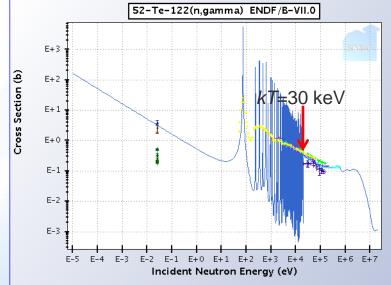
Calculations of Nuclear Astrophysics and Californium Neutron Cross Section Uncertainties using ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-Fidelity Covariances

B. Pritychenko National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

a passion for discovery

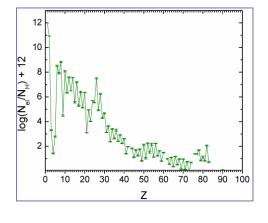
- Slow neutron capture takes place in Red Giants and AGB stars, where neutron temperature (*kT*) varies from 8 to 90 keV.
- The capture time of the *s*-process is ~1 year.
- ENDF/B-VII.0 release.

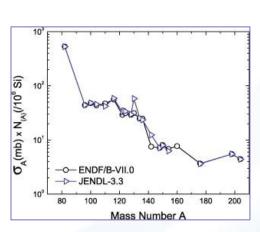
Brookhaven Science Associates

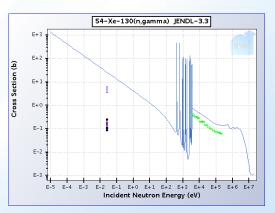

Maxwelian-averaged Cross Sections

 s-process nucleosynthesis Maxwellian-averaged cross sections (MACS) can be expressed as

$$\sigma^{Maxw}(kT) = \frac{2}{\sqrt{\pi}} \frac{\left(\frac{m_1}{(m_1 + m_2)}\right)^2}{\left(kT\right)^2} \int_0^\infty \sigma(E_n^L) E_n^L \exp\left(-\frac{aE_n^L}{kT}\right) dE_n^L$$

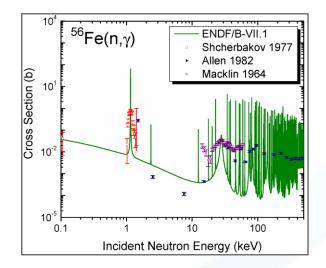

where k and T are the Boltzmann constant and temperature of the system.


• Commonly accepted: kT = 30 keV.

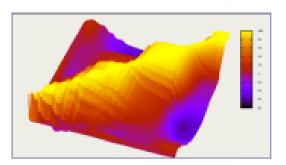


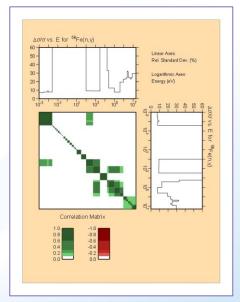
Stellar Nucleosynthesis

- Solar system abundances.
- $\sigma_A N_{(A)} = \sigma_{A-1} N_{(A-1)} = constant.$
- B. Pritychenko et *al.*, ADNDT **96**, 645 (2010).



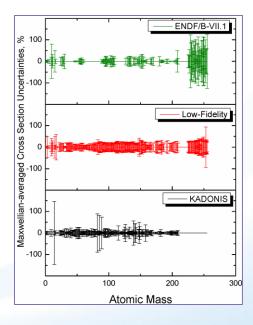
Evaluated Nuclear Data File (ENDF)


- First nuclear database in direct response to nuclear industry data needs: theory + experiment (resonance parameters).
- 423 neutron materials (isotopes) in ENDF/B-VII.1.

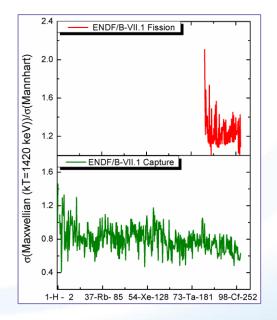


Nuclear Data Covariances

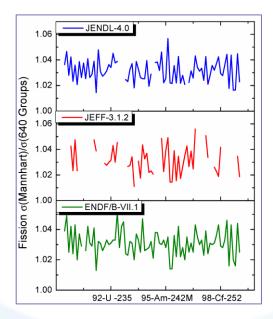
- Wikipedia: In probability theory and statistics, covariance is a measure how two random variables change together.
- Nuclear data covariance plots are very beautiful.
- What are physics implications of nuclear data covariances???
- Cross section uncertainties can be extracted using the error propagation formalism.

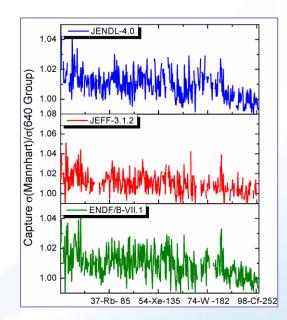


Maxwellian-Averaged Cross Section Uncertainties


- Further interactions with the fundamental and applied science communities have initiated work on the extended list of integral values and their uncertainties.
- Maxwellian-averaged neutron capture cross section, kT=30 keV, uncertainties for ENDF/B-VII.1 library, Low-Fidelity project and KADoNiS database.
- B. Pritychenko & S.F. Mughabghab, NDS 113, 3120 (2012).

