

International Atomic Energy Agency

Fission Product Yields in EXFOR - Compilation and Dissemination -

Naohiko Otuka

IAEA Nuclear Data Section

EXFOR Workshop 2018 22 – 25 October 2018, IAEA Vienna

Naohiko Otuka / IAEA HQ 2018-10-22

1. Introduction

Nuclear Reaction Data Centres (NRDC)

13 centres from 8 countries and 2 international organisations (China, Hungary, India, Japan, Korea, Russia, Ukraine, USA, NEA, IAEA)

NRDC – Centre Compiling Neutron-induced FY Quantities

Centre	Location of facility covered	New FY entries (2011-)
NNDC	USA and Canada	24
NEA DB	West Europe and Japan	16
NDS	"Rest of the world"	7
CJD	Former USSR (except for Ukraine)	4
CNDC	China	4
KNDC	Korea	0
NDPCI	India	22
UkrNDC	Ukraine	0

Vienna EXFOR Workshop (October 2016)

(as of 29 June 2018. Entries with SF2=N or 0 & SF6=FY counted.)

Fission Quantities Covered in EXFOR

- Fission product yield (FPY)
- Fission neutron multiplicity (prompt, delayed)
- Fission neutron spectrum (prompt, delayed) major improvements in EXFOR in connection with IAEA CRPs
- Kinetic energy (fragment, neutron)

Quantities other than FPY (*e.g.*, v, P(v),

Fission γ multiplicity, spectrum etc.

TKE) also put useful constraints on

JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY https://doi.org/10.1080/00223131.2018.1467288 Taylor & Francis

ARTICLE

Check for updales

 $^{\rm 235}$ U(n, f) Independent fission product yield and isomeric ratio calculated with the statistical Hauser–Feshbach theory

Shin Okumura^a, Toshihiko Kawano^b, Patrick Jaffke (0^b, Patrick Talou^b and Satoshi Chiba^a

*Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, Tokyo, Japan; "Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

⊗ANS

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 190 · 258–270 · JUNE 2018 © American Nuclear Society DOI: https://doi.org/10.1080/00295639.2018.1429173

Check for updates

Identifying Inconsistencies in Fission Product Yield Evaluations with Prompt Neutron Emission

Patrick Jaffke0*

Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico 87545

Received September 13, 2017 Accepted for Publication January 14, 2018

FPY modelling.

Fission Product Yield Quantities in EXFOR

Process	Y(Z,A)	$Y(A) = \Sigma_z Y(Z,A)$	$Y(Z) = \Sigma_A Y(Z,A)$
Fission			
		PRE: primary y.	
Prompt neutron emission			
	IND: independent y.	SEC: secondary y. = MAS: mass y.	CHG: charge y.
Delayed neutron and β emission			
	CUM: cumulative y.	CHN: chain y.	

Also

- Yield ratio (e.g., fractional independent / cumulative yield, R-value)
- Most probable charge (ZP) and mass (AP)
- Ternary yield long-range α, triton (TER)

2. Coverage of FPY in EXFOR

Statements from IAEA TM on FY (IAEA(NDS)-713, 2016)

- "… 'historical' data^{*} need to be revisited in light of the new measurements and models that have become available in recent years."
 - (* Historical data mean those from radiochemical methods, classical mass spectrometry etc.)
- "It may be timely to look into the EXFOR database and check the completeness with respect to the compilations performed in the two previous IAEA CRPs on fission product yields."

TM on FPY data – current status and perspectives (23-26 May 2016, Vienna)

FPY in EXFOR in 1970s

- FPY was outside the EXFOR scope when Four Centre (4C) collaboration started in 1969.
- EXFOR coding rule for FPY was proposed by NDS (Memo 4C-3/42). It was reviewed by Crouch (Harwell), and accepted in the 1972 4C Meeting.
- However, the 4C manpower was not enough to start FPY compilation.
 - C) <u>Compilation of Fission Product Yields, Capture Gamma Ray</u> <u>Spectra and Other Data</u>

The problems of compiling both fission product yields and capture gamma ray spectra were discussed by the participants. The final decision was that none of the centres have the manpower to devote to these data yet.

Summary of 11th Four-Centre Meeting (1975)

Individual FPY Compilation

Some individual FPY compilations were available in 1970s, e.g.,

- M.E. Meek, B.F. Rider, NEDO-12154 (1972), -12154-1 (1974), -12154-2E (1978); B.F. Rider, NEDO-12154-3C (1981).
- E.A.C. Crouch, At.Data Nucl.Data Tables 19 (1977) 419.

They probably reduced motivation to maintain EXFOR complete for ¹⁾ Fission product yields and other important fission product data.

The original proposal by NDS for compilation of fission yield data, which had been previously distributed in Memo 4C-3/42, was adopted with only minor revisions. Until final manual pages are issued, compilation should proceed according to the proposals of Memo 4C-3/42. Since most of the large quantity of existing data are conveniently summarized in published review articles (e.g. Walker, AECL-3037, Part I), or in articles currently in preparation, only data which are not included in or which are produced subsequently to these review articles need be compiled with high priority.

Summary of 8th Four-Centre Meeting (1972)

Naohiko Otuka / IAEA HQ 2018-10-22

International Atomic Energy Agency

IAEA Meetings on FPY in 1980s

Two IAEA meetings on FPY in 1980s:

- SM on Fission yield evaluation (September 1987, Studsvik, INDC(NDS)-208)
- CM on Compilation and evaluation of fission yield nuclear data (September 1989 ,Vienna, INDC(NDS)-261)

which were followed by the IAEA CRP on "Compilation and evaluation of fission yield nuclear data" (1991-1996).

