

Compilation of thermal neutron cross sections and resonance integrals measured by Cadmium ratio method

V. Semkova International Atomic Energy Agency, Nuclear Data Section, Vienna, Austria

- Motivation
- Deviation from 1/E of the incident neutron spectrum
- Effective / "ideal" resonance integral
- Deviation from 1/E of the cross sections
- Compilation of MONITOR / ASSUMED for RI

Compilation of thermal neutron cross sections and resonance integrals

NRDC 2013 meeting
A35 Otsuka
Formulate completeness checking against the citation lists in S. Mughabghab's
"Atlas of Neutron Resonances", and assign responsibility of the checking to four neutron centres.

N.Otsuka extracted all articles (excluding theses and private communications) related to experimental cross sections or resonance integrals (**3144** articles) from the citation lists of "Atlas of Neutron Resonances" (2006)

Characterization of the experimental conditions and particularly the spectral distribution of the neutron beam is important and should be properly compiled.

$$A \sim (\sigma_0 \Phi_0 + I \Phi_e)$$

A activity of the sample; σ_0 thermal cross section; Φ_0 thermal flux *I* resonance integral; Φ_e epithermal flux

$$\Phi_0 = \frac{R_{\rm s} - F_{\rm Cd} R_{\rm s,Cd}}{g \sigma_0 G_{\rm th}}, \qquad \qquad \Phi_{\rm e} = \frac{\Phi_0}{(R - F_{\rm Cd})} \frac{g \sigma_0}{I_0(\alpha)} \frac{G_{\rm th}}{G_{\rm epi}}$$

$$\sigma_{0,S} = \frac{(R - \frac{R_{Cd}}{F_{Cd}})_S(G_{th})_S}{(R - \frac{R_{Cd}}{F_{Cd}})_{Rf}(G_{th})_{Rf}} \frac{g_S}{g_{Rf}} \sigma_{0,Rf} ,$$

$$I_0(\alpha)_x = I_0(\alpha)_{\mathrm{Mn}} \frac{\sigma_{0,x}}{\sigma_{0,\mathrm{Mn}}} \frac{(R-1)_{\mathrm{Mn}}}{(R-1)_x} \left(\frac{G_{\mathrm{epi}}}{G_{\mathrm{th}}}\right)_{\mathrm{Mn}} \\ \times \left(\frac{G_{\mathrm{th}}}{G_{\mathrm{epi}}}\right)_x.$$

$$G_{th} = \frac{(1 - e^{-\xi})}{\xi},$$

$$G_{epl} = \frac{0.94}{1 + (z/2.70)^{0.82}} + 0.06,$$

thermal neutron self shielding factor

epithermal neutron self shielding factor

Effective Resonance Energies

The 'ideal' resonance integral is defined for an epithermal flux as being proportional to 1/E. This is an approximation that may be sufficiently accurate only in certain cases. Directly measured resonance integrals and those computed from cross-section curves assuming a 1/E flux are often discrepant due to the fact that realistic epithermal fluxes deviate from the 1/E shape.

Ryves has developed a better approximation, which is sufficiently accurate for most applications, in which the epithermal part of the reactor neutron spectrum is proportional to $1/E^{1+\alpha}$.

$$I(\alpha) = \int_{0}^{\infty} \frac{\sigma(E)dE / eV}{(E / eV)^{1+\alpha}}$$

Accordingly, the realistic resonance integral is defined as:

- where α = a constant close to zero (either positive or negative) which can be determined for each reactor spectrum
 - $E_{\rm c}$ = cutoff energy near the lower limit of the epithermal

For $\alpha = 0$ this formula goes to the ideal infinite dilute resonance integral.

$$I_0 = \int_{E_c}^{\infty} \frac{\sigma(E) dE}{E}$$

The realistic resonance integral $(\alpha \neq 0)$ and the 'ideal' resonance integral $(\alpha=0)$ are related by:

$$I(\alpha) = \frac{I_0 - 0.429\sigma_0}{\left(\overline{E}_r / \text{eV}\right)^{\alpha}} + \frac{0.429\sigma_0}{\left(2\alpha + 1\right)\left(E_c / \text{eV}\right)^{\alpha}}$$

where $\sigma_0 = 2200 \text{ m/sec cross section}$ $E_r = \text{ effective resonance energy}$

The effective resonance energy is a microscopic nuclear constant representing a kind of average over the major resonances. It is tabulated in the literature and can be determined by experiment and evaluation.

When directly measured resonance-integral data are compiled in EXFOR, it is essential

- to give all available information on the epithermal neutron spectrum and to quote the α parameter if given
- to state whether the resonance integral given is for the realistic epithermal neutron spectrum, or whether appropriate corrections have been applied so that the value given is for the ideal epithermal 1/E spectrum.

For further information see Ryves [3], Simonits [4], Jovanovic [5].

August 2015

R.11

Area	Compilation of α parameter
1	No
2	Partially
3	Partially
4	No

,RI,,RNV B (Resonance integral, non 1/v part)

3000023600116

(2)

The effective resonance integral *I* includes a small contribution from the 1/v region. Assuming the Cd cut-off energy to be about 0.5 eV, this contribution amounts to about 0.45σ ; the corrected resonance integral *I*' is then (Mughabghab, 2006)

Because the resonance integral is usually larger than the thermal cross section (about an order of magnitude larger for most nuclei), this correction is small and in almost all cases within about one standard deviation of the values of the resonance integrals. However, it is important to make this correction for the Au and Co flux monitors to avoid introducing additional systematic uncertainties in the flux determinations. For our flux monitors we have assumed the following cross sections: $\sigma(Au)=98.65 + 0.09$ b,

Deviation from 1/v of the cross sections

The resonance structure of the nucleus contains some broad or low-lying neutron resonances that might cause the cross section in the thermal region to deviate from 1/v behaviour, that is, whether the Westcott g-factor differs from unity.