²⁵²Cf Spectrum Neutron Cross Sections

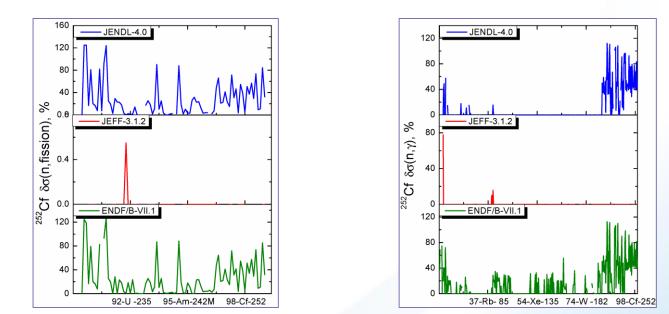

- We have to extend the scope to the MeV region using ²⁵²Cf spectrum.
- The ratio of calculated ENDF/B-VII.1 californium spectrum neutron cross sections using Maxwellian, kT=1420 keV, and Mannhart spectra.
- Mannhart spectra should be used instead of Maxwellian.



²⁵²Cf Spectrum Neutron Cross Sections

- Presently, the original and 640-group representations of Mannhart evaluation are frequently considered.
- Doppler-broadened linear files at T=293.6 K result in slightly different cross section values.

²⁵²Cf Spectrum Neutron Cross Section and their Uncertainties


- Following the nuclear dosimetry example, ²⁵²Cf spectrum, cross sections for major evaluated libraries: ENDF/B-VII.1, JEFF-3.1.2, and JENDL-4.0 have been produced using the 640-group format.
- These values are in agreement with CIELO:
 M.B. Chadwick et *al.*, NDS **118**, 1 (2014) and EXFOR data.

Material	ENDF/B-VII.1 (barns)	JEFF-3.1.2 (barns)	JENDL-4.0 (barns)	EXFOR (barns)
88-R.a-223 88-R.a-224 88-R.a-225	5.485E-2±8.293E-4	5.485E-2±8.293E-4	5.485E-2±8.293E-4	
88-Ra-226 89-A - 225 89-A - 226	3.741E-4±5.990E-6 3.505E-2±4.369E-2 3.478E-2±4.126E-2	3.741 E-4±5.990 E-6	3.740E-4±5.988E-6 3.503E-2±4.379E-2 3.472E-2±4.337E-2	
89-Ac-227 90-Th-227	1.253E-2±2.089E-3 2.968E-1±2.358E-1	1.316E-2±1.755E-4 4.747E-1±7.820E-3	$1.252E-2\pm 2.082E-3$	
90-Th-228 90-Th-229	3.768E-1±7.536E-2 3.433E-1±5.660E-2	1.073E-1±1.443E-3 4.747E-1±7.819E-3	3.757E-1±7.561E-2 3.431E-1±5.780E-2 2.042E-1±1.594E-2	
90-Th-230 90-Th-231 90-Th-232	2.044E-1±1.592E-2 1.977E-1±1.630E-1 7.582E-2±1.824E-3		2.042E-1±1.594E-2 1.977E-1±1.623E-1 8.170E-2±6.032E-3	8470E-2±4.900E-3
90-Th-232 90-Th-233 90-Th-234	9.916E-2±9.237E-2 3.542E-2±4.487E-2	1.084E-1±1.850E-3		8.470 E-2E4.900E-3
91-Pa-229 91-Pa-230	1.939E+0±4.916E-1 1.782E+0±3.484E-1		1.938E+0±4.862E-1 1.781E+0±3.463E-1	
91-Pa-231 91-Pa-232	7.667E-1±1.031E-2 9.581E-1±2.711E-1	9.843E-1±1.330E-2 1.082E+0±1.739E-2	$8.442E-1\pm 2.385E-2$ $9.572E-1\pm 2.804E-1$	9.700 E-1±4.500E-1
91-Pa-233 92-U -230	2.384E-1±3.065E-3 2.377E+0±5.504E-1 2.162E+0±3.938E-1		2.463E-1±5.697E-2 2.375E+0±5.416E-1 2.161E+0±3.900E-1	
92-U -231 92-U -232 92-U -233	2.038E+0±6.916E-2 1.867E+0±3.478E-2	2.442E+0±3.590E-2 1.883E+0±3.130E-2	2.038E+0±6.916E-2 1.879E+0+2.949E-2	1.947E+0±3.100E-
92-U -234 92-U -235	1.186E+0±2.199E-1 1.209E+0±2.000E-2	1.171E+0±1.591E-2 1.203E+0±1.913E-2	1.211E+0+3.167E-2 1.202E+0+2.162E-2	1.266E+0±1.823E-
92-U -236 92-U -237 92-U -238	5.873E-1±1.371E-1 6.320E-1±9.515E-3 3.117E-1±4.753E-3	6.059E-1±7.922E-3 8.719E-1±1.339E-2 3.102E-1±4.006E-3	5.801 E-1±9.429 E-3 5.874 E-1±8.340 E-2 3.094 E-1±4.815 E-3	3.109E-1±1.400E-3
92-U -239 92-U -240	3.730E-1±5.929E-3 1.953E-1±2.549E-3	0.10112-114.00012-0	0.00112121.01012-0	0.10912-121.4002-1
92-U -241 93-Np-234	1.881E-1±2.812E-3 2.436E+0±4.196E-1		2.436E+0+4.243E-1	
93-Np-234 93-Np-235 93-Np-236 93-Np-237	2.173E+0±5.521E-1 2.062E+0±3.925E-1 1.339E+0±4.624E-2 1.431E+0±1.659E-1	1.878E+0±2.709E-2 1.891E+0±2.975E-2	2.173E+0±3.495E-1 2.062E+0±3.888E-1	1 449 2 10 19 900 2
93-Np-238 93-Np-238 93-Np-239	1.339E+0±4.624E-2 1.431E+0±1.659E-1 5.923E-1±5.151E-1	1.453E+0±2.560E-2	1.430E+0±1.645E-1 5.916E-1±5.341E-1	1.442E+0±2.300E-
94-Pu-236 94-Pu-237	2.324E+0±2.389E-1 2.399E+0±6.080E-1 1.925E+0±4.890E-2	2.075E+0±3.180E-2 2.954E+0±4.526E-2	2.324E+0±2.390E-1 2.400E+0±6.024E-1	
94-Pu-238 94-Pu-239	1.925E+0±4.890E-2 1.774E+0±2.865E-2	1.973E+0±2.816E-2 1.774E+0±2.653E-2	1.944E+0±7.337E-2 1.777E+0±2.654E-2	1.947E+0±3.100E-

