

HOKKAIDO UNIVERSITY Graduate School of Biomedical Science and Engineering

Activation cross sections of chargedparticle-induced reactions for medical radionuclide generator

December 15, 2022

Masayuki AIKAWA

Faculty of Science/ Graduate School of Biomedical Science and Engineering, Hokkaido University

Affiliation: Hokkaido University, Japan

HOKKAIDO UNIVERSITY

Introduction

- Many radionuclides are used for diagnosis and therapy.
 - Diagnosis
 - positron emitters for PET
 - gamma emitters for SPECT
 - Therapy
 - beta, alpha, and Auger electron emitters

Figure 1. Color-coded periodic table with current or potential applications of each element in diagnostic and/or therapeutic radiopharmaceuticals.^{2–14} Periodic table reproduced by permission of International Union of Pure and Applied Chemistry. Copyright © 2018

Figure 3. Radiometal decay types and their corresponding applications in nuclear medicine. [†]Indicates that degree of rotation, number of detectors, and orbital path may vary depending on instrument.

T.I. Kostelnik et al., Chem. Rev. 119 (2019) 902

International Union of Pure and Applied Chemistry.

^{99m}Tc Single photon emission computed tomography (SPECT)

- Radiopharmaceuticals with ^{99m}Tc are injected to patients.
- The radiopharmaeuticals concentrate on specific parts, e.g., tumores.
- 140-keV γ rays emitted from the decay of ^{99m}Tc can be detected.
- The location of the concentration can be recognized from outside of the patient body.

SPECT, Wikipedia

SPECT imaging

• 140-keV γ rays emitted from the radiopharmaeuticals with ^{99m}Tc were detected for imaging.

Kuniaki Ogasawara et al., "^{99m}Tc-Bicisate and ^{99m}Tc-HMPAO SPECT Imaging in Early Spontaneous Reperfusion of Cerebral Embolism", Am. J. Neuroradiol. 20 (1999) 626.

^{99m}Tc/⁹⁹Mo supply

- The half-life of ^{99m}Tc is 6 hours.
- Its parent ⁹⁹Mo ($T_{1/2} = 66$ h) is more appropriate to deliver.
- In Japan, all amounts required for ~900,000 scans/year are imported.

Fig. 3. Simplified decay scheme of ⁹⁹Mo and ^{99m}Tc.

S. Takacs et al., "Reexamination of cross sections of the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction", Nucl. Instrum. Methods B 347 (2015) 26.

⁹⁹Mo production route other than U fission

• Production reactions of ⁹⁹Mo from stable nuclei.

⁹⁶Zr(α ,n)⁹⁹Mo reaction

- One of the reactions to produce ^{99}Mo is the $^{96}Zr(\alpha,n)^{99}Mo$ reaction.
- Cross sections had been studied in two earlier experiments.

Method

- We used the well-established methods for the cross section measurements.
 - Stacked-foil activation technique
 - γ-ray spectrometry

Experimental setup

- The two targets consisted of ^{nat}Zr (⁹⁶Zr: 2.8%) and ^{nat}Ti foils.
- The targets were irradiated by 51 and 29 MeV α -beams with 200 nA for 2 hours at RIKEN AVF cyclotron.

RIKEN AVF cyclotron

Zr/Ti foils

Target holder

Experimental conditions

• Experimental conditions were changed in two experiments.

	#1 (2017/10)	#2 (2017/12)
Energy	51.0 MeV	28.9 MeV
Intensity	203.6 pnA	205.0 pnA
Period	7200 s	7200 s
^{nat} Zr	13.3 mg/cm² 20.5 μ m 99.2 % purity	6.75 mg/cm² 10.4 μ m 99.2 % purity
nat Ti	2.3 mg/cm ² 5.3 μm 99.6 % purity	2.4 mg/cm ² 5.4 μm 99.6 % purity

^{nat}Ti(α ,x)⁵¹Cr monitor reaction

- Cross sections derived in our experiments were compared with the IAEA recommended values.
- The monitor cross sections could be reproduced.
- No corrections are required for the beam and targets.