They definitely gave data centres strong motivation to improve the EXFOR coverage for FPY.

Individual Compilation – Meek's Compilation

 "Compilation of Fission Product Yields, Vallecitos Nuclear Center"

M.E. Meek and B.F. Rider, NEDO-12154 (1972), -12154-1 (1974), -12154-2E (1978); B.F.Rider NEDO-12154-3C (1981).

- It tabulates both evaluated and experimental data (updated yield, original yield, original reference yield).
- Last version in 1993 (T.R. England & B.F. Rider, LA-UR-94-3106). They say files are on the anonymous ftp site - t2.lanl.gov/yields.

Naohiko Otuka / IAEA HQ 2018-10-22

F1881LE ORMAL 121NG VALUE HATERIA 112357 140 BA 8 0.0000000 50 0 0000000 0:000000 U2351 000000 31672 0.0000010 20:0 20.0000008 12354 0.0003991 30 0000038 International 12

COMPUTERIZED LIBRARY ORIGINAL REFERENCE DATA

Individual Compilation – Meek's Compilation (cont)

 V.McLane (NNDC) was asked to convert Meek & Rider's files into EXFOR in the 1987 Studsvik meeting.

 Her automatic conversion produced quasi-EXFOR entries which were further upgraded by M.Lammer (NDS), Wang Dao (CNDC) etc. with the source articles.

 Centres were asked to accelerate upgrading of quasi-EXFOR entries to normal EXFOR entries using STATUS=NCHKD (original reference not checked) in 11th NRDC meeting (1991).

Individual Compilation - Crouch's Compilation

• "Fission-Product Yields from Neutron-Induced Fission"

- E.A.C Crouch, At. Data Nucl. Data Tables 19 (1977) 419, followed by
- Crouch 1, 2 and 3 (then Crouch retired in 1981),
- Crouch 4 (by E.A.C. Crouch, M.F. James, P.S. Whitworth, C. Dunn, 1985) 394 exp. refs.
- UKFY1 (→JEF1) by J. Banai, M.F. James (unpublished) 16 additional exp. refs.
- UKFY2 (by M.F. James, R.W. Mills, D.R.Weaver, Prog. Nucl. Energy 26(1991)1; AEA-TRS-1018 Part II, 1991) – 16 additional exp. refs.
- UKFY3.0 (by R.W. Mills, PhD thesis in 1995) 100 additional exp. refs.
- Meek+Rider compilation were added to UKFY3 from EXFOR, and improved its coverage of early U.S. measurements.

Atomic Data						***************************************				
AND	A EI	L. REF.	EXPERIME	NTAL	MEAN	R	CHI2/DF	DCHI2 CHI2	TOTAL	
Nuclear Data Tables	NO.	NO.	YIELDS &	SD	COMPONENT	VALUE	COMPONENT	EXTERNAL	INT.	
	77 GI	E 640	1.100E-02	15.0					3.3:	
The second secon	A	S 300	1.050E-01	50.0		1.83				
A land	CI	HAIN 2102	9.100E-03	20.0		-1.83				
ACADEMIC PRESS Water Work and London	78 GI	E 640	5.200E-02	15.0						K
Naohiko Otuka / IAEA HQ 2018-10-22			14			Inte	ernationa	I Atomic E	nergy A	gency 🐧

Individual Compilation - Crouch's Compilation (cont)

- Crouch's compilation was converted to NEUDATA by CCDN (Saclay) in 1977. But CCDN decided not to give high priority to its conversion to EXFOR (Memo 4C-2/89).
- Charlie Dunford (NNDC) said in 1977 that Meek+Rider's compilation contains ~1000 articles whereas Croach has ~300 articles only. Mr. <u>Schofield reported that CCDN converted the Crouch Library of experimental</u>

Mr. <u>Schofield</u> reported that CCDN converted the Crouch Library of experimental fission-product yield data to Neudada, and thus these data could well be transmitted after performing a simplified Exfor compilation procedure. (see <u>Conclusion 12</u>).

Mr. Dunford said that this converted Crouch Library should do it, although it is known that this does not contain all of the details required in Exfor. NNDC would have no manpower for reviewing the correctness of the Crouch Library. Mr. Dunford pointed out that Meek and Rider's compilation contains about 1000 references, whereas Crouch has about 300 references only, due to quality selections. NNDC could provide a list of references found missing in Crouch's Library (Action 52).

Summary of 2nd NRDC Meeting INDC(NDS)-90, 1977

Individual Compilation - Crouch's Compilation (cont)

- P.D. Johnson (CCDN) compared Crouch's 1977 compilation with EXFOF and CINDA in 1980.
- He concluded that of 394 references in Crouch's compilation, 103 are missing in CINDA and 359 are missing in EXFOR.
- The situation could be better after Meek-to-EXFOR conversion in 1990s, but we do not know how many experiments are still not in EXFOR.

