

Using EXFOR for Fission Product Yield Calculations

Shin OKUMURA

Nuclear Data Section International Atomic Energy Agency, Vienna

Workshop on the Compilation of Experimental Nuclear Reaction Data 22-25 October 2018, Vienna, Austria

Contents

- Self introduction
- Fission Product Yield Calculations
 - 1. Model description for ²³⁵U(n,f)
 - 2. Independent FPY
 - 3. Cumulative FPY
 - 4. Decay heat and delayed neutrons
 - 5. Energy dependence (< 5MeV)
 - 6. Connection to the theoretical fission model (4D Langevin)

Fission product yield

• Wide variety of fission products (more than 1,000 nuclides) are produced during the fission process of actinides such as ²³⁵U.

Nuclear fission and decay processes

An accurate prediction of fission observables by theoretical calculations are still remain difficult.

0 fm/c

Mass distributions of independent FPY

Mass distribution of FPY

Comparison of ²³⁵U(n_{th},f) FPY between JENDL/FPY-2011 and experimental data taken from EXFOR

Charge distribution of FPY

• Evaluated nuclear data libraries contains the charge distribution by Wahl systematics (Z_P model). $Z_P = \frac{A_c}{Z_c}A + \Delta Z$

A.C. Wahl, Technical Report LA-13928,(2002). 8

Codes comparison

• No code reproduced the fine structure of $Y_{I}(A)$ perfectly.

Distributions of each decay stage

Calculation of independent FPY require the stochastic distributions of primary fission fragments

Stage 1: Distributions of the primary fission fragments (Monte Carlo)

- Mass, charge Y(Z, A) of fission fragments (just after the scission)
- Spin and parity distribution $R(J, \Pi)$ in the fission fragments
- Total kinetic energy (TKE) and total excitation energy (TXE)

Stage 2: Distributions in the evaporation process (MC, deterministic)

- Level density of all nuclei in the de-excitation chain
- Neutron and photon competition (strength functions) at each excited states

Calculation of the prompt fission neutron and γ-ray emissions requires to integrate (sum) over these distributions.

Deterministic Fission Fragment Decay model (HF³D) + β-decay

11

- Los Alamos and Tokyo Tech developed the deterministic way of the Hauser-Feshbach Fission Fragment Decay calculation model, HF³D.
 - Treat a primary fission fragment as a compound nucleus for Hauser-Feshbach statistical decay
 - Calculate \overline{v} , $\overline{\gamma}$, $\chi(E)$, $Y_{l}(Z,A,M)$
 - Incident neutron energy $(E_{in}) < 5 \text{ MeV}$
 - β-decay $Y_C(Z,A,M)$, ν_D , DH

Compound

nucleus

CN

Initial distribution of primary fission fragments (inputs)

$$Y(A) = \sum_{i=1}^{5} \frac{F_i}{\sqrt{2\pi\sigma_i}} \exp\left\{-\frac{(A - A_m + \Delta_i)^2}{2\sigma_i^2}\right\}$$

- The primary fission fragment mass distribution $Y_P(A)$ is approximated by five Gaussians.
- The charge distribution was generated based on Z_p model in Wahl's systematics.

$$\Gamma \mathrm{KE}(A_h) = (p_1 - p_2 A_h) \left\{ 1 - p_3 \exp\left(-\frac{(A_h - A_m)^2}{p_4}\right) \right\}$$

• Fit a simple analytic function to *TKE*(*A*) experimental data at thermal energy.

Fission fragment decay

• Distributions of primary fission fragment characterized by $Y(Z, A, E_{ex}, J^{\Pi})$ are generated and integrated deterministically for all primary fission fragment pairs (no MC sampling - fast, but lost correlation)

Neutron emission multiplicity

$$\overline{\nu}_{l,h}^{(k)} = \int dE_x \sum_{J\Pi} \int d\epsilon \ R(J,\Pi) G(E_x) \phi_{l,h}^{(k)}(J,\Pi,E_x,\epsilon)$$

Excitation energy distribution

$$G(E_x) = \frac{1}{\sqrt{2\pi}\delta_{l,h}} \exp\left\{-\frac{(E_x - E_{l,h})^2}{2\delta_{l,h}^2}\right\}$$
$$\delta_{l,h} = \frac{\delta_{\text{TXE}}}{\sqrt{E_l^2 + E_h^2}} E_{l,h}$$

• Spin and parity distribution $R(J,\Pi) = \frac{J+1/2}{2f^2\sigma^2(U)} \exp\left\{-\frac{(J+1/2)^2}{2f^2\sigma^2(U)}\right\}$

σ²(U): spin cut-off parameter
U: Excitation energy
f: scaling factor

Okumura et al. J. Nucl. Sci. Technol., 55, 1009-1023, (2018).