Table 2. Thermal self-shielding correction factors (G_{th}) and epithermal self-shielding correction factors (G_{epi}) of the samples under study estimated using Monte Carlo method and analytical formula.

Table 1. Nuclear data and parameters of the samples used in the calculations [12–15].

Reaction	Foil/Sample	Weight	E_{γ}	I_{γ}	$T_{1/2}$	Er	F_{Cd}	f	g	σ_0	Ι
		(mg)	(keV)	(%)		(eV)				(b)	(b)
$^{197}\mathrm{Au}(\mathrm{n},\gamma)^{198}\mathrm{Au}$	Au	125 ± 0.6	411.5	95.6 ± 0.12	$2.69\mathrm{d}$	5.47	1.009	1.009	1.0054	98.71	1563
$^{55}\mathrm{Mn}(\mathrm{n},\gamma)^{56}\mathrm{Mn}$	Mn(83%)-Cu	40 ± 0.2	846.7	98.85 ± 0.3	$2.58\mathrm{h}$	468	1	1.005	1.0003	13.41	11.76
$^{138}\mathrm{Ba}(\mathrm{n},\gamma)^{139}\mathrm{Ba}$	$BaCl_2$	1000 ± 2	165.8	23.7 ± 0.24	$83.06\mathrm{m}$	15700	1	1.21	0.9993	_	_

Compilation of MONITOR / ASSUMED for RI

$$I_0(\alpha)_x = I_0(\alpha)_{\mathrm{Mn}} \frac{\sigma_{0,x}}{\sigma_{0,\mathrm{Mn}}} \frac{(R-1)_{\mathrm{Mn}}}{(R-1)_x} \left(\frac{G_{\mathrm{epi}}}{G_{\mathrm{th}}}\right)_{\mathrm{Mn}} \\ \times \left(\frac{G_{\mathrm{th}}}{G_{\mathrm{epi}}}\right)_x.$$

FACILITY(LINAC,3KORPUE) Pohang Neutron FacilitySUBENT30835003201508102016050320160408BIB925

REACTION (57-LA-139(N,G)57-LA-140,,RI)

- DECAY-DATA (57-LA-140,1.67855D,DG,328.762,0.203, DG,487.021,0.455)
- MONITOR ((MONIT1)79-AU-197(N,G)79-AU-198,,RI) ((MONIT2)57-LA-139(N,G)57-LA-140,,SIG)
- ANALYSIS The alpha-shape factor was experimentally determined by using the dual monitor method with the measured

Cd

ratios of the 197Au(n,g)198Au and 186W(n,g)187W reactions. It was derived from the Eq. (4) of Nucl.Instrum.Meth.B,335,1,2014.

ASSUMED (ASSUM,79-AU-197(N,G)79-AU-198,,SIG) DECAY-MON (79-AU-198-G,2.6947D,DG,411.80205,0.9562)

FACILITY (L	INAC,3KORI	PUE) Pohar	g Neutron F	acility	
SUBENT	30833003	20130826	20140228	20140212	3162
BIB	6 25				
REACTION	(68-ER-170	(N,G)68-ER	-171,,RI)		
DECAY-DA	TA (68-ER-17	1,7.516HR,	DG,295.90,	0.289,	
	DG,30	8.31,0.644)			
ANALYSIS	The alpha-sl	hape factor	was experim	nentally deterr	mined
	by dual mor	nitor method	using meas	sured cadmiur	m ratios
	of the 197Au	(n,g)198Au	and 186W(n	,g)187W read	ctions. It
	was derive	ed from the	Eq. (6) of J,I	NIM/B,310,10	,2013.
ASSUMED	(ASSUM1,7	'9-AU-197(N	I,G)79-AU-1	98,,SIG)	
	(ASSUM2,	79-AU-197(I	N,G)79-AU-	198,,RI)	
	(ASSUM3.6	68-ER-170(I	N.G)68-ER-	171SIG)	

FACILITY (LINAC,3KORPUE) Pohang Neutron Facility
SUBENT 30835003 20150810 20160503 20160408
BIB 9 25
REACTION (57-LA-139(N,G)57-LA-140,,RI)
DECAY-DATA (57-LA-140,1.67855D,DG,328.762,0.203,
DG,487.021,0.455)
MONITOR ((MONIT1)79-AU-197(N,G)79-AU-198,,RI)
ANALYSIS The alpha-shape factor was experimentally determined
by using the dual monitor method with the measured Cd
ratios of the 197Au(n,g)198Au and 186W(n,g)187W
reactions. It was derived from the Eq. (4) of
Nucl.Instrum.Meth.B,335,1,2014.
ASSUMED (ASSUM,79-AU-197(N,G)79-AU-198,,SIG)
(ASSUM, 57-LA-139(N,G)57-LA-140,,SIG)
DECAY-MON (79-AU-198-G.2.6947D.DG.411.80205.0.9562)

Thank you!

