-19)

From these equations and Table 7, we can calculate the fractional variances of the resonance energies
v = V/(E1E2):

v =

(
3.90× 10−8

B2-4 B2-5

)
, (B-20)

which corresponds to

V =

(
0.168
B2-6 B2-7

)
keV2. (B-21)

The off-diagonal weighted average of two resonance energiesE = B2-8 keV, and its standard deviation

∆E = B2-9 keV. This average is lower than bothE1 andE2.
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3 Usage of SOK (Simultaneous Evaluation on KALMAN)*5

The SOK code requires :

1. experimental data (UNIT 10), data error (UNIT 11), and correlation matrices (UNIT 12)

2. prior parameters (UNIT 50) and their uncertainties (UNIT 51)

3. control data (UNIT 5)

where the UNITN is the FORTRAN logical unit number for I/O. The correlation file (UNIT 12) is optional.
In this section, a data file allocated to UNITN is called as “fort.n”.

3.1 Description of Experimental Data

An experimental database is separated into three files — cross section data (En, σ), their uncertainties (En,
∆σ), and their correlation matrix. These three files are allocated to the FORTRAN logical UNITs of 10, 11,
and 12, respectively.

One measurement contains several data points. These cross section data and their errors are stored with
the following formats:

Cross section Data File – fort.10

(A43,I5) TITLE, ND

(6E11.4) (X(I),Y(I),I=1,ND)

Data Error File – fort.11

(43X,I5) ND

(6E11.4) (DUMMY,Z(I),I=1,ND)

whereTITLE is an arbitrary text,ND is the number of energy points,X, Y, andZ are the energy, cross section,
and its uncertainty. The units of energies and cross sections are arbitrary, but the same units must be used
for all experimental data. IfZ is positive, the uncertaintyZ is a relative error. IfZ is negative, this value is
interpreted as an absolute error. For example,0.03 is 3%, andZ=−0.1 represents± 0.1.

A correlation matrix of the experimental data is read from UNIT 12.

Correlation File – fort.12

(43X,I5) NC

DO I=1,NC

(12F6.3) (V(I*(I-1)/2+J),J=1,I)

whereV is the correlation (−1 ≤ V ≤ 1), andNC is the number of energy points. UsuallyNC must be the

same asND, but one can omit the correlation data by settingNC=0.

A set of data describes one measurement of a reaction type. When there are several measurements of

various reaction types, those data are stored sequentially in fort.10, 11, and 12. The order of experimental

*5Extraction from Ref. [7] with minor modification.
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data is arbitrary, but the same order should be used for the data, error, and correlation files. The order of

experimental data is defined in the control data given in UNIT 5. When there are six experimental data sets

(three measurements of reactionA, two of reactionB, and one ofC), the structure of the experimental data

files becomes as follows.

Data number 1 of ReactionA
Data number 2 of ReactionA
Data number 3 of ReactionA
Data number 1 of ReactionB
Data number 2 of ReactionB
Data number 1 of ReactionC

The followings are examples of the data files which contain three measurements.

----*----1----*----2----*----3----*----4----*----5----*----6----*----7
1: Data 1 5
2: 1.4700E+01 6.7300E-01 1.6000E+01 4.5100E-01 1.7000E+01 3.6600E-01
3: 1.8000E+01 2.3400E-01 1.9000E+01 2.7300E-01
4: Data 2 14
5: 6.4200E+00 6.0000E-02 6.8000E+00 2.7000E-01 6.9600E+00 5.4000E-01
6: 7.0000E+00 4.7000E-01 7.2000E+00 5.1000E-01 7.2500E+00 7.9000E-01
7: 7.4500E+00 8.9000E-01 7.5800E+00 9.8000E-01 7.8200E+00 1.1100E+00
8: 7.8800E+00 1.0700E+00 8.4900E+00 1.2100E+00 8.9600E+00 1.3900E+00
9: 9.4800E+00 1.4600E+00 9.9700E+00 1.4900E+00