	REFERENCE	DATE	LAS	AR	ĒΑ	EXFOR		CINDA	-
				-ARI	E 4	1			
	SAGENEVA15	4365809	×c×	1	7				
≺I	58GENEVA15	4445809	0.976	1					
۱	58GENEVA15	4495809	NRÜ	1					
	58GENEVA15	4595809	CRC	1					
	65ATLANT	6500		1			NOT	IN CINDA	
	655AL 28 1	4236507	NRO	1					
	69VIENNA	9136907	MIS	1					
	2 01.VEG 2	13067001	LAS	1			MOT	IN CINDA	
	TOMAREG	687009	LAS	i			NOT	IN CINDA	
	75WASH	3787503	ACC	1			NOT	IN CINDA	
	50756-GA	76500	NRD	1		- E	NOT	IN CINDA	
	AD-686041	6812	NRD	1		<u> </u>	NOT	IN CINDA	
	AECD-3551	5308	LAS	1		r r			
	AECD-3597	5300	LAS	1		=.	NOT	IN CINDA	
	ANDERSON	7200	TEX	1	_ ⊢	<u> </u>	NOT	IN CINDA	
•	ANL-4927	5200	ARL	1					
11	ANL-4928	5200	4.84	1			NOT	IN CINDA	
• 1	ANS 13	907007	ANL	1		\sim			
	ANS 14	3707106	AtaL	1		T			
	ANS 15	4837200	ANL	1		O			
	ANS 17	5317300		1		Ť	NOT	IN CINDA	
	ANS 19	3977410	LRL	1		~			
	ANS 22	6777500		1					
	ANS 24	4587600	ANL	1					
	BAYHURST	6000	LAS	1			NOT	IN CINDA	
	BERGE	7200	MIS	1			NOT	IN CINDA	
	8NWL-281	7300	8.9%	1			MOT	IN CINDA	
	CJC 31	485300	CRC	1			N0T	IN CINDA	
	CJC 31	1205302	CRC	1					
	CJC 31	2425300	CRC	1					
	CJC 32	10175411	CPC	1					
	CJC 33	8305505	MCM	1	EXF	0812086			
			1.0 - 0.0						

Memo 4C-2/115 by Johnson

Checking of UK Database Against EXFOR

- We should know what are in the UK database but missing in EXFOR.
- Robert Mills is happy to share the latest version of his database with NDS and NEA DB (but he needs clearance at his side).
- Takanari Fukuda, Shin Okumura and O.N. (NDS) is checking existence of the references in Mill's 1995 DB in EXFOR/CINDA.

International Atomic Energy Agen

Checking of UK Database Against EXFOR (Cont)

 Very preliminary result for the 1st part of UK list (1190 references): EXFOR/Mills~73%, CINDA/Mills~91%.

E	ج ا	· @ - =					mill	s-2018-10-18.xlsx - Excel			C	DTSUK.
File Home Insert Page Layout Formulas Data Review View Acrobat Enterprise Connect Q Tell me what you want to do												
Past	Clipbo	Cut Copy ~ Cormat Pain oard	iter	Calibri ▼ 10 B I U ▼ I		Image: Second	General Center + S + % *	* Oconditional Format as Formatting * Table * Styles	↓ ↓ ↓ ↓	ert Dele Cell	te Format	Auto: Fill + Clear
H1 \bullet : $\times \checkmark f_x$ remarks												
	Α	В	с	D	E	F	G	Н	1	J	к	
1	Added ine	ref min re	ef max	k author	reference in EXFOR/CINDA format ([]: presence not confirmed)	EXFOR # (0: not in EXFOR, []: not in EXFOR but blocked in CINDA)	Lab (0: not in CINDA)	remarks	in EXFOF ? (Yes=:	in CINDA ? L (Yes=1	Completenes	5
2		1	3	K.A.Petrzhak+	R,AEC-TR-4696,1961	0	4RUSRI	Eng.of B,NEJTRONFIZ,,217,1961		0	1	
3		4	12	B.P.Bayhurst	R,TID-5787,1957	13432	1USALAS			1	1	
4		13	13	H.V.Weiss+	R,USNRDL-TR-943,1965	0	1USANRD	Superseded		0	1	
5		14	14	J.M.Crook+	R,IS-558,1963	13200	1USAIOW			1	1	
6		15	15	R.N.Ivanov+	J,JNE,9,46,1959	40730	4RUSITE	Eng.of J,AE,3,546,1957		1	1	
7	Added	15	15	R.N.Ivanov+	J,SJA,3,1436,1957	40730	3RUSITE	<u>↑</u>		1	1	
8		16	16	M.P.Anikina+	J,JNE,9,167,1959	0	4RUSITE	Eng.of J,AE,4,198,1958		0	1	
9		16	16	M.P.Anikina+	J,SJA,4,270,1958	0	4RUSITE	Eng.of J,AE,4,198,1959	-	0	1	
10		17	20	M.P.Anikina+	C,58GENEVA,15,446,1958	40730	4RUSITE					1
11		21	27	D.C.Aumann+	J,JIN,31,1935,1969	13242	1USAANL			ALCON M		
12		26	26	N.K.Aras+	J,JIN,28,763,1966	13085	1USAORL	Supersedes R,MIT-905-52,21,1965.			7	
13	Added	26	26	N.K.Aras+	R,MIT-905-21,1965	0	1USAMIT	↑ 	0	les	9	1
14		27	27	M.P.Anikina+	J,JNE,6,169,1957	0	4RUSITE	Eng.of J,AE,2,275,1957		1		
15		28	28	A.T.Blades+	J,CJC,34,233,1956	13389, 13391	1CANMCM	Data also refered to in [401-402].		N		
16		29	29	L.R.Bunney+	J,JIN,27,1183,1965	13214	1USANRD					

Checking of Mill's DB against EXFOR/CINDA (Example)

(received from Mills)

- 1. Missing in EXFOR!
- 2. EXFOR 13432
- 3. (skipped)
- 4 EXEOR 13200

•••

2. B.P.Bayhurst, R, TID-5787, 1957

4. J.M.Crook+, R, IS-558, 1963

3. H.V.Weiss+, R, USNRDL-TR-943, 1965

(superseded by EXFOR 13083)

FPY Experiments in CINDA but not in EXFOR

The number of experiments in CINDA blocked with and without EXFOR for three fissioning systems. (Only manually compiled CINDA records are used.)

