

New cross section measurement for the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction

Sándor Takács

Institute for Nuclear Research

ATOMKI

Why ¹⁰⁰Mo(p,2n)^{99m}Tc is interesting ?

- More than 80% of all diagnostic nuclear procedures uses ^{99m}Tc world wide.
- ➢ Five nuclear reactors produce ^{99m}Tc.
- The world demand is about 6000 Ci/week
- Problem with the reactors and planned shutdown
- Alternative solution: direct production of ^{99m}Tc

Accelerator production of ^{99m}Tc

Reactions on Mo

¹⁰⁰Mo(p,2n)^{99m}Tc ¹⁰⁰Mo(p,x)⁹⁹Mo → ^{99m}Tc ¹⁰⁰Mo(n,2n)⁹⁹Mo → ^{99m}Tc ¹⁰⁰Mo(γ,n)⁹⁹Mo → ^{99m}Tc ⁹⁸Mo(n,γ)⁹⁹Mo → ^{99m}Tc

EXFOR workshop 06-10 Oct. 2014, IAEA

Experimental cross sections of ⁹⁹Mo

atomki

Experimental cross sections of ^{99m}Tc

Selected cross sections of ^{99m}Tc

Normalized cross sections of ^{99m}Tc

EXFOR workshop 06-10 Oct. 2014, IAEA

Accelerator production of ^{99m}Tc

Ru 90 11.7 s	Ru 91 7.6 s 7.85 s β ⁺ γ.394; βp 1097; m 905	Ru 92 3.65 m β ⁺ γ214; 259;	Ru 93 10.8 s 59.7 s β ⁺ γ1396; 1111; m γ681; 1y 734 1435	Ru 94 51.8 m ^ε <u>γ</u> 367; 891	Ru 95 1.65 h ε; β ⁺ 1.2 γ336; 1097; 627	Ru 96 5.54	Ru 97 2.9 d	Ru 98 1.87	Ru 99 12.76	Ru 100 12.60	Ru 101 17.06	Ru 102 31.55	Ru 103 39.35 d β ⁻ 0.2; 0.7 γ 497; 610 m
γ 155; 493 Tc 89 12.9 s 12.8 s β ⁺ 12.8 s γ 119; β ⁺ 6.4 269 γ	hγ ? 9 Tc 90 49.2 s 8.7 s β ⁺ 5.3; 5.7 γ 948; 1054 γ 948 β ⁺ 7.3; 9 948	$\begin{array}{c} \textbf{TC 91}\\ \textbf{3.3 m}\\ \textbf{3.3 m}\\ \textbf{3.3 m}\\ \textbf{3.14 m}\\ \textbf{3.14 m}\\ \textbf{3.52}\\ \textbf{3.14 m}\\ 3.14 $	βp 2.48. g Tc 92 4.4 m β ⁺ 4.2 γ 1510; 773; 329; 148	$\begin{array}{c c} m \\ \hline TC 93 \\ \hline 43.5 m & 2.7 h \\ \hline _{1 \gamma 392} & \\ \epsilon \\ \gamma 2645 & \\ 9 \\ g \end{array} \\ \begin{array}{c} \epsilon \\ \gamma 1363i \\ 1520i \\ 1520i \\ 1477ig \\ q \end{array}$	g Tc 94 53 m 4.9 h § +0.8 γ 871; γ 871; 703; γ 871; 850	Tc 95 60 d 20 h •; β ⁺ • • • y204; • • • 835 y766; • • iy(39) 1074 • •	g Tc 96 52 m 4.3 d e ⁻ no β ⁺ γ 778; 850; 1200 813	Тс 97 92.2 d 4.0 · 10 ⁶ а ¹ у (97) е е ⁻ по у	Tc 98 4.2 · 10 ⁶ a ^{β⁻ 0.4} ^{γ 745; 652} _{σ 0.9 + ?}	Tc 99 6.0 h 2.1 · 105 a 105 a hy141 β = 0.3 g ⁻ γ (90) γ (322,) σ 23	Tc 100 15.8 s β ⁻ 3.4 ^ε γ 540; 591	Tc 101 14.2 m β ⁻ 1.3 γ 307; 545	Tc 102 4.3 m 5.3 s β ^{-1.6;} 3.2 γ 475; 631; 628; hy γ 475