Result: 96 Zr(α ,n) 99 Mo reaction

• The two results are very similar to each other, but different from the previous studies.

Paper and entry

• The paper was published and compiled into EXFOR.

Applied Radiation and Isotopes 144 (2019) 47-53

Production cross sections of Mo, Nb and Zr radioisotopes from $\alpha\text{-induced}$ reaction on ^{nat}Zr

T. Murata^{a,1}, M. Aikawa^{b,c,*}, M. Saito^c, N. Ukon^d, Y. Komori^e, H. Haba^e, S. Takács^f

School of Science, Hokkaido University, Sapporo 060-0810, Japan ⁶ Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Japan ⁶ Advanced Clinical Research Center, Fukushima Medical University, Fukushima City 960-1295, Japan ⁸ Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198, Japan ⁸ Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen, Hungary	ENTRY SUBENT BIB TITLE AUTHOR INSTITUTE	E2592 20190117 E2592001 20190117 20190223 12 34 Production cross sections of Mo, Nb and Zr radioisotopes from alpha-induced reaction on natZr (T. Murata, M. Aikawa, M. Saito, N. Ukon, Y. Komori, H. Haba, S. Takacs) (2JPNHOK) School of Science (2JPNHOK) Faculty of Science (2JPNHOK) Faculty of Science (2JPNHOK) Graduate School of Biomedical Science and Engineering (2JPNJPN) Advanced Clinical Research Center, Fukushima Medical University, Fukushima (2JPNIPC) Nishina Center for Accelerator-Based Science (3HUNDEB) (J, ARI, 144, 47, 2019) Main reference. See also TITLE and AUTHOR. (S, JAEA-C-2018-001, 181, 2018) 002 data in Fig.	E259200000001 E259200100002 E259200100003 E259200100003 E259200100004 E259200100006 E259200100006 E259200100007 E259200100009 E259200100010 E259200100012 E259200100013 E259200100014 E259200100016 E259200100017

⁴⁴Ti/⁴⁴Sc generator

- ${}^{44g}Sc (T_{1/2} = 3.97 \text{ h}, \beta^+: 94.3\%) \text{ can be used for PET.}$
- Its parent ⁴⁴Ti ($T_{1/2} = 59.1 \text{ y}, \epsilon$: 100%) is expected to be a generator.

Radiochim. Acta 98, 149–156 (2010) / DOI 10.1524/ract.2010.1701 © by Oldenbourg Wissenschaftsverlag, München

A ⁴⁴Ti/⁴⁴Sc radionuclide generator for potential application of ⁴⁴Sc-based PET-radiopharmaceuticals

By D. V. Filosofov¹, N. S. Loktionova² and F. Rösch^{2,*}

¹ Joint Institute of Nuclear Research, DLNP, 141980 Dubna, Russian Federation ² Institute of Nuclear Chemistry, University of Mainz, 55128 Mainz, Germany

(Received April 27, 2009; accepted in revised form October 21, 2009)

Scandium and titanium radioisotopes

- ${}^{44g}Sc (T_{1/2} = 3.97 \text{ h}, \beta^+: 94.3\%)$
 - Emitted positrons (E_{ave} : 632 keV) can be used for PET.
- ⁴⁴Ti (T_{1/2} = 59.1 γ, ε: 100%)
 - Generator of ^{44g}Sc.

HOKKAIDO UNIVERSITY

Proton- and deuteron-induced reactions on ⁴⁵Sc

• The literature data of proton- and deuteron-induced reactions found in the EXFOR library were scattered or few.

Our experimental results

• We performed two experiments to measure the cross sections.

	proton	deuteron	
Beam	51.0 MeV, 195 nA, 3600 s	24.3 MeV, 180 nA, 1800 s	
⁴⁵ Sc	102 µm, 99 % purity	25.8/250 µm, 99.9% purity	
^{nat} Ti	4.97 µm, 99.6 % purity	20.2 µm, 99.6 % purity	

Physical thick target yield

- The physical thick target yield of ⁴⁴Ti in the ⁴⁵Sc(p,2n)⁴⁴Ti reaction was derived using the measured cross sections.
- The yield was ~1 MBq/C (3.6 kBq/µAh) at the incident energy of 30 MeV.