10: Data 3 10
11: 6.8900E+00 2.3300E-01 7.4100E+00 6.0400E-01 7.6700E+00 8.1100E-01
12: 7.9300E+00 8.7900E-01 8.1800E+00 9.9900E-01 8.4400E+00 1.0720E+00
13: 8.6900E+00 1.0290E+00 8.9400E+00 1.1560E+00 9.4400E+00 1.1710E+00
14: 9.9300E+00 1.2320E+00

----*----1----*----2----*----3----*----4----*----5----*----6----*----7
1: Error 1 5
2: 1.4700E+01 6.1000E-02 1.6000E+01 1.8000E-01 1.7000E+01 2.0000E-01
3: 1.8000E+01 3.6000E-01 1.9000E+01 3.2000E-01
4: Error 2 14
5: 6.4200E+00 3.0000E-02 6.8000E+00 2.0000E-02 6.9600E+00 4.0000E-02
6: 7.0000E+00 3.0000E-02 7.2000E+00 4.0000E-02 7.2500E+00 5.0000E-02
7: 7.4500E+00 5.0000E-02 7.5800E+00 5.0000E-02 7.8200E+00 5.0000E-02
8: 7.8800E+00 5.0000E-02 8.4900E+00 5.0000E-02 8.9600E+00 5.0000E-02
9: 9.4800E+00 5.0000E-02 9.9700E+00 5.0000E-02

10: Error 3 10
11: 6.8900E+00-3.9000E-02 7.4100E+00-5.4000E-02 7.6700E+00-6.2000E-02
12: 7.9300E+00-4.8000E-02 8.1800E+00-4.1000E-02 8.4400E+00-5.2000E-02
13: 8.6900E+00-6.0000E-02 8.9400E+00-4.2000E-02 9.4400E+00-4.6000E-02
14: 9.9300E+00-4.4000E-02
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----*----1----*----2----*----3----*----4----*----5----*----6----*----7
1: Correlation 1 5
2: 1.000
3: 0.111 1.000
4: 0.098 0.033 1.000
5: 0.055 0.019 0.016 1.000
6: 0.062 0.022 0.019 0.010 1.000
7: Correlation 2 0
8: Correlation 3 10
9: 1.000

10: 0.060 1.000
11: 0.070 0.132 1.000
12: 0.098 0.184 0.216 1.000
13: 0.131 0.245 0.287 0.402 1.000
14: 0.111 0.208 0.243 0.340 0.452 1.000
15: 0.092 0.173 0.202 0.283 0.376 0.318 1.000
16: 0.148 0.277 0.324 0.454 0.604 0.511 0.425 1.000
17: 0.137 0.256 0.300 0.420 0.558 0.472 0.393 0.631 1.000
18: 0.151 0.282 0.330 0.461 0.614 0.520 0.432 0.694 0.642 1.000

3.2 Description of Prior Parameters

The SOK code reads prior cross sections and their uncertainties from UNIT 50 and 51.

Prior Cross Section File – fort.50

(A43,I5) TITLE, NE

(6E11.4) (E0(I),P0(I),I=1,NE)

Prior Cross Section Error File – fort.51

(A43,I5) TITLE, NE

(6E11.4) (DUMMY,PE(I),I=1,NE)

whereTITLE is an arbitrary text,NE is the number of energy points,E0 andP0 are an energy and a cross

section, andPE is a prior uncertainty. The uncertainties are relative errors. The units of energies and cross

sections must be the same as those of the experimental data read from UNITs 10 and 11.

Currently there is no way to give a prior covariance of the cross section. The uncertainties of the prior

cross sections are regarded as uncorrelated.

The above data describe one type of cross sections. When several cross sections are evaluated simulta-

neously, these data are concatenated and stored in fort.50 and 51. One can use different energy points for

each cross section type. The number of cross sections is calculated automatically, and it is referred to as

NKIND in the code. The order of the cross sections in these files is used to specify the reaction type. These

numbers (from 1 toNKIND) are an index of each reaction. The maximal number ofNKIND is 99.