Mo 88 8.2 m β ⁺ γ 171; 80; 131 m	Mo 89 2.15 m ^{β+} γ 659; 1272; 1155 9	Mo 90 5.7 h ^ε β ⁺ 1.1 γ 257 m; g	Mo 91 65 s 15.5 m hy 653 8 ⁺ 2.5; 40 y 1506; 1208; m 9	Mo 92 14.77	$\begin{array}{c} Mo \ 93 \\ \hline 6.9 \ h \\ 5.5 \\ .7 \\ .7 \\ .7 \\ .7 \\ .7 \\ .7 \\ .$	Mo 94 9.23	Mo 95 15.90 σ 13.4 σ _{n, α} 0.000030	Мо 96 16.68 16.5	Mo 97 9.56 σ _{2.5} σ _{n, α} 4E-7	Мо 98 24.19 ^{о 0.14}	Mo 99 66.0 h β ⁻ 1.2 γ 740; 182; 778 m; g	Mo 100 9.67 1.15 · 10 ¹⁹ a ^{2β⁻} σ ^{0.19}	Mo 101 14.6 m β ⁻ 0.8; 2.6 γ 192; 591; 1013; 506
Nb 87 2.6 m 3.9 m β ⁺ γ 201; 471 9 β ⁺ m	$\begin{array}{c c} \textbf{Nb} \ \textbf{88} \\ \hline \textbf{7.8 m} & \textbf{14.3 m} \\ \beta^{+} & \gamma 1057; \\ \gamma 1057; & 1083; \\ 1083; & 503; \\ 340 & 671 \end{array}$	Nb 89 66 m 2.0 h β ⁺ 2.4; β ⁺ 3.3 2.9 y 1827; y 588; 1833; 507 3093 m g	Nb 90 18.8 s 14.6 h β* 1.5 γ 1129: γ 1122 2319; e ⁻ 141	Nb 91 60.9 d 680 a ^μ γ (105) - e ⁻ , β ⁺ , β ⁺	Nb 92 10.15 d 3.6 · 10 ⁷ a ^ε β ⁺ γ 934 ^ε ^ε γ 561; 934	Nb 93 16.13 a 100 I ^{ly} (31) e ⁻ r ^{0.86 +} 0.29	Nb 94 6.26 m 2 · 10 ⁴ a β ⁻ 0.5 γ 871; σ ⁻ 0.5 γ 871; σ ⁻ 0.6 + 14.4	Nb 95 86.6 h 34.97 d ly236 e ⁻ β ⁻ 0.2; 0.9 β ⁻ 1.0 γ 204 σ < 7	Nb 96 23.4 h ^{β⁻ 0.7 γ778; 569; 1091}	Nb 97 53 s 74 m μγ 743 β ^{-1.3} γ 658	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nb 99 2.6 m 15 s γ 38; 254; 2842; β ⁻³ 3.1 2854 γ 138; γ 365 ? 98	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Zr 86 16.5 h ^ε ηο β ⁺ γ243; 28; 612	Zr 87 14.0 s 1.6 h β ⁺ 2.3 γ 1227; 1210; 1924	Zr 88 83.4 d	Zr 89 4.16 m 78.4 h hy 588 6 b ⁺ 0.9; b ⁺ 0.9 24 y (1713).	Zr 90 51.45	Zr 91 11.22	Zr 92 17.15	Zr 93 1.5 · 10 ⁶ a β ⁻ 0.06	Zr 94 17.38	Zr 95 64.0 d β ⁻ 0.4; 1.1 γ757; 724	Zr 96 2.80 3.9 · 10 ¹⁹ a	Zr 97 16.8 h β ⁻ 1.9 γ 508; 1148; 355 m	Zr 98 30.7 s	Zr 99 2.1 s β ⁻ 3.5; 3.6 γ 469; 546; 594 α; m

		Q-value	Thrshold
		MeV	MeV
⁹⁹ Mo	¹⁰⁰ Mo(p,pn)	-8.29	8.38
	¹⁰⁰ Mo(p,d)	-6.07	6.13
⁹⁹ Nb	¹⁰⁰ Mo(p,2p)	-11.15	11.26
⁹⁹ Tc	¹⁰⁰ Mo(p,2n)	-7.72	7.79
90NIK	⁹⁴ M ₂ (p, s, p)	0.00	0.05
DI	$NO(p,\alpha n)$	-8.96	9.05
	^{oz} Mo(p, He)	-11.79	11.92
⁹⁰ Mo	⁹² Mo(p,t)	-14.30	14.45

Systematic error sources

- beam current measurement or charge integration (Faraday-cup, black current, secondary electrons, electron suppression)
- detector efficiency calibration
 (140 keV is the most problematic part of the efficiency curve)
- target thickness measurement
- use of out dated decay data
- problematic peak area determination and data evaluation