²⁵²Cf Cross Section Uncertainties Analysis

 The ENDF, JEFF, and JENDL calculated californium spectrum neutron fission and capture cross section uncertainties using the 640-group Mannhart spectrum.

ENDF/B-VII.1 Maxwellian and ²⁵²Cf Cross Section Uncertainties

The summary of reanalysis of the previous Maxwellian data (kT=30 keV) and analysis of the current Mannhart spectrum uncertainties for ENDF/B-VII.1 library.

Reaction	Maxwellian spectrum, kT =30 keV		Mannhart spectrum [10]	
	Uncertainty <1%	Uncertainty >100%	Uncertainty <1 %	Uncertainty >100%
(n,fission)	²³⁵ U, ^{239,240} Pu	225,226 _{Ac} , ²³³ Th, 229 Pa, ²³⁵ Np, ²⁴⁵ Pu, 230 Cm, ^{245,230} Bk, 245,245,250,254 Cf, 251,253,255 Es	235,238U, 239,240Pu	225,226 Ac, 23 *Th
(n,γ)	5	²²⁹ Pa, ²³⁷ Pu, ²⁴⁹ Cm, ²⁵⁰ Bk, ²⁵⁵ Fm	⁵² Cr	229 Pa, 231 U 23 \$ 235,236 Np, 237 Pu

Cross Section Uncertainties Recommendations

- Absolute cross section values for linearized files are sensitive to the changes of Mannhart evaluation group structure. Calculated values are model dependent and may vary within 1-5%.
- Nuclear astrophysics and energy applications require covariances for all ENDF materials.
- Realistic covariances are needed:
 - Covariance matrices that result in >100% cross section uncertainties should be avoided, such large uncertainties are not very useful for application development.
 - Covariance matrices that result in <1% cross section uncertainties are not realistic; strong contradiction with the best experiments.
 - Presently, covariance matrices produce wide variations of cross section uncertainties within 0.5-120% range. This spread should be kept within 3-50% range.
- Multiple MF=33 covariance matrices can be confusing.

CIELO/EXFOR Cooperation

- NRDC 2014 Meeting, May 6-9, 2014.
- What EXFOR community can do for CIELO and covariances ???
- How both communities can interact ???

Conclusion & Outlook

- Covariances are important for application development.
- Maxwellian-averaged cross section uncertainties have been reanalyzed.
- ²⁵²Cf cross sections and their uncertainties have been calculated.
- ²⁵²Cf cross section uncertainties have been analyzed.
- Recommendations for covariances have been produced using the application development requirements.
- Further work may needed a stronger interaction with EXFOR and experimental communities.

s-process in Tellurium

• $\sigma_A N_{(A)} = \sigma_A N_{(A)}$ product ratios for neutron capture in ^{122,123,124}Te isotopes, B. Pritychenko et *al.*, ADNDT **96**, 645 (2010).

Data source ENDF/B-VII.0 JENDL-3.3 *Atlas of Neutron Resonances* Classical model, Wisshak et al. Low mass stars, Wisshak et al. Bao et al. Ratio of ^{122,123,124}Te products 0.943:1.119:1 0.972:1.035:1 0.985 \pm 0.0352:0.994 \pm 0.0364:1 0.984 \pm 0.012:1.003 \pm 0.012:1 0.91 \pm 0.01:0.94 \pm 0.01:1 1.031 \pm 0.0105:1.003 \pm 0.0097:1