Result: Prompt fission neutron spectrum

Result: Prompt neutron multiplicity, v(A)

Result: Independent FPY of ²³⁵U(n_{th},f)

EXFOR# 22161-002

Result: Isomeric ratio

- ENDF (after B-VI) and JENDL 4.0 adopted isomeric ratios by Madland-England model. •
- All the nuclides having the same $J_{m/g}$ and even/odd A will have the same isomeric ratio.

Madland-England model (Current ENDF VII.1 and JENDL 4.0)			Example in JENDL 4.0			
•	Even-odd of mass of FP nuclides	Nuclide	J_g^{π}	J_m^{π}	IR	
•	Even-odd of spin difference of metastable, ground state FP	¹³²	4+	8⁻	0.42	_
	nuclides (J _m -J _g)	¹³⁴	4+	8⁻	0.42	
•	Spin of metastable, ground	¹³³ Xe	3/2-	11/2 ⁻	0.71	
	D. G. Madland and T. R. England, Nulc. Sci. Eng., 64, 859-865, (1977).	¹³⁵ Xe	3/2 ⁻	11/2-	0.71	

Result: Cumulative FPY of ²³⁵U(n_{th},f)

EXFOR# 22161-002

Result: Calculated decay heat and delayed neutron

• Summation calculation of beta decay using ENDF/B-VII decay data library

Ħ	decay heat	total (MeV/fis	sion)	
	Isotope	HF ³ D	ENDF/B-VII	JENDL/FPY-2011
	39-Y-98-0	1.0029E-01	6.2298E-02	2.9617E-02
	38-Sr-97-0	7.1420E-02	6.0794E-02	6.0945E-02
	39-Y-97-1	5.5401E-02	3.6437E-02	5.9791E-02
	38-Sr-96-0	5.2162E-02	5.4041E-02	5.4186E-02
	37–Rb–95–0	4.9638E-02	3.0397E-02	3.0479E-02
	39-Y-99-0	3.7535E-02	3.1491E-02	3.1468E-02
	40-Zr-99-0	3.1358E-02	2.8238E-02	2.8297E-02
5	55–Cs–142–0	2.5797E-02	3.2072E-02	3.2160E-02
	37-Rb-92-0	2.5157E-02	2.4540E-02	2.4606E-02
	36-Kr-93-0	2.3157E-02	1.0814E-02	1.0843E-02

Γ	uctayed neuri	011		
	Isotope	HF ³ D	ENDF/B-VII	JENDL/FPY-2011
	37–Rb–95–0	9.6787E-04	5.9269E-04	5.9428E-04
	37–Rb–94–0	4.9311E-04	3.9672E-04	3.9778E-04
	35-Br-90-0	3.8195E-04	4.4369E-04	4.4488E-04
	35-Br-91-0	3.3934E-04	3.4418E-04	3.4510E-04
	37–Rb–96–0	3.2717E-04	2.5629E-04	2.5698E-04
	35-Br-89-0	2.3806E-04	2.1677E-04	2.1735E-04
	37–Rb–97–0	2.3125E-04	7.7580E-05	7.7789E-05
	33–As–85–0	2.0059E-04	2.7429E-04	2.1779E-04
	53-I-139-0	1.8703E-04	2.0876E-04	2.0932E-04
	39-Y-99-0	1.6211E-04	1.3601E-04	1.3591E-04

Result: Energy dependence of prompt/delayed neutron

• Neutron emissions are directory related to the FPY.

These observables could be a guideline to check whether the calculations are reasonable or not.

Result: Energy dependency of cumulative FPY

Connection with fission fragment distributions by 4D Langevin model

 Theoretical calculations will give primary fission fragment distributions.

Ishizuka C, et al. Phys. Rev. C. 96:064616(2017).

How to compare with the experimental data?

4D Langevin + fragment decay

- Mass and TKF distributions from 4D Langevin model as inputs
- Comparison between calculated and experimental data of many fission observables tells the model accuracy

Summary

- Developed the Hauser-Feshbach Fission Fragment decay model for the fission fragment decay and combined it with beta decay and the summation calculation
- Simultaneously reproduces some fission observables starting from one fission fragment distribution

e.g. $\bar{\nu}$, Y_I(A, Z, M), isomeric ratio, Y_C(A,Z,M), ν_{d} , DH

- Energy dependent calculations up to 5 MeV
- Connection with microscopic and macroscopic models (primary fission fragment (Y(A) and TKE)) feasible
- The optimization of fission yield to reproduce all fission observables precisely can allow us to use this model for the evaluation of nuclear data in the future
- More experimental data helps to improve fission theories and models