Fission system	FY experiments (total)	FY experiments without EXFOR
²³⁵ U(n,f)	683	309
²³⁹ Pu(n,f)	273	116
²⁵² Cf(sf)	145	85

Many FY experiments in CINDA are still missing in EXFOR. Note that

- not all CINDA references are EXFORable.
- CINDA FY include quantities other than FYP.

3. Dissemination of FPY in EXFOR

Statement from IAEA TM on FY (IAEA(NDS)-713, 2016)

- "Dissemination of experimental and evaluated fission product yield data is another important point to be taken seriously by dissemination centers."
- "Existing tools like JANIS (OECD/NEA Data Bank), should be upgraded to facilitate online display and retrieval of FPY data."
- "Participants also expressed the need for improving the retrieval of FPY data from the EXFOR database."

TM on FPY data – current status and perspectives (23-26 May 2016, Vienna)

Feedbacks from Shu Nengchuan

1. Standard data table:

The fission yield data table has many formats, it is better to give a <u>standard format</u>, such as :

EN ELMENT MASS ISOMER DATA DATA-ERR DECAY-FLAG ...

2. Product retrieve:

When the product **MASS** and/or **ELMENT** are given in the data table, that will be failed through the retrieve system.

Suggestion:

Create a product index from data table, and add the function in the retrieve system. This is very important for fission yield data evaluation.

International Atomic Energy Agenc

Feedbacks from Shu Nengchuan (cont)

3. Missing of the decay gamma intensity:

Many entries did not give the gamma intense in the **DECAY-DATA**, which is trouble to yield evaluation.

4. Add a covariance data block

5. Year format:

The year in the REFERENCE should be given in one format such as **197808** or **1978**, which year=1978 and month=08.

Feedback from Shu Nengchuan (cont)

6. XML output

XML lib is very good, but the structure is too complicate. For example, **my XML** for the data table is more simple :

Dr Shu sent NDS these comments through Wang Jimin (CNDC).

FPY EXFOR Format

Flags like PRE, SEC, IND, CUM, ... are seen in the EXFOR REACTION code.

Example:

- 92-U-235(N,F)MASS,PRE,FY (primary fragment mass yield table Y(A))
- 92-U-235(N,F)ELEM/MASS,CUM,FY (cumulative yield table Y(Z,A))

⁹ 21/ 0.000(0)	
$ \circ Kr 0.296(3) DATA$	4 33
⁸⁴ Kr 0.477(5) ELEMENT MASS NO-DIM NO-DIM	DATA DATA-ERR PC/FIS PC/FIS
⁸⁶ Kr 0.763(8) 36. 83.	0.296 0.003
36. 84. 36. 86.	0.477 0.005 0.763 0.008

EXFOR Deficiency (1): FPY as a Variable of Table

We can search it by Product=48-CD-115-G on NDS website.

REACTION (92-U-235(N,F)48-CD-115-G,CUM,FY)	
DECAY-DATA (48-CD-115-G,2.33D,B-)	Examples of requests: 1234567 Go to: [upload your data] I Cross section σ(E) /updates/ More examples Coptions Soptions Soption
 DATA PC/FIS 0.011	Request Submit Reset Help Target U-235 ? Reaction N,F ? Quantity FY ? Product 48-CD-115-G ? Energy from to ev
ENDDATA 3	

We have to activate "Enhanced search of Products" to find it on NDS website.

REACTION	(92-U-23	5 (N,F)ELEM/I	MASS, CUM, FY)	
DECAY-DATA	48-CD-1	15-G,2.33D,1	B-)	
 ELEMENT NO-DIM 48.	MASS NO-DIM 115.	ISOMER NO-DIM 0.	DATA PC/FIS 0.011	Examples of requests: <u>1234567</u> <u>1</u> Cross section σ(E) /updates/ More examples <u>1</u> Cross section σ(E) /updates/ More examples <u>Coptions</u>
ENDDATA		3		

EXFOR Deficiency (1): FPY as a Variable of Table (cont)

A subentry for a specific product nuclide

REACTION	(92-U-235 (N,F) 48-CD-115-G,CUM,FY)
DECAY-DATA	(48-CD-115-G,2.33D,B-)
DATA	
PC/FIS	
0.011	
ENDDATA	3

A subentry for several product nuclide

(92-U-235(N,F)ELEM/MASS,CUM,FY)								
(48-CD-115-G,2.33D,B-)								
MASS	ISOMER	DATA						
NO-DIM	NO-DIM	PC/FIS						
115.	0.	0.011						
	3							
	(92-U-235) (48-CD-115 MASS NO-DIM 115.	(92-U-235 (N,F) ELEM/MZ (48-CD-115-G,2.33D,B- MASS ISOMER NO-DIM NO-DIM 115. 0. 3						

This flexibility helps EXFOR compilers, but we know it is not convenient for end-users.

The NDS web system can provide a table in a unified style in the C4 (as it has been also done for isotope production <u>cross sections</u>.)