Decay of ⁹⁹Mo

Intensity of the 140.5 keV gamma-line

40.58323 17	1.06 % 4	4.32E-4 15
158.782 15	0.0191 % 8	3.04E-5 <i>13</i>
162.370 15	0.0120 % 6	1.95E-5 10
181.068 <i>8</i>	6.14 % 12	0.01112 23
242.29 8	0.0026 % <i>5</i>	6.2E-6 <i>12</i>
249.03 <i>3</i>	0.0039 % 5	9.8E-6 <i>12</i>
366.421 15	1.204 % 22	0.00441 8
380.13 8	0.0105 % 9	4.0E-5 3
391.7 4 ?	0.0032 % 6	1.25E-5 <i>24</i>
410.27 10	0.0020 % 4	8.0E-6 15
411.491 15	0.0147 % 6	6.1E-5 <i>3</i>
457.60 3	0.0082 % 6	3.8E-5 <i>3</i>
469.63 7	0.0027 % 5	1.27E-5 <i>23</i>
528.788 15	0.058 % <i>3</i>	3.05E-4 14
537.79 15	0.0033 % 6	1.8E-5 <i>3</i>
580.51 7	0.0032 % <i>5</i>	1.9E-5 <i>3</i>
620.03 4	0.0023 % 9	1.4E-5 5
621.771 24	0.018 % 4	1.14E-4 23
689.6 9	4.3E-4 % 18	3.0E-6 1 <i>3</i>
739.500 17	12.26 % <i>22</i>	0.0907 16
761.77 8	4.0E-4 % 4	3.1E-6 <i>3</i>
777.921 20	4.30 % 8	0.0335 6

NuDat

atomki.

EXFOR workshop 06-10 Oct. 2014, IAEA

	Energy keV	Photons per 100 disint.
$\gamma_{2,1}({\rm Tc})$	2,1726 (4)	7.10^{-9}
$\gamma_{3,1}(Tc)$	40,58323 (17) $1,022(27)$
$\gamma_{1,0}(Tc)$	140,511(1)	89,6 (17)
$\gamma_{2,0}(Tc)$	142,675 (25) 0,0211 (17)
$\gamma_{9,7}({ m Tc})$	158,782 (15)) 0,0145 (9)
$\gamma_{6,4}(Tc)$	162,370 (15)) 0,0114 (6)
$\gamma_{3,0}({ m Tc})$	181,068 (8)	6,01 (11)
$\gamma_{10,7}(Tc)$	242,29 (8)	0,0014(3)
$\gamma_{9,6}(Tc)$	249,03(3)	0,0035(4)
$\gamma_{4,2}(Tc)$	366,421 (15) 1,194 (23)
$\gamma_{13,7}(Tc)$	380,13 (8)	0,0091(5)
$\gamma_{5,2}(Tc)$	391,7(4)	0,0025 (6)
$\gamma_{14,7}(Tc)$	410,27 (10) 0,0016 (4)
$\gamma_{9,4}(Tc)$	411,491 (15) 0,0161 (12)
$\gamma_{12,6}(Tc)$	457,60 (3)	0,0074(6)
$\gamma_{13,6}(Tc)$	469,63 (7)	0,0027(5)
$\gamma_{6,2}(Tc)$	528,788 (15) 0,0541 (19)
$\gamma_{11.5}(Tc)$	537,79 (15) 0,0015 (5)
$\gamma_{7,3}(Tc)$	580,51 (5)	0,0036(4)
$\gamma_{8,3}(Tc)$	581,30 (12) 0,00010 (5)
$\gamma_{12.4}(Tc)$	620,03(5)	0,0024 (6)
$\gamma_{8,1}(Tc)$	621,773 (24) 0,0262 (10)
$\gamma_{15,4}(Tc)$	689,6 (9)	0,00042 (18)
$\gamma_{9,3}({ m Tc})$	739,500 (17) 12,12 (15)

Monographie BIPM-5

Contribution to 140.5 keV gamma-line

0.896	in equilibrium
0.885	just 99mTc
0.0472	prompt

Gammas

atomki

Contribution to 140.5 keV gamma-line

 t_b bombarding time, t_c cooling time, t_m measuring time (number of decay during measuring time) t_m measuring time

$$\Delta N(direct)_{D} = N_{t}N_{b}\sigma_{2}\left(1 - e^{-\lambda_{2}t_{b}}\right)\frac{1}{\lambda_{2}}e^{-\lambda_{2}t_{c}}\left(1 - e^{-\lambda_{2}t_{m}}\right)$$

