

CONTRIBUTION TO COMPILATION FROM MONGOLIA AND NUCLEAR PHYSICS ACTIVITY AT THE NUCLEAR RESEARCH CENTER, NATIONAL UNIVERSITY OF MONGOLIA

M.Odsuren, National University of Mongolia

CONTRIBUTION TO COMPILATION FROM MONGOLIA

• BRIEF INTRODUCTION OF THE NRC

1. HISTORICAL BACKGROUND

COMPILATION / MONGOLIA / - since 2014

- Heavy-ion (A>12) induced reaction data (West European countries)
- Mainly data measured at INFN/LNL, Legnaro, Italy
- Not intensively but step by step (a month/article)
- Good quality of the database (original numerical data)

Officially no data centre responsible for compilation of heavy-ion induced reaction data measured at West European countries.

We have received numerical data for all cases (2014-2016) so far, and it helps us to avoid compilation of digitized data.

COMPILATION @NRC D0799

Edit	ENTRY	D0799 20160419	D079900000001
Lon.	SUBENT	D0799001 20160419	D079900100001
d0799	BIB	11 41	D079900100002
edit	TITLE	Pathway for the production of neutron-rich isotopes	D079900100003
Cuic		around the N=126 shell closure	D079900100004
	AUTHOR	(Y.X.Watanabe, Y.H.Kim, S.C.Jeong, Y.Hiravama, N.Imai,	D079900100005
Convert:		H.Ishiyama, H.S.Jung, H.Miyatake, S.Choi, J.S.Song,	D079900100006
d0799		E.Clement, G.de France, A.Navin, M.Reimund, C.Schmitt.	D079900100007
		G.Pollarolo, L.Corradi, E.Fioretto, D.Montanari,	D079900100008
conv		M.Nijkura, D.Suzuki, H.Nishibata, J.Takatsu)	D079900100009
	INSTITUTE	(2JPNKEK)	D079900100010
	1.0111012	(3KORNSU) Department of Physics and Astronomy	D079900100011
<u>NRDF</u>		(3KORNSU) Institute for Nuclear and Particle	D079900100012
w/o data		Astrophysics	D079900100013
CHEN		(3KORKOR) Institute for Basic Science	D079900100014
EVEOD		(2FR GAN)	D079900100015
EAFOR		(2TTYTIR)	D079900100016
<u>w/o data</u>		(2TTYPAD)	D079900100017
CHEX		(2TTYLIPU)	D079900100018
Graph		(2FP PAR) Institut de Physique Nucleaire IN2P3-CNRS	D079900100019
		(2JPNOSA)	D079900100020
D il.	REFERENCE	(J. PRI, 115, 172503, 2015)	D079900100021
<u>B10</u>	THE DIVERGE	Main reference. See also TITLE and AUTHOR.	D079900100022
<u>Data 0A</u>		(J EPJ/CS 66 03044 2014)	D079900100023
Data 0B		Preliminary cross sections (arb.units) in figs	D079900100024
Data 0X		(J.NIM/B. 317, 752, 2013)	D079900100025
Data 1		Preliminary cross sections (counts) in figs	D079900100026
	PART-DET	(G.HF)	D079900100027
Data 2	INC-SOURCE	Beam intensity is 0.25 particle-nA.	D079900100028
	SAMPLE	- Chemical-form of target is element.	D079900100029
		- Physical-form of target is solid.	D079900100030
		- Target-thickness is 1.3 mg/cm2.	D079900100031
		(78-PT-198,ENR=0.916)	D079900100032
	FACILITY	(SYNCH, 2FR GAN)	D079900100033
	DETECTOR	(MAGSP) VAMOS++ spectrometer consists of a pair of	D079900100034
		guadrupole magnets, a dipole magnet. The	D079900100035
		scattering angle, kinetic energy, ionic	D079900100036
		charge, mass and atomic number of the detected	D079900100037
		particles were determined.	D079900100038
		(IOCH) To detect fragments.	D079900100039
		(GE) To detect gamma rays from fragments.	D079900100040
	ADD-RES	(COMP) Optical model	D079900100041
	HISTORY	(20160401R) Received by e-mail from X.Watanabe	D079900100042
		(20160415C) M.Odsuren and N.Otsuka	D079900100043
	ENDBIB	41 0	D079900100044

🈎 Stat. Error (1-sigma)

