

Definitions of yields

Problems and confusions

Sándor Takács Institute for Nuclear Research ATOMKI

Definitions of yield:

$$Y = \frac{N(reractions)}{N(incident)}$$

- >Target specific
- >No dimension
- >Time independent
- > Different forms and different use

- Charged particle induced reactions energy loss, changing energy along the path short range, finite volume energy dependence
- >Thin and thick target yield
- ➤ Stable reaction products

$$Y = \frac{N(reactions)}{N(incident)} \quad \left(\frac{N(reactions)}{C}\right) \quad \left(\frac{N(reactions)}{\mu Ah}\right) \quad \left(\frac{N(reactions)}{\mu A}\right)$$

➤ Radioactive products

$$Y = \frac{N(reactions)}{N(incident)} \qquad \left(\frac{MBq}{C}\right) \left(\frac{MBq}{\mu Ah}\right) \left(\frac{MBq}{\mu A}\right) \quad \left(\frac{MBq}{\mu A/h}\right) \quad \left(\frac{MBq}{\mu A-h}\right)$$

Production rate

$$y(t) = \frac{I(t)}{ze} \frac{N_A \rho}{M} \int_{E=0}^{E_b} \frac{\sigma(E)}{S(E)} dE$$

Number of nuclei produced in the target

$$N = \frac{tI_0}{ze} \frac{N_A \rho}{M} \int_{E_{out}}^{E_{in}} \frac{\sigma(E)}{S(E)} dE$$

Number of nuclei present in the target at EOB

$$\frac{dN(t)}{dt} = I_0 y - \lambda N(t) \qquad N(t) = I_0 y \frac{1 - e^{-\lambda t}}{\lambda}$$

Number of produced nuclei in the target Number of nuclei present in the target

$$A(t) = \lambda N(t)$$

$$N(t) = I_0 y \frac{1 - e^{-\lambda t}}{\lambda}$$

$$A(t) = \lambda N(t) = I_0 y \left(1 - e^{-\lambda t}\right)$$

$$y(1-e^{-\lambda t}) \equiv a(t)$$

a(t) defined as the decay rate or specific activity per unit current $(Bq/\mu A)$

$$A(t \to \infty) = I_0 y \equiv I_0 a_{sat}$$

a_{sat} defined as the **saturation decay rate** or **saturation specific activity** per unit current (Bq/mA)

$$\frac{dA(t)}{dt} = I_0 \lambda y e^{-\lambda t} \equiv I_0 \alpha(t)$$

 $\alpha(t)$ at t=0 is the production rate (y) times decay constant (λ) which gives the decay rate at t=0.

This is time independent quantity with units of Bq/C and defined as the **physical yield**.

Name	Symbol		Typical unit
thick target product yield	у	,PY"TT/CH	nuclei/μC,
			nuclei/µAh
end-of-bombardment thick target yield	a(t)	,TTY"EOB	MBq/μA
saturation thick target yield	a _{sat}	,TTY"SAT	MBq/µA
physical thick target yield	$a(t\rightarrow\infty)$ α_{phys} $a(t=0)$,TTY"PHY	MBq/C

Thank you for Your attention