The following examples present the data files which contain two cross section types (NKIND=2). The

prior uncertainties assumed are 50% for all.
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----*----1----*----2----*----3----*----4----*----5----*----6----*----7
1: Inelastic 1st level 24
2: 1.0000E-02 6.5979E+00 1.0000E-01 2.7476E+00 5.0000E-01 1.9889E+00
3: 7.5000E-01 1.6267E+00 1.0000E+00 1.4527E+00 1.2500E+00 1.3435E+00
4: 1.5000E+00 1.2662E+00 1.7500E+00 1.2078E+00 2.0000E+00 1.1615E+00
5: 2.2500E+00 1.0919E+00 2.5000E+00 1.0162E+00 3.0000E+00 8.3853E-01
6: 4.0000E+00 5.9353E-01 5.0000E+00 4.1736E-01 6.0000E+00 3.2365E-01
7: 8.0000E+00 1.7176E-01 1.0000E+01 1.0063E-01 1.2000E+01 3.4596E-02
8: 1.3000E+01 2.4942E-02 1.4000E+01 1.7562E-02 1.5000E+01 1.2131E-02
9: 1.6000E+01 8.2704E-03 1.8000E+01 3.7694E-03 2.0000E+01 1.7137E-03

10: Inelastic 2nd level 24
11: 1.0000E-02 0.0000E+00 1.0000E-01 0.0000E+00 5.0000E-01 1.3546E-01
12: 7.5000E-01 3.6810E-01 1.0000E+00 4.4806E-01 1.2500E+00 4.8766E-01
13: 1.5000E+00 5.1221E-01 1.7500E+00 5.2979E-01 2.0000E+00 5.4338E-01
14: 2.2500E+00 5.3302E-01 2.5000E+00 5.1264E-01 3.0000E+00 4.5885E-01
15: 4.0000E+00 3.5950E-01 5.0000E+00 2.7149E-01 6.0000E+00 2.2053E-01
16: 8.0000E+00 1.2464E-01 1.0000E+01 7.5152E-02 1.2000E+01 4.3703E-02
17: 1.3000E+01 3.1578E-02 1.4000E+01 2.2305E-02 1.5000E+01 1.5467E-02
18: 1.6000E+01 1.0586E-02 1.8000E+01 4.8735E-03 2.0000E+01 2.2361E-03

----*----1----*----2----*----3----*----4----*----5----*----6----*----7
1: Inelastic 1st level 24
2: 1.0000E-02 5.0000E-01 1.0000E-01 5.0000E-01 5.0000E-01 5.0000E-01
3: 7.5000E-01 5.0000E-01 1.0000E+00 5.0000E-01 1.2500E+00 5.0000E-01
4: 1.5000E+00 5.0000E-01 1.7500E+00 5.0000E-01 2.0000E+00 5.0000E-01
5: 2.2500E+00 5.0000E-01 2.5000E+00 5.0000E-01 3.0000E+00 5.0000E-01
6: 4.0000E+00 5.0000E-01 5.0000E+00 5.0000E-01 6.0000E+00 5.0000E-01
7: 8.0000E+00 5.0000E-01 1.0000E+01 5.0000E-01 1.2000E+01 5.0000E-01
8: 1.3000E+01 5.0000E-01 1.4000E+01 5.0000E-01 1.5000E+01 5.0000E-01
9: 1.6000E+01 5.0000E-01 1.8000E+01 5.0000E-01 2.0000E+01 5.0000E-01

10: Inelastic 2nd level 24
11: 1.0000E-02 5.0000E-01 1.0000E-01 5.0000E-01 5.0000E-01 5.0000E-01
12: 7.5000E-01 5.0000E-01 1.0000E+00 5.0000E-01 1.2500E+00 5.0000E-01
13: 1.5000E+00 5.0000E-01 1.7500E+00 5.0000E-01 2.0000E+00 5.0000E-01
14: 2.2500E+00 5.0000E-01 2.5000E+00 5.0000E-01 3.0000E+00 5.0000E-01
15: 4.0000E+00 5.0000E-01 5.0000E+00 5.0000E-01 6.0000E+00 5.0000E-01
16: 8.0000E+00 5.0000E-01 1.0000E+01 5.0000E-01 1.2000E+01 5.0000E-01
17: 1.3000E+01 5.0000E-01 1.4000E+01 5.0000E-01 1.5000E+01 5.0000E-01
18: 1.6000E+01 5.0000E-01 1.8000E+01 5.0000E-01 2.0000E+01 5.0000E-01