Activity required for ¹⁸F-FDG scan

• The required activity for the PET scan is 74-370 MBq, which depends on the weight of each patient.

月改訂(第1版)
7.
74MBa トカスまで
'

放射性医薬品・悪性腫瘍診断薬, 虚血性心疾患診断薬, てんかん診断薬

放射性医薬品基準フルデオキシグルコース(¹⁸F)注射液

処方箋医薬品注)

FDGscan[®] Injection

注)注意-医師等の処方箋により使用すること

3. 組成·性状

3.1 組成

販売名	FDGスキャン注	E	
有効成分	1バイアル	1バイアル	1バイアル
	(1.2mL) 中	(1.6mL) 中	(2mL) 中
	フルデオキシ	フルデオキシ	フルデオキシ
	グルコース	グルコース	グルコース
	(¹⁸ F) (検定	(¹⁸ F) (検定	(¹⁸ F) (検定
	日時におい	日時におい	日時におい
	て) 111MBq	て) 148MBq	て) 185MBq
添加剤	1バイアル	1バイアル	1バイアル
	(1.2mL) 中	(1.6mL) 中	(2mL) 中
	日本薬局方D-	日本薬局方D-	日本薬局方D-

 ○虚血性心疾患(左室機能が低下している虚血性 心疾患による心不全患者で,心筋組織のバイア ビリティ診断が必要とされ,かつ,通常の心筋 血流シンチグラフィで判定困難な場合)の診断
○難治性部分てんかんで外科切除が必要とされる 場合の脳グルコース代謝異常領域の診断
○大型血管炎の診断における炎症部位の可視化

6. 用法及び用量

る。

るが

6

通常,成人には本剤1バイアルを静脈内に投与し撮像す

<u>・2星(从升化)は、午時、</u>休重により適宜増減す 最小 74MBq,最大 370MBq までとする。

®:登録商標

Possible beam intensity at J-PARC

• The possible beam intensity of a 30-MeV proton beam at J-PARC is more than 50 mA.

Proceedings of IPAC2015, Richmond, VA, USA

THPF039

STABILITY STUDIES FOR J-PARC LINAC UPGRADE TO 50mA/400MeV

Y. Liu, T. Maruta, K. Futatsukawa, T. Miyao KEK/J-PARC, Ibaraki-ken, Japan M. Ikegami, FRIB, East Lansing, USA A. Miura, JAEA/J-PARC, Tokai-mura, Japan

Figure 1: Layout of J-PARC linac.

Possible activity

• If we can use a 30-MeV proton beam of 50 mA for 3 h, the produced activity of ~525 MBq is expected.

Paper and entry

Applied Radiation and Isotopes 168 (2021) 109448

ELSEVIER	Contents lists available at ScienceDirect Applied Radiation and Isotopes journal homepage: http://www.elsevier.com/locate/apradiso	Applet Automation and					
Production cro up to 24 MeV	ss sections of 45 Ti in the deuteron-induced reaction on 45 Sc	Check for Updates					
Zolbadral Tsoodol Tegshjargal Khishi Ferenc Ditrói ^f , Zol ^a Graduate School of Biomedical ^b Nuclear Research Center, Natie ^c Faculty of Science, Hokkaldo ^d School of Engineering and Ap ^s Nishina Center for Accelerator ^f Institute for Nuclear Research (^{A, D, *} , Masayuki Aikawa ^{A, c} , Dagvadorj Ichinkhorloo ^{D, c} , gjargal ^d , Erdene Norov ^d , Yukiko Komori ^e , Hiromitsu Haba ^e , Sándor Takács ^f , tán Szűcs ^f Science and Engineering, Hokkaido University, Sapporo, 060-9638, Japan mal University of Mongolia, Ulaanbaatar, 13330, Mongolia niversity, Sapporo, 060-0810, Japan Hed Sciences, Rutken, Wako, 351-0198, Japan ATOMKI), Debrecen, 4026, Hungary	ENTRY SUBENT BIB TITLE AUTHOR	E2682 E2682001 14 Production cr deuteron-indu (Z.Tsoodol, M E.Norov, Y.M Z.Szucs)	20220621 20220621 29 ross section uced reaction A.Aikawa, D. Komori, H.Ha	20220819 20220819 ns of 45Ti on on 45Sc u Ichinkhorld aba, S.Takad	20220819 20220819 in the up to 24 MeV po, T.Khishig ps, F.Ditroi,	E13 E13 jargal,
		INSTITUTE REFERENCE	(2JPNHOK, 3MGL (J, ARI, 168, 10	_NUM, 2JPNIP 09448, 2021)	C, 3hundeb)		