Current C4 Format for FPY (EXFOR 10828.002)

Proj.Ta	rg.	MF	MT		Einc,eV	dEinc,eV	FPY/fis	dFPY/fis	Z(FPY)	A(FPY)
1 92	235	801	18	A	6000000.	250000.0	0.011566	6.7545-3	35.00000	84.00000
1 92	235	801	18	A	6000000.	250000.0	0.029404	5.9521-3	36.00000	87.00000
1 92	235	801	18	A	6000000.	250000.0	0.038215	3.5542-3	38.00000	89.00000
1 92	235	801	18	A	6000000.	250000.0	0.053087	5.8020-3	38.00000	91.00000
1 92	235	801	18	A	6000000.	250000.0	0.058519	5.4426-3	40.00000	95.00000
1 92	235	801	18	A	6000000.	250000.0	0.057187	6.2281-3	40.00000	97.00000
1 92	235	801	18	A	6000000.	250000.0	0.061670	5.7356-3	42.00000	99.00000

Current "EXFOR REACTION – MF/MT Equivalence Table" for FPY

REACTION	MF	MT	
(*,F)ELEM/MASS,CUM,FY	801	18] (
(*,F)ELEM/MASS,CUM,FY,,SPA	801	18	
(*,F)ELEM/MASS, IND, FY,, MXW	801	18	
(*,F)MASS,CHN,FY,,MXW	801	18	
((*,F)ELEM/MASS, IND, FY,, MXW)/((*,F)MASS, CHN, FY,,	802	18	

(Must be improved and extended to make more FPY data available in C4.)

Computational Formats of FPY Proposed in 1980s

Proposal by P.D.Johnston (Memo 4C-2/113, 1980)

	Variable	FORTRAN	COBOL PL/I Format	Cols.	Description
DATA					
	Z-TAR	IЗ	9(3)	1-3	Z-number of target
	A-TAR	A 3	X(3)	4-6	A-number of target
	N-SPEC	А	x	7	Code for incident neutron
					spectrum (see A below)
	N-ENER	E9.2	X (9)	8-16	Neutron energy (eV)
	Z-PRO	I 3	9(3)	17-19	Z-number of product
	A-PRO	A 3	X(3)	20-22	A-number of product
	ISOM	A	x	23	Isomer state (m)
	YIE-TYP	A 2	X(2)	24-25	Yield type (see B below)
	YIELD	E10.3	X(10)	26-35	Yield (""")
	YIE-ERR	E10.3	X(10)	36-45	Yield error(""")
	DEC-PAR	A 2	X(2)	46-47	Decay particle (see C below)
	HAL-LIF	A 8 -	X (8)	48-55	Half-life & units (free format)
	DEC-EN	A 6	X(6)	56-61	Decay energy (keV)
	BRA-RAT	A 4	X(4)	62-65	Branch ratio
IORMAL	ISATION	. *			
	N-Z-TAP	т ['] 3	9(3)	66-68	Z-number of target
	N-A-TAR	A 3	x (3)	69-71	A-number of targe
	N-N-SPEC	A .	x (5)	72	Code for incident neutron
	N-N-DEDC	A	A .	12	spectrum (see A below)
	N-N-ENER	EQ. 2	¥(9)	73-81	Neutron energy (ey)
	N-Z-PRO	T 3	9(3)	82-84	Z-number of product
	N-A-PRO	<u> </u>	x(3)	85-87	A-number of product
	N-TSOM	2	× ×	88	Teomer state (m)
	N-YIE-TYP	n 2	x (2)	89-90	Vield type (see B below)
	N-YTELD	E10.3	x (10)	91-100	Yield (""")
	N-DEC-PAP *	A 2	x(2)	101-102	Decay particle (see C below)
	N-HAL-LIF X	A 8	X(8)	103-110	Half-life & units (free format)
	N-DEC-EN *	AG	X (6)	111-116	Decay energy (keV)
	N-BRA-RAT *	A 4	x(4)	117-120	Branch ratio
INDEX					
	LAB	А 3	x(3)	121-123	Laboratory (as in CINDA
					dictionary)
	ACCESS	I 5	9(5)	124-128	EXFOR accession number
	SUB-ACCESS	13	9(3)	129-131	EXFOR sub-accession number
	FILLER	А	х	132	Blanks

Proposal by V.McLane (Memo CP-C/189, 1989)

FISSION PRODUCT YIELD COMPUTATION FORMAT

Variable	Columns	FORTRAN
Data		Format
Target isotope Z,A,isomer	1 - 7	13.13.11
Incident projectile	8	A1
Yield type/modifier	9 - 11	A2. A1
Energy (eV)	12 - 19	X.XXX+DD
Spectrum code	20	A1
Product isotope Z,A,isomer	21 - 27	13.13.11
		Z=0 for mass yields; A=0 for element yields
Decay half-life (min)	28 - 35	x.xxx±nn
Spin/parity [†]	36 - 38	±x.
Yield*	39 - 47	x.xxxx±nn
+Yield error*	48 - 56	x.xxxx±nn
-Yield error*	57 - 65	x.xxxx±nn
Error code	66	A1
Normalization		
Target isotope Z,A,isomer	67 - 73	13,13,11
Incident projectile	74	A1
Yield type	75 - 76	A2
Energy (eV)	77 - 84	x.xxx±nn
Spectrum code	85	A1
Product isotope Z,A,isomer	86 - 92	13,13,11
		Z=0 for mass yields;
		A=0 for element yields
Decay half-life (min)	93 -100	x.xxx±nn
Yield*	101-109	x.xxxx±nn
Yield error*	110 - 118	A2
Method code	119	A1
Reference		
Institute	120 - 122	A3 (as in CINDA)
Date	123 - 124	A2
Accession #	125 - 129	A5
Subaccession #	130 - 132	13

Both include monitor values (as MeeK+Rider's compilation), decay data etc.

EXFOR Deficiency (2): FPY Ratio

REACTION	((92-U-235(N,F)48-CD-115-G,CUM,FY)/							
	(92-U-235 (N,F) 42-MO-99,CUM,FY))							
DATA	DATA-ERR							
NO-DIM	PER-CENT							
0.402	26.3							
ENDDATA	3							

We know evaluators prefer to have the measured ratio to the FPY of monitor products (e.g., ⁹⁹Mo, ¹⁴⁰Ba).