0.1[10

	🗖 Rea	ction					
R	🎔 Reaction	<u>guide</u>	action I	Paga	tion II		
8	Target:	none	v 198Pt	none v	198Pt		
C C	Projectile:	none	∨ 136Xe	none 🗸	136Xe		
0	Emit.part.1:	X	v none	. Elastic 🗸	none		
at	Residual:	Nucleus	v none	none 🗸	none		
pil	🎔 Physical	Quantity (H	XFOR) guide	Reaction Dict.			
E	Reaction I:	,IPA	The e	rror bars show	n are typically	$\sim 25\%$ and	
8	Reaction II:	,DA	includ	de acceptance c	orrection ($\sim 15^{\circ}$	%), extrapolation of 1	the
			ionic	charge distrib	oution $(\sim 5\%)$,	particle identificati	on
- Ennon o	nd Com		(~0.3	%), statistics ($\sim 3\%$), and norm	malization ($\sim 20\%$).	
Error a	na Com	ment					
Syst Error (1 s	rigma) T popo	04 (2020				
Syst. Error (1-s	1 11[18	70 (ction (symmetric)			
	2 1[22	%(extranolation of t	he ionic charge distr	ibution (unsymmetr	/	
	3 0[3	%(particle identificati	ion (unsymmetric: (-3% for both upwa	ard and d()	
	4. 17[21	% (normalization (un	symmetric: 17% fo	r upward, 21% for	downwar()	
	-	`	•	-			

% (statistics (symmetric)

COMPILATION @NRC D0799

SUBENT	D07	99003	20160419			D079900300001
BIB		5	18			D079900300002
REACTION	(78-PT	-198 (54-)	XE-136,X)EL	EM/MASS,,I	PA)	D079900300003
MONITOR	(78-PT	-198 (54-)	ке-136,еь)7	8-PT-198,,	DA)	D079900300004
EN-SEC	ANG is	polar an	ngle (lab.)	between b	eam and prompt	D079900300005
	gamma					D079900300006
ERR-ANALYS	(ERR-1	,11.,18.)) acceptanc	e correcti	on (symmetric)	D079900300007
			(11-18%)			D079900300008
	(ERR-2	,1.,22.)	extrapolat	ion of the	ionic charge	D079900300009
			distributi	on (unsymm)	etric: 1%-22% for	D079900300010
			upward, 18	-8% for do	wnward) (1-22%)	D079900300011
	(ERR-3	,0.,3.)	particle id	lentificati	on (unsymmetric:	D079900300012
		(0-3% for bo	th upward	and downward)	D079900300013
			(0-3%)			D079900300014
	(ERR-4	,17.,21.) normaliza	tion (unsyn	mmetric: 17% for	D079900300015
			upward, 2	1% for down	nward) (17-21%)	D079900300016
	(ERR-S	,0.1,10.) statistic	s (symmetr:	ic) (0.1-10%)	D079900300017
STATUS	(TABLE) Plotte	d in Fig.1	(b-j), Fig	.2 (a-b) and Fig.4	D079900300018
		of Phys	s. Rev. Let	ts. 115, 1	72503, 2015	D079900300019
	(DEP,D	0799002)	Rutherford	l ratio dat	a given	D079900300020
ENDBIB		18	0			D079900300021
COMMON		2	3			D079900300022
ANG-MIN	ANG-MAX	ĸ				D079900300023
ADEG	ADEG					D079900300024
24.	34.					D079900300025
ENDCOMMON		3	0			D079900300026
DATA		5	175			D079900300027
ELEMENT	MASS	DATA	A -ER	R-T +E	RR-T	D079900300028
NO-DIM	NO-DIM	MB	MB	MB		D079900300029
50	•	118.	4.9E+00	1.4E+00	1.3E+00	D079900300030
50	•	119.	5.9E+00	1.6E+00	1.5E+00	D079900300031
50	•	120.	6.4E+00	1.7E+00	1.6E+00	D079900300032
50	•	121.	6.0E+00	1.6E+00	1.4E+00	D079900300033
50	•	122.	4.8E+00	1.2E+00	1.1E+00	D079900300034
50	•	123.	3.7E+00	9.4E-01	8.5E-01	D079900300035
50		124.	2.5E+00	6.5E-01	5.8E-01	D079900300036
50	•	125.	1.6E+00	4.0E-01	3.6E-01	D079900300037
50	•	126.	9.1E-01	2.3E-01	2.2E-01	D079900300038
50		127.	4.8E-01	1.2E-01	1.2E-01	D079900300039

2. NUCLEAR RESEARCH CENTRE

The NRC/NUM is an educational and research institution in Mongolia, which carries out basic and applied research in low energy nuclear physics.