3.3 Description of Input Data

The input data controls the calculational flow and the sequence of the experimental data in fort.10, 11, and

12. Since the experimental database contains several measurements with the different reaction types, the

database is divided into several blocks with the same reaction. The sequence of the blocks and the order of

the measurements within the block are defined in this input file.

(A80) TITLE

(4I5) NREAC,KCOVEX,KCTL1,KCTL2

DO I=1,NREAC

(14I5) IEXP(I),NMSUR

(7E10.3) (EW(J),J=1,NMSUR)

16



whereTITLE is the title of the calculation,NREAC is the number of blocks in the experimental database.

The indexIEXP tells a type of reaction andNMSUR is the number of measurements in the block.

When the experimental database has the following structure, this database is divided into three blocks

— reaction typesA, B,andC — thenNREAC=3. Each block contains four, three, and two measurements,

thenNMSUR=4 for the reaction typeA, NMSUR=3 for B, andNMSUR=2 for C.

Data number 1 of ReactionA
Data number 2 of ReactionA
Data number 3 of ReactionA
Data number 4 of ReactionA
Data number 1 of ReactionB
Data number 2 of ReactionB
Data number 3 of ReactionB
Data number 1 of ReactionC
Data number 2 of ReactionC

An integer number called an index is used to identify the reaction type. The index is the order of the

cross sections in fort.50 and 51. The first cross section in those files has the index of “1”, and the second

one is “2”, and so on. If the experimental data is a ratio measurement which corresponds to a ratio of the

indexa to b, this index is given as 100× a + b.

Let us consider an example. In the case of evaluation of235U and238U fission cross sections, fort.50 and

51 contain their prior values in this order. The index for235U is 1, while238U is 2, thenNKIND becomes 2.

If the experimental database (fort.10, 11, and 12) contains one measurement which is a fission cross section

ratio of 238U to 235U, the index of the measurementIEXP becomes 201, and the number of reaction block

becomesNREAC=1.

One can manipulate a weight of each measurement byEW. The uncertainties of the corresponding ex-

perimental data are multiplied by the value ofEW. If EW=0, the measurement is ignored. UsuallyEW is

unity.

KCOVEX, KCTL1, andKCTL2 are the flags. IfKCOVEX=0, the SOK code does not read correlation data,

otherwise it reads correlation data from UNIT 12. Aχ2 test can be done with the flagKCTL1. The SOK

code calculates theχ2 value whenKCTL1=N. The cross sections and their uncertainties are read from UNIT

N andN + 1 with the same format as the data in fort.50 and 51. Therefore, ifKCTL1=50, it gives theχ2

value for the prior cross sections. IfKCTL2=1, smoothly interpolated posterior cross sections are generated

by means of the cubic-spline interpolation.

An example of the input data is as follows:

----*----1----*----2----*----3----*----4----*----5----*----6----*----7
1: SOK INPUT DATA
2: 3 1 0 1
3: 1 4
4: 1.000E+00 1.000E+00 1.000E+00 1.000E+00
5: 2 3
6: 1.000E+00 0.0 1.000E+00
7: 102 2
8: 1.000E+00 1.000E+00
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The number of measurements is 9 (= 4+ 3+ 2), and there are three blocks (NREAC=3). The first block is

a type “1”, and there are four measurements. The next block is a type “2”. Three measurements are stored

in the file, but the second measurement is ignored. The last block contains two measurements, those are the

ratios of the cross sections “1” to “2”.

3.4 Output

The SOK code printsχ2 values and the number of data points for each measurement during execution,

and finally it prints the posterior cross sections and their uncertainties. The following is an example of the

output.