But some end-users want to have the corresponding absolute FPY - Request from K.Tsubakihara (Tokyo Inst. Tech.)

International Atomic Energy Agen

EXFOR Deficiency (2): FPY Ratio (cont)

²³³U(n,f)/²³⁵U(n,f) cross section ratio (EXFOR 14402.003) **3** (2) (92-U-233(N, F), SIG) / (92-U-235(N, F), SIG) C4: MF=3 MT=? Quantity: [CS] Cross section + i X4 X4+ X4± T4 Cov 2014 F.Tovesson+ 3.07e5 1.94e8 113 Plotted after conversion to Advanced Plotting: LST(1Kb) Select experimental data for plotting... Go to Ouantity type #Plots Plotted as the ratio absolute cross section by using the Cross section data 1 σ (E) σ/σ (E) RAT section ratio 1 provided by the authors IAEA ²³⁵U(n,f) standard stored in o to plot evaluated data.. the system. (92-U-233(N.F)..SIG)/(92-U-235(N.F)..SIG) (92-U-233(N,F),,SIG) 0.5 10 50 10^{2} 0.5 50 102 84:14402003 014 Touosson 🔶 2014 Tovesson 2.5 2.5 **Cross section** Section (barns) Ratio 2.0 2.0 Cross section ratio 1.5 0.5 5 10 50 Incident Energy (MeV) 0.5 1 5 10 50 102 Incident Energy (MeV)

This can be extended to FPY (Monitor FPY values should be known!)

Naohiko Otuka / IAEA HQ 2018-10-22

International Atomic Energy Agency

EXFOR Deficiency (2): FPY Ratio (cont)

```
Other major FPY ratios in EXFOR:
Fractional independent yield (FRIND)
((92-U-235(N,F)ELEM/MASS, IND, FY)/
(92-U-235(N,F)MASS,CHN,FY))
Fractional cumulative yield (FRCUM)
((92-U-235(N,F)) = LEM/MASS, CUM, FY)/
(92-U-235(N,F)MASS,CHN,FY))
R-value (RVAL)
(((92-U-238(N,F)ELEM/MASS,CUM,FY,,FIS)/
(92-U-238 (N, F) 42-MO-99, CUM, FY, , FIS))//
((92-U-238(N,F)ELEM/MASS,CUM,FY,,MXW))
(92-U-238(N,F)42-MO-99,CUM,FY,MXW)))
```

We should extend C4 to these ratios!

Physics Letters B 761 (2016) 125-130

Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the $^{18}O + ^{232}Th$ reaction

R. Léguillon^a, K. Nishio^{a,*}, K. Hirose^a, H. Makii^a, I. Nishinaka^a, R. Orlandi^a, K. Tsukada^a, J. Smallcomba^{a,b}, S. Chiba^c, V. Aritoma^d, T. Ohtauki^e, P. Tatauaua^f, N. Takaki^f

²³²Th(¹⁸O,¹⁴C+f) to study FPY of ²³⁶U* fissioning system

Mass distribution measured at JAEA Tandem (Δ is from ²³⁵U(n,f) experiments)

PID of projectile-like particle

Naohiko Otuka / IAEA HQ 2018-10-22

PHYSICAL REVIEW C 88, 024605 (2013)

Isotopic yield distributions of transfer- and fusion-induced fission from ²³⁸U + ¹²C reactions in inverse kinematics

M. Caamaño,^{1,2,*} O. Delaune,^{1,†} F. Farget,^{1,‡} X. Derkx,^{1,§} K.-H. Schmidt,¹ L. Audouin,³ C.-O. Bacri,³ G. Barreau,⁴ I. Benlliure ² F. Casareios ⁵ A. Chbibi ¹ B. Fernández-Domínguez ⁶ I. Gaudefrov ⁷ C. Golabek ¹ B. Iurado ⁴

²³⁸U(¹²C,¹⁰B+f) to study FPY of ²⁴⁰Pu* fissioning system

PID of projectile-like particle

Isotopic yield measured by VAMOS @GANIL (• and • are from ²³⁹Pu(n_{th},f) experiments)

Indirect measurement of fission following

- Transfer reaction (e.g., JAEA, VAMOS@GANIL)
- Coulomb excitation (e.g., SOFIA@GSI)
- β-decay (e.g., ISOLDE@CERN)

(My thanks to Valentina Semkova for itemizing these cases!)

According to EXFOR rule, ²³⁵U(n,n'f) second chance fission becomes

92-U-235 (N,N+F) ...

But probably users do not want to see

92-U-238 (6-C-12, 5-B-10+F) ...

if the aim of the experiment is to provide ²⁴⁰Pu* FPY data....

²³⁸U(¹²C,¹⁰B+f) to study FPY of ²⁴⁰Pu* FPY (EXFOR O2160.003)

"Is there a way of specifying the compound nucleus and excitation energy for fission yields rather than the U238 on C reaction? Of course, this could be done in comments, but it would be better if this was searchable and extractable so that users could find the data." (Robert Mills, 7 May 2015)

Possible solution: ²⁴⁰Pu* (sf) instead of ²³⁸U(¹²C, ¹⁰B+f)

²⁴⁰Pu excitation energy for the VAMOS data set.

Problem: Excitation energy values are not always seen in the literature.

EXFOR Deficiency (4): Web Retrieval

- EXFOR format of fission quantities becomes often complicated.
- It search also is therefore often challenging for users.
- Viktor Zerkin's strategy is to show more "examples".