III-3. Radiochemistry & Nuclear Chemistry

RIKEN Accel. Prog. Rep. 55 (2022)

Production cross sections of titanium radionuclides via proton-induced reactions on scandium

M. Aikawa,^{*1,*2,*3} H. Huang,^{*2,*3} H. Haba,^{*2} S. Takács,^{*4} F. Ditrói,^{*4} and Z. Szücs^{*4}

E135 E135

²¹¹Rn/²¹¹At generator

- 211 At (T_{1/2} = 7.22 h) is an alpha emitter and can be used for therapy.
- Its parent ²¹¹Rn ($T_{1/2} = 14.6$ h) can be a generator.

Journal of Radioanalytical and Nuclear Chemistry (2020) 323:921–926 https://doi.org/10.1007/s10967-019-06990-z

Measurements of the excitation functions of radon and astatine isotopes from ⁷Li-induced reactions with ²⁰⁹Bi for development of a ²¹¹Rn–²¹¹At generator

Eita Maeda¹ · Akihiko Yokoyama² · Takumi Taniguchi¹ · Kohshin Washiyama³ · Ichiro Nishinaka⁴

Received: 30 September 2019 / Published online: 14 December 2019 © Akadémiai Kiadó, Budapest, Hungary 2019

Fig. 3 Excitation function of the 209 Bi(7 Li, 5n) 211 Rn reaction. Circle marks indicate results from the present study, whereas crosses are results from [6]. Data are compared with a solid line calculated with the use of the HIVAP code in logarithmic scale in the upper figure and in linear scale in the bottom figure

	Cross section (#1)	Cross section (#2)	Yield
Beam	71.9 MeV, 147 nA, 3600 s	71.9 MeV, 147 nA, 3420 s	71.2 MeV, 142 nA, 1200 s
²⁰⁹ Bi	7.34 mg/cm ² , 100 % purity	5.72 mg/cm ² , 100 % purity	1062 mg/cm ² , 100% purity
²⁷ Al	8.04 µm, 99 % purity	17.7 µm, 99 % purity	10 µm, 99 % purity

Summary

- To discuss production of radioisotopes for generators, nuclear data, e.g. cross sections and yields, are necessary.
- We systematically measure experimental cross sections using stacked-foil activation technique and gamma-ray spectrometry.
- Activation cross sections for some generators were measured.
 - ⁹⁹Mo/^{99m}Tc
 - ⁴⁴Ti/⁴⁴Sc
 - ²¹¹Rn/²¹¹At
 - 68Ge/68Ga
 - $\frac{140}{Nd}/\frac{140}{Pr}$

Collaborators

- G. Damdinsuren, S. Goto, Y. Toyoeda (HU)
- M. Saito, T. Murata, M. Sakaguchi, H. Huang (HU→Co.)
- D. Ichinkhorloo, Z. Tsoodol (HU \rightarrow NUM)
- H. Haba (RIKEN)
- Y. Komori (RIKEN→Co.)
- S. Takacs, F. Ditori, S. Zoltan (ATOMKI)
- N. Otsuka (IAEA)
- S. Ebata (HU \rightarrow TIT \rightarrow Saitama U)
- N. Ukon (HU \rightarrow Fukushima Med. U)
- H. Yashima (Kyoto U)
- M. Hagiwara (KEK \rightarrow NIST)

Thank you for your attention.