----*----1----*----2----*----3----*----4----*----5----*----6----*----7
1: Simultaneous Evaluation for JENDL-3.3
2: NUMBER OF DATA BLOCKS 6
3: NUMBER OF SPLINE KNOTS 211
4:
5: # 21463002 P.H.White 1965 6
6: *** EXP. DATA IGNORED ********
7: CROSS SECTION :U233FIS
8: SQ.NO.: 1 REACT.: 1 POINTS: 0 SUM UP: 0
9: PARTIAL CHI SQ: 0.00000E+00 CUMULATIVE : 0.00000E+00

10:
11: # 21195002 P.H.White 1967 4
12: CROSS SECTION :U233FIS
13: SQ.NO.: 2 REACT.: 2 POINTS: 4 SUM UP: 4
14: PARTIAL CHI SQ: 9.14181E-06 CUMULATIVE : 9.14181E-06

...
812: 10563002 Behrens 107
813: CROSS SECTION :PU241FIS U235FIS
814: SQ.NO.: 162 REACT.: 3 POINTS: 92 SUM UP: 4661
815: PARTIAL CHI SQ: 1.06892E+02 CUMULATIVE : 1.56656E+04
816:
816: CHI-SQUARE TEST ! CHI - S = 1.56656E+04
817: DEGREE OF FREEDOM = 4450 RATIO = 3.52035E+00
818:
819: PARAMETER INITIAL FINAL ERROR
820:
821: 1 2.0000E-02 2.0520E+00 2.2717E+00 1.2846E+00 ( % )
822: 2 3.0000E-02 2.0520E+00 2.0075E+00 8.5634E-01 ( % )
823: 3 6.0000E-02 1.8110E+00 1.7804E+00 7.4145E-01 ( % )

...
1030: 209 1.7500E+01 2.3819E+00 2.3451E+00 2.1581E+00 ( % )
1031: 210 2.0000E+01 2.3000E+00 2.1893E+00 2.7890E+00 ( % )
1032: 211 2.2000E+01 2.3000E+00 2.3086E+00 5.8164E+00 ( % )

The printed errors of the parameters are multiplied by the factor
√
χ2/(n−m), but thisχ2 value is

approximate. To calculate the exactχ2 value, repeat the same calculation butKCTL1=20.

The other information is written on files.
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UNIT contents
14 covariance matrices of the evaluated cross sections
15 evaluated cross sections and their errors
17 cubic-spline interpolated cross sections (ifKCTL2=1)
20 evaluated cross sections (the same format as fort.50)
21 evaluated cross section errors (the same format as fort.51)

60+I experimental data of reaction block “I” (I=1,NREAC)
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A1 A2 A3 B1 B2 B3
1 0.0009 0.5 4.23 0.05 4 519.1
2 0.0004 0.8 -7 0.05 4 1636.5
3 0.0029 1.0 1.1 0.1125 4 7.880E+2
4 0.058 0.5 0.94 0.0500 5.09× 10−8 1.320E+3
5 0.054 0.9 1.4 1.154 3.19× 10−7 -1.028E-1
6 0.0013 0.3 0.80 0.186 0.220 -3.624E-2
7 0.0063 2.61 1.4 0.04 1.379 3.980E-4
8 0.0025 3.14 2.2 0.05 2078.27 1210
9 0.0025 2.40 1.00 0.0600 0.41 1805
10 0.0029 1.00 0.94 0.0500 1.40
11 1.00 0.83 1.1 0.882 1.56
12 0.80 1.00 2.0 0.218 100
13 0.80 0.80 2.0 74
14 1.00 0.87 2.0 100
15 0.0013 1.00 2.0
16 2.0
17 2.0
18 2.0
19 2.0
20 2.0
21 2.0
22 0.1
23 0.1
24 0.1
25 0
26 0
27 0.1
28 0
29 0
30 0
31 0.2
32 0.1
33 0
34 1.8
35 0
36 0
37 0.1
38 0
39 0
40 0
41 0.1
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