▼ Examples of requests: 1/2/3/	
Request Submit Reset Help	
Target 7	
Reaction 2	-
Quantity 2	
Product ?	
Author(s)	
lication year 7	
ast modified 2	
Accession #?	
✓ Extended ✓ Keywords	
17 Fission spectra b Thick target neutron spect	ra
18 Invert reaction using detailed balance ¹⁵ C(α,n) ¹⁰ O -	$\rightarrow {}^{10}O(n,\alpha){}^{13}C: \sigma d\sigma/d\Omega$
$F_{X,2}$: ³ He(d,p) ⁴ He \rightarrow ⁴ He(p,d) ³ He d\sigma/d\Omega [plot]	
19 Various fission quantities: a Yield (chain, primary	FE secondary FE)
	rr, secondary rr)
b Cumulative yield of ¹⁴⁷ Nd c Total kinetic	energy
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons	energy
 b]Cumulative yield of ¹⁴⁷Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; 	energy
<u>b</u> Cumulative yield of ¹⁴⁷ Nd <u>c</u>]Total kinetic <u>d</u> Multiplicity of prompt fission neutrons <u>20</u> Plotting cross section coded with SF8=DAM; Request Submit Re	energy
<u>b</u> Cumulative yield of ¹⁴⁷ Nd <u>c</u>]Total kinetic <u>d</u> Multiplicity of prompt fission neutrons <u>20</u> Plotting cross section coded with SF8=DAM; Request Submit Re	all eset Help
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target ♥ U-235	all eset Help
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target ♥ U-235 Reaction ♥ n,f	energy all eset Help ? ?
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target ♥ U-235 Reaction ♥ n,f Quantity ♥ FY	energy all eset Help ? ? ? ? ?
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target U-235 Reaction n,f Quantity FY Product nd-147	all eset Help ? ?
▶]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target U-235 Reaction n,f Quantity FY Product nd-147	all eset Help ? ? ? ?
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target U-235 Reaction Reaction n,f Quantity FY Product nd-147 Energy from to	all eset Help ? ? ? ?
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target U-235 Reaction Reaction n,f Quantity FY Product nd-147 Energy from to Author(s)	all eset Help ? ? ? ev v??
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target U-235 Reaction Reaction n,f Quantity FY Product nd-147 Energy from to Author(s) Publication year	energy all eset Help ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target U-235 Reaction n,f Quantity FY Product nd-147 Energy from to Author(s) Publication year Last modified	energy all eset Help ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
b]Cumulative yield of ¹⁴⁷ Nd c]Total kinetic d]Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target ♥ U-235 Reaction ♥ n,f Quantity ♥ FY Product ♥ nd-147 Energy from to Author(s) Publication year Last modified Accession #	energy all eset Help ? ? ? ? ? ? ? ? ? ? ? ? ?
b] Cumulative yield of ¹⁴⁷ Nd c] Total kinetic d] Multiplicity of prompt fission neutrons 20 Plotting cross section coded with SF8=DAM; Request Submit Re Target ♥ U-235 Reaction ♥ n,f Quantity ♥ FY Product ♥ nd-147 Energy from to Author(s) Publication year Last modified Accession #	energy all eset Help ? ? ? ? ? ? ? ? ? ? ? ? ?

4. A Few Additional Remarks on Compilation

Incident Energy Characterization in EXFOR

Requirement for documentation (Memo CP-D/199, 1989)

- Thermal reactor (where MXW and SPA are not coded in a consistent manner.)
 - Maxwellian temperature or mean energy
 - Epithermal neutron fraction (Westcott r-factor)
- Fast reactor
 - Mean energy of other spectral index
- Fission spectrum
 - Fission neutron source (e.g., ²⁵²Cf(sf,), ²³⁵U(n_{th},f))
- Monoenergetic neutrons
 - Neutron source description (e.g., T(d,n), ⁷Li(p,n))
 - Spectral shape

Beam neutron spectrum characterization is important for cross section study, but probably less important for FPY study (?)

Decay Data and Decay Scheme Considered

Requirement for documentation (Memo CP-D/199, 1989)

- precursor considered
- product isomers considered and spin of isomers for independent yields
- Nuclear data used and their uncertainties (capture cross section, decay data for corrections, decay data for spectrum analysis, delayed neutron data) etc.

Are EXFOR FPY characterized by the same modifier (IND or CUM) always comparable directly? (I hope so...)

Decay Data and Decay Scheme Considered (cont)