THE MISSION of NRC is to be the leading national institute that conducts both education/training and research to obtain new information and results, to develop new methodology and technology in basic and applied nuclear physics, and also to develop equipment and devices.

HISTORICAL BACKGROUND

1956: First physicists sent to JINR, Dubna for nuclear study

- 1965: Nuclear research group (later Nuclear Research Lab) at the NUM organized (Neutron generator is installed from JINR)
- **1991:** Electron Cycle Accelerator (Microtron) 22 MeV installed at the Applied Nuclear Physics Section, Mongolian Academy of Science.
- 1997: NRL/NUM & ANPS/MAS were merged and reorganized as the Nuclear Research Center, NUM by the Government Resolution No 1997/31.

HUMAN RESOURCE (academic staff)

Positions	FT	PT
Director	1	
Accountant		40%
Scientific secretary		40%
Principal researcher	2	
Senior researcher	2	40%
Researcher	5	
Junior researcher	6	
Senior engineer	1	
Engineer	1	
Co-researcher		4x30% ≈1
Total	20	
Professor, Instructor & TA		3+1

NUCLEAR RESEARCH CENTER NEUTRON GENERATOR

E=14MeV $F = 10^{10} s^{-1}$

NUCLEAR RESEARCH CENTER ²⁵²Cf-NEUTRON SOURCE

$F = 10^9 s^{-1}$

NUCLEAR RESEARCH CENTER MICROTRON MT-22

$$E_e^{\max} = 22MeV$$

$$I_e = 20\mu A$$

$$Y_{\gamma} = 10^{12} s^{-1}$$

$$F_n = 10^8 cm^{-2} s^{-1}$$

NUCLEAR RESEARCH CENTER MICROTRON MT-22

NUCLEAR RESEARCH CENTER MICROTRON MT-22

NUCLEAR RESEARCH CENTER CRYOGENIC INSTALLATION

$T = -196^{\circ}C$ $productivity = 8\frac{l}{h}$

NUCLEAR RESEARCH CENTER X-RAY FLUORESCENT SPECTROMETER

Re solution = 180eVat 5.9KeV

Sensitivity = $10 - 100 \frac{\mu g}{l}$

NUCLEAR RESEARCH CENTER TOTAL REFLECTION X-RAY SPECTROMETER

NUCLEAR RESEARCH CENTER DOSIMETER LABORATORY

TLD DOSIMETER

NUCLEAR RESEARCH CENTER NUCLEAR DATA LABORATORY

NUCLEAR RESEARCH CENTER LIBRARY

NUCLEAR RESEARCH CENTER

RESEARCH FIELDS:

- **1. BASIC NUCLEAR PHYSICS:**
 - Nuclear reactions
 - **Neutron physics**
- Nuclear spectroscopy
- 2. NUCLEAR ANALYTICAL METHODS:
- Neutron activation analysis
- Photo activation analysis
- X-ray fluorescence analysis
- **3. NUCLEAR TECHNOLOGY**
- Radiation technology
- Uranium technology
- Nuclear power technology

Theoretical and experimental study of fast neutron induced reaction, photo-reactions, structure of light nuclei

Geological, biological, agricultural, environmental (urban air pollution) samples.

Pre-feasibility studies on nuclear energy utilization, uranium exploration and enrichment, HRD ...

Basic Nuclear Physics

- **Experimental Study of Fast Neutron Induced (n,\alpha), (n,p) Reactions** (In collaboration with JINR, Dubna and Peking University, Beijing).
- 2. Systematical Analysis of Fast Neutron Induced (n,α) , (n,p) Reaction Cross Sections.
- 3. Photo-activation Analysis.
- 4. Theoretical Study of Light Nuclei Cluster Structure (In collaboration with Hokkaido University, Japan).

Experimental Study of Fast Neutron Induced (n,α **) Reactions**

Collaboration: Institute of Heavy Ion Physics, Peking University, Beijng. Frank Laboratory of Neutron Physics, JINR, Dubna. Nuclear Research Center, NUM, Ulaanbaatar

Neutron Scource - > Van de Graaff Accelerators Neutron Monitor -> Long Counter and Fission Chamber Alpha detector -> Ionization Chambers

Neutron beam hall at the Heavy Ion Physics Insititute. Peking University, Beijing.