$$\Delta N(decay)_{1} = \frac{fN_{t}N_{b}\sigma_{1}}{(\lambda_{1}-\lambda_{2})} \Big[\lambda_{1}\Big(1-e^{-\lambda_{2}t_{b}}\Big) - \lambda_{2}\Big(1-e^{-\lambda_{1}t_{b}}\Big)\Big]\frac{1}{\lambda_{2}}e^{-\lambda_{2}t_{c}}\Big(1-e^{-\lambda_{2}t_{m}}\Big)$$

$$\Delta N(decay)_{2} = \frac{fN_{t}N_{b}\sigma_{1}}{(\lambda_{1}-\lambda_{2})} \left(1-e^{-\lambda_{1}t_{b}}\right) \left[e^{-\lambda_{2}t_{c}}\left(1-e^{-\lambda_{2}t_{m}}\right)-\frac{\lambda_{2}}{\lambda_{1}}e^{-\lambda_{1}t_{c}}\left(1-e^{-\lambda_{1}t_{m}}\right)\right]$$

$$\Delta N (direct)_{M} = g N_{t} N_{b} \sigma_{1} \left(1 - e^{-\lambda_{1} t_{b}} \right) \frac{1}{\lambda_{1}} e^{-\lambda_{1} t_{c}} \left(1 - e^{-\lambda_{1} t_{m}} \right)$$

$$\frac{T_{\gamma}}{\varepsilon_{d}\varepsilon_{\gamma}} = \Delta N (direct)_{D} + \Delta N (decay)_{1} + \Delta N (decay)_{2} + p\Delta N (direct)_{M}$$

atomki

Composition of the stack

		E(in)	E(out)	E(moan)	dv[um] Y	ma/cm21	dE	
mo	1	16.00	15 70	15 00		12.06	1 1	0.25
mo	1	15.00	15.79	15.90	11.00	12.00	1	0.25
ti	1	15.79	15.00	15.09	12.05	5.47	2	0.20
mo	3	15.00	15.40	15.32	11.00	12.06	3	0.20
mo	3	15.40	15.20	15.30	11.00	12.00	4	0.20
1110 +i	4	15.25	14.01	14.07	12.05	5.47	5	0.27
u mo	2	14.01	14.91	14.97	12.05	12.06	7	0.27
mo	5 6	14.91	14.09	14.00	11.00	12.00	7	0.27
ti	3	14.05	14.47	14.30	12.05	5.47	0	0.20
mo	7	14.47	14.04	14.40	11.00	12.06	10	0.20
mo	7 8	14.04	13.80	14.25	11.00	12.00	10	0.29
ti	4	13.80	13.09	12.92	12.05	5.47	12	0.29
mo	4	13.09	13.70	13.64	11.00	12.06	12	0.29
mo	10	13.70	13.02	12.04	11.00	12.00	14	0.30
ti	5	13.02	13.25	13.41	12.05	5.47	14	0.30
mo	11	13.29	12.13	13.22	11.00	12.06	16	0.31
mo	10	10.10	12.91	13.03	11.00	12.00	17	0.31
1110 ti	12	12.91	12.07	12.79	12.05	5.47	10	0.32
u mo	12	12.07	12.00	12.00	12.05	12.06	10	0.32
mo	13	12.00	12.20	12.40	11.00	12.00	19	0.00
1110 +i	7	12.20	11 00	11.15	12.05	5.47	20	0.33
u mo	15	12.03	11.00	11.95	12.05	12.06	21	0.34
mo	10	11.00	11.02	11.75	11.00	12.00	22	0.34
+i	10	11.02	11.00	11.49	12.05	5.47	23	0.35
mo	17	11.00	10.04	11.20	11.00	12.06	24	0.33
mo	10	10.04	10.94	10.80	11.00	12.00	25	0.30
ti	10	10.54	10.00	10.50	12.05	5.47	20	0.30
mo	10	10.00	10.00	10.30	11.00	12.06	28	0.37
mo	20	10.30	0.22	10.00	11.00	12.00	20	0.37
ti	10	0.03	9.93	9.85	12.05	5.47	30	0.30
mo	21	9.95	9.70	9.61	11.00	12.06	31	0.30
mo	21	9.70	0.16	0.31	11.00	12.00	32	0.00
ti	11	0.16	8.08	9.07	12.05	5.47	33	0.40
mo	23	8.08	8 66	8.82	11.00	12.06	34	0.40
mo	20	8 66	8 3/	8 50	11.00	12.00	35	0.41
ti	12	8.34	8 15	8.24	12.05	5.47	36	0.42
mo	25	8 15	7.80	7 98	11.00	12.06	37	0.42
mo	25	7.80	7.00	7.63	11.00	12.00	38	0.43
ti	13	7.00	7.45	7 35	12.05	5.47	39	0.43
mo	27	7.40	6.88	7.06	11.00	12.06	40	0.45
mo	28	6.88	6.40	88.8	11.00	12.00	40	0.45
ti	14	6.49	6.26	6.37	12.05	5.47	42	0.40
ti	14	6.26	6.02	6 1 4	12.05	5.47	42	0.40
ti	16	6.02	5 78	5 90	12.05	5.47	40	0.47
ti	10	5.78	5 53	5.66	12.05	5.47	44	0.48
ti	18	5 53	5.00	5 40	12.05	5 47	46	0.40
ti	10	5.00	5.01	5.14	12.05	5 47	47	0.40
ti	20	5.01	4 73	4.87	12.05	5.47	48	0.50
ti	21	4 73	4.10	4.58	12.05	5 47	40	0.51
	<u> </u>	1.1 0	1. 17		12.00	0.11	10	0.01