Activation- decay type	Activation-decay scheme	$\frac{\frac{6\sigma_0}{M}}{\text{tion } [Eq.(I.3-34)]}$	Q0" in (1.3- (1.3- (1.3- (1.3-	Eqs -18) -20) -21)	$\frac{N_p/t_m}{\sqrt{3500}}$ in Eqs (I.3-18) - (to be divided by w for obt in Eqs (I.3-18) - (I.3-21)	(1.3-21), taining A _{sp}						
III/b	Special case : $F_{24} = 0$	$\frac{\frac{\theta \sigma_0 \mathbb{F}_2 \mathbb{F}_3 \gamma_4}{M}}{M}$	$\frac{1}{\sigma_0}$	<u>)</u>)	$(\mathtt{N}_{\mathtt{p},\mathtt{4}}/\mathtt{t}_{\mathtt{m}}) \cdot \left[\mathtt{S}_{\mathtt{2}} \mathtt{D}_{\mathtt{2}} \mathtt{C}_{\mathtt{2}} \frac{\lambda_{\mathtt{4}} \lambda_{\mathtt{3}}}{(\lambda_{\mathtt{4}} - \lambda_{\mathtt{2}}) (\lambda_{\mathtt{3}} - \lambda_{\mathtt{2}})} \right]$		Mea	sured t	herma	l data (k _o)	
					$- s_3 p_3 c_3 \frac{\lambda_2 \lambda_4}{(\lambda_4 - \lambda_3)(\lambda_3)}$	- \[\] _2)	tabulated by Frans De (rte	
					+ $s_4 D_4 C_4 \frac{\lambda_2 \lambda_3}{(\lambda_4 - \lambda_2)(\lambda_4 - \lambda_3)}$	-_3)	- (k, is a quantity defined f				:. d for	
III/c	Special case : $\lambda_3 \gg \lambda_2$ and λ_4 , $D_3 = 0$ $F_3 = 1$, $F_2 + F_{24} = 1$ [e.g. $\frac{105_{\text{Rh}}}{10}$ from $\frac{104_{\text{Ru}}(n, \gamma)}{104_{\text{Ru}}(n, \gamma)}$]	<u>θ σ₀ γ₄</u> Μ	P3		$(N_{\mathbf{p},4}/t_{\mathbf{m}}) \cdot \frac{\lambda_4 - \lambda_2}{\lambda_4 S_2 D_2 C_2 - \lambda_2 S_4 D_4 C_4}$		neutron activation and			analys	analysis.)	
IV/a	$ \begin{array}{c} \sigma_{0}^{m}, \overline{1}_{0}^{m} \\ 1 \\ n, \gamma \\ \overline{f_{2}, \lambda_{2}} \\ f$	^{⊕ σ} ⁸ γ ₃ <u>Μ</u>	IS 0 0		$ (N_{\mathbf{p},3}^{\prime}/t_{\mathbf{m}}^{\prime}) \cdot \left[\frac{\mathbb{P}_{2} \sigma_{0}^{\mathbf{m}}}{\sigma_{0}^{\mathbf{E}}} \frac{\mathbb{E} + O_{0}^{\mathbf{m}}(\alpha)}{\mathbb{E} + O_{0}^{\mathbf{E}}(\alpha)} \frac{\lambda_{3} S_{2}}{\mathbb{E} + O_{0}^{\mathbf{E}}(\alpha)} \right]^{-1} $	$\frac{2^{D_2C_2 - \lambda_2S_3D_3C_3}}{\lambda_3 - \lambda_2}$						
	σ_0^5, r_0^5 3				Isotope		Ε.,	м	easured k _{0, Au} and	relative error, 7	ξ	
**	[e.g. <u>Br</u> from Br(α,γ)]		Ele- ment		Sample preparation	formed (Activation- decay type)	keV	KPKI "	wr-m"	INW "	THET	
IV/b	Special case : $\lambda_2 \gg \lambda_3$ and $D_2 \approx 0$ [e.g. $\frac{6^{\circ}C_{\circ}}{2}$ from $\frac{59}{2}C_{\circ}(n,\gamma)$]	$\frac{\theta\left(\mathbb{F}_{2}\sigma_{0}^{m}+\sigma_{0}^{g}\right)\gamma_{3}}{M}$	Cs X		: 20 μ g CaNO ₃ (in H ₂ O) on -foil; pellet 6.4 mm diam. 0.2 mm : CsCl (in H ₂ O) on W 41; 7 mm (CH 3), 1.7 mm (CH 15);	134m _{Cs} (I)	127.5	5.47.10 ⁻³ (1.3)	5.54.10 ⁻³ (1.3)	5.69.10 ⁻³ (0.6)	5	
IV/c	Special case : $\lambda_2 < \lambda_3$ and $D_3 = 0$	$\frac{\frac{\theta F_2 \sigma_0^m Y_3}{M}}{M}$		pe	llet 10 mm diam. x 4 mm	134 _{Сэ} (IV/b)	563.2 569.3	$4.22.10^{-2}(2.6)$ 7.41.10 ⁻² (0.9)	$4.09.10^{-2}(3.2)$ 7.36.10 ⁻² (1.8)	$4.26.10^{-2}(0.6)$ 7.51.10 ⁻² (0.5)	3	
							795.8 801.9	$4.21.10^{-1}(0.7) 4.16.10^{-2}(2.0)$	4.18.10 ⁻¹ (1.8) 4.10.10 ⁻² (2.7)	$4.26.10^{-1}(0.4)$ $4.27.10^{-2}(1.9)$	3.	
						121-					1	

F.De Corte et al, J.Radioanal.Nucl.Chem.133(1989)3

Y(A): Correction for Prompt Neutron Emission

- Primary mass yield is often derived from secondary mass yield measured by 2E method, 2E-2v method.
- Various assumptions (e.g., v(A) value, isotropic emission of neutron)
- What EXFOR compilers can do is to describe derivation of the primary yield briefly in text (e.g., 2E, 2E-2v).

K.Jansson et al, arXiv:1709.07443v1 (2007)

International Atomic Energy Agen

Future Tasks for NDS and NRDC

- Centres could not put high priority to FPY compilation until 80s. NDS started X4-UKFY comparison to estimate X4 completeness.
- FPY data in EXFOR should be in a unified format. We need to extend the computational format (C4).
- The EXFOR format must be improved for FPY data measured by transfer reactions etc
- LANL workshop (20-23 August, 2018) and its follow up meeting (27-30 May 2019, Tokyo) to collect comments from evaluators.

Thank you for your attention!

First banana harvest at Nuclear Data Section (January 2018)

4C and CP Memo on FPY Compilation

Only memos archived on the NRDC website are listed:

- 4C-2/14, 89, 113 (112 is wrongly printed), 115
- 4C-3/122, 241, 317, 328, 341, 343, 363
- 4C-4/9, 13,
- CP-C/189
- CP-D/178, 185, 199