High pressure small ionization chamber

Neutron beam hall at the Neutron Physics Laboratory, JINR, Dubna.

Experimental Study of Fast Neutron Induced (n,\alpha) Reactions

Measured cross section of the ⁶³Cu(n,a)⁶⁰Co reaction

FIG. 2. (Color online) Two-dimensional foreground spectrum of the forward direction at $E_n = 6.5$ MeV, (a) for the ${}^{57}\text{Fe}(n,\alpha){}^{54}\text{Cr}$ reaction and (b) for the ${}^{63}\text{Cu}(n,\alpha){}^{60}\text{Co}$ reaction.

Experimental Results

Measured Isotopes

№	E _n (N	/IeV)	2.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0
	Nuclides	\searrow								
1	³⁹ K				145±14		161±16		159±20	
2	⁴⁰ Ca			156.4±8.9	173.2±9.5	179.8±9.9	197.8±10.9	207.3±11.6	216.9±15.0	
3	⁵⁴ Fe			0.76±0.25	0.36±0.17		3.25±0.43		12.86±1.13	
4	⁵⁶ Fe	-					1.05 ± 0.23		5.1±0.7	
5	⁵⁷ Fe	qm				3.11±0.34	4.69±0.47	6.11±0.61	7.27±0.66	
6	⁵⁸ Ni	xp (47.4±5.0		75±16		95±20
7	⁶³ Cu	e e				1.69±0.17	3.40±0.32	5.01±0.47	8.35±0.80	
8	⁶⁴ Zn		11.8±1.1	59.6±3.6		79.1±5.3	70.5±4.0	75.8±5.5	70.8±7	
9	⁶⁶ Zn			1.75±0.20		5.38±0.59		10.05±0.98		
10	⁶⁷ Zn			7.4±0.9		7.6±0.9		8.1±0.9		
11	⁹⁵ Mo			0.7±0.07		1.22±0.12		1.70±0.17		

2. Systematical Analysis of (n,α) Reaction Cross Sections for $E_n=4-6$ MeV

(n,p) Reaction Cross Sections for E_n =4-20 MeV

3. Suggesting of New Method for Photo-activation Analysis

Bremsstrahlung gamma-rays were produced on the electron cyclic accelerator microtron MT-22 at the NRC, NUM

The electron cyclic accelerator microtron MT-22

 $E_e = 22 \text{ MeV}$ $I_e = 3-5\mu A$ $\phi_{\gamma} = 10^{12} \text{ } \gamma/\text{cm}^2\text{s}$

Irradiation time was 130 min Measurement time was 10 min Background measurement time 1000 s

Gamma-spectrometer

HP-Ge detector V=45cm³ FWHM=2keV at 1332.5 keV

Cu –monitor Au-Mo-

Theoretical formula

Correction factor is the ratio of the effective integral cross sections for the reference and analysing isotopes

The Schiff Formula is used

If we use the same element for standard and sample:

$$m_2 = \left(\frac{S_2}{S_1}\right) \frac{e^{-\lambda_1 t_{d1}}}{e^{-\lambda_2 t_{d2}}} m_1$$

element content is determined without correction factor

3. Suggesting of New Method for Photo-activation Analysis

The correction factor is determined by three methods: experimental, theoretical

Experimental correction factor

Sample	E _γ (keV)	К	Real mass (g)	Determined mass (g)	Relative uncertainty (%)
Au-4	332.9	7 1704	0.3409	0.3516	2.1
Cu-5	1345.8	7.1704	0.0284	-	5.1
Mo-6	739.4	1.0407	0.0817	0.0870	6.5
Cu-7	1345.8	1.9407	0.0284	-	0.5

2

Theoretical correction factor

Sample	E _γ (keV)	K	Real mass (g)	Determined mass (g)	Relative uncertainty (%)
Au-4	332.9	0 1001	0.3409	0.3082	0.6
Cu-5	1345.8	0.1001	0.0284	-	9.0
Mo-6	739.4	2 1620	0.0817	0.0781	4.4
Cu-7	1345.8	2.1020	0.0284	-	4.4

4. Theoretical Study of Light Nuclei Cluster Structur

Collaboration: Nuclear Reaction data Center, Hokkaido University, Sapporo Research Center for Nuclear Physics (RCNP), Osaka University Nishina Center for Accelerator-based Science, RIKEN Nuclear Research Center, NUM, Ulaanbaatar, Mongolia

Virtual state

5.0

Thank you for your attention !