Bombarding energy: ~16MeV Irradiation time: 1.8 hours Beam current: 116 nA Mo foil thickness: 11.8 micron Ti foil thickness: 12.05 micron

Irradiation arrangement

Target preparation

Gamma spectrum of a Mo foil

EXFOR workshop 06-10 Oct. 2014, IAEA

Detector calibration

EXFOR workshop 06-10 Oct. 2014, IAEA

Beam monitoring

Recoil correction

Recoil correction

Recoil corrected

Intensity corrected -2.5 %

EXFOR workshop 06-10 Oct. 2014, IAEA

atomki

Energy corrected -100 keV

EXFOR workshop 06-10 Oct. 2014, IAEA

Recommended cross section

Origin of the 140.5 keV gammas for ¹⁰⁰Mo(p,x)⁹⁹Mo reaction

Spectrum	cooling	Direct	Decay	Decay	Prompt
name	time	prod D	prod.1	prod.2	М
	(h)	%	%	%	%
Mo02p063	171	0	0	94.8	5.2
Mo04p063	187	0	0	94.8	5.2
Mo06p063	213	0	0	94.8	5.2
Mo08p063	236	0	0	94.8	5.2
Mo10p063	245	0	0	94.8	5.2
Mo12p063	262	0	0	94.8	5.2
Mo14p063	269	0	0	94.8	5.2

Spectrum	cooling	Energy	140.5	181	739
name	time	MeV	keV	keV	keV
	(h)	е	quiblibriun	า	
Mo02p063	171	15.6	3.5	3.1	3.5
Mo04p063	187	15.0	2.9	2.9	2.3
Mo06p063	213	14.5	2.2	2.3	2.2
Mo08p063	236	13.9	1.6	1.9	1.6
Mo10p063	245	13.3	1.1	1.9	1.3
Mo12p063	262	12.7	0.8	0.5	0.3
Mo14p063	269	12.0	0.6	0.0	0.0

EXFOR workshop 06-10 Oct. 2014, IAEA

Origin of the 140.5 keV gammas

Spectrum	cooling	Direct	Decay	Decay	Prompt
name	time	prod D	prod.1	prod.2	М
	(h)	%	%	%	%
Mo01p121	6.6	98.1	0.1	1.6	0.2
Mo02p121	4.7	98.8	0.1	0.9	0.1
Mo03p121	7.1	98.3	0.1	1.5	0.2
Mo04p121	4.3	99.0	0.1	0.8	0.1
Mo05p121	7.4	98.6	0.1	1.2	0.1
Mo06p121	4.0	99.3	0.1	0.6	0.1
Mo07p121	7.7	98.9	0.1	0.9	0.1
Mo08p121	3.7	99.5	0.1	0.4	0.1
Mo09p121	8.1	99.1	0.0	0.7	0.1
Mo10p121	3.5	99.8	0.0	0.2	0.0
Mo11p121	8.6	99.2	0.0	0.7	0.1
Mo12p121	3.2	99.7	0.0	0.2	0.0
Mo14p121	2.9	99.9	0.0	0.0	0.0
Mo16p121	2.6	100.0	0.0	0.0	0.0
Mo18p121	2.3	100.0	0.0	0.0	0.0
Mo20p121	2.0	100.0	0.0	0.0	0.0
Mo22p121	1.7	100.0	0.0	0.0	0.0
Mo24p121	1.4	100.0	0.0	0.0	0.0
Mo26p121	1.2	100.0	0.0	0.0	0.0
Mo28p121	0.9	100.0	0.0	0.0	0.0

EXFOR workshop 06-10 Oct. 2014, IAEA

Results Cross Check

Conclusion and Summary

Conclusion and Summary

Thank you for Your attention

