

Nuclear data measurements and compilation at JAEA

ATSUSHI KIMURA

Contents

 Over View of nuclear data measurement in J-PARC

- Experimental facility and detectors.
- Example of Measurements
- Compilation at JAEA
- Request for EXFOR Editor

Nuclear Data Center in JAEA

JAEA

We have 6 sectors.

Motivation for our team

The present status of experimental data for MAs and LLFPs is not sufficient both in quality and quantity.

This is because it is not easy to prepare enough amount of samples with high purity. Moreover, some MAs are highly radioactive.

Improvements in this study

- 1) Intense neutron source
 - \rightarrow A small amount of samples can be used for experiments
 - \rightarrow Influence due to decay γ -rays can be reduced.
- 2) High energy resolution and high-efficiency γ-ray detector systems were applied to the TOF measurement (For LLFPs)
 - \rightarrow Background due to impurities can be removed.

We constructed the Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI)" in J-PARC.

Japan Proton Accelerator Research Complex (J-PARC)

VIENNA EXFOR WORKSHOP (13-16 DEC.)

https://j-parc.jp/c/en/

ANNRI

<u>A</u>ccurate <u>N</u>eutron-<u>N</u>ucleus <u>R</u>eaction measurement <u>I</u>nstrument (ANNRI)

- An array of large Ge detectors
- Nal(Tl) detectors

for capture cross section measurements

• Li-glass detectors for transmission experiments.

Neutron collimators, resonance filters, and chopper systems are installed

ANNRI is used for nuclear data measurement and microanalysis.

∼Ge detector-array (For Capture) ~

Our spectrometer has

- 2 cluster-Ge detectors
 - (7 Ge crystals are incorporated in one cluster detector)
- 8 coaxial-Ge detectors
- Compton suppressing BGO detectors \Rightarrow 22 Ge Crystals.

Energy resolution for 1.33MeV γ-rays:

5.8keV (for 200 kevents/s),

2.4keV (for 20 kevents/s) [1] Peak efficiency for 1.33MeV γ -rays: 3.64 \pm 0.11 %

~NaI(TI) detectors (For Capture)~

• Nal(Tl) Detectors:

- 90° detector: 13" diam. x 8" long
- 125° detector: 8" diam. x 8" long
- Flight Length: 28m

Shielding

Borated Polyethylene, lead, ⁶LiH, ⁶LiCO₃

Data acquisition

Neutron TOF and detected γ–ray energy are recorded

Mainly used for High energy region.

C6D6 detectors and BaF detectors Experimental Room 1: 185m Experimental Room 2: 20m Beam Intensity per shot in Room2 is about 50% of ANNRI. But beam frequency is 0.3~1.2Hz Beam Intensities Comparison to major facilities

U.S. LANSCE @LANL Detector for Advanced Neutron Capture Experiments (DANCE) BaF detectors Flight length 20m

In the epithermal energy region, the neutron intensity of ANNRI is more than 7 times as high as the values of the other instruments. However, neutron energy resolution was not so good!!

 The pulsed protons usually consist of two bunches (called "double-bunch mode"), each with a width of 100 ns, at intervals of 600 ns

Most users in MLF are users of diffractometers, scattering spectrometers and reflectometers. They require "neutron intensity".

Characteristics of ANNRI

- High intensity pulsed neutron with High speed DAQ.
 - A small amount (less than 1 mg) sample can be used.

~Measurement status@ANNRI~

Red: Already Published. Green: Published with preliminary results. Blue: Already Measured. Black: Future Plan in few years.

Experiments of ²⁴⁴Cm

~Samples and Measurement conditions~

Outside 9mmΦ 1.5mmt

Inside 5mmΦ 0.5mmt

²⁴⁴Cm sample (%)

²⁴⁴ Cm	89.57±1.68
²⁴⁵ Cm	2.66±0.34
²⁴⁶ Cm	7.08±0.33
²⁴⁷ Cm	Not Detect
²⁴⁸ Cm	Not Detect

•Sample : ²⁴⁴Cm: **1.8GBq, 0.6mg** Isotopic Ratio: 89.6% Chemical form = CmO₂ Container = Al capsule

•Beam Operation: 120kW 25Hz

For the background estimation, a dummy case and a blank sample was measured 48 and 44 hours.

Sample	Measurement Time[h]
Cm-244	74
Dummy Case	48
Blank(Holder+Film)	44

Experiments of ²⁴⁴Cm

~ γ -ray Spectrum at the 1st resonance of ²⁴⁴Cm ~

The252.4- and 380.8-keV γ rays have already been studied in α decay of ²⁴⁹Cf, electron capture decay of ²⁴⁵Bk, and β -decay of ²⁴⁵Am. The other γ -rays were previously unknown γ rays.

```
Experiments of <sup>244</sup>Cm 
~Analysis~
```

The data were analyzed with the procedure.

- Dead-Time Correction
- Background Estimation and Subtraction
- Self-Shielding and Multiple-Scattering Correction
- Normalization (Using the 1st resonance of ²⁴⁰Pu)
- Evaluation and Subtraction of Influence of Fission Events
- Evaluation and Subtraction of Influence of Impurities

The obtained neutron-capture cross sections are....

Experiments of ²⁴⁴Cm ~Cross Section ~

Only one neutron-capture cross-section data of ²⁴⁴Cm (n,g) was reported in 1969[1].

[1]M. S. Moore et.al., Physical Review C, 3, 1656 (1971).

VIENNA EX

Experiments of ²⁴³Am ~Capture Cross sections~

Sample: Am-243 240MBq (Isotopic ratio: 97.67%, 30mg)

Measurement Time: 13hours

- Capture cross-section of Am-243 was deduced from 10 meV to 100 eV.
- 87.7±5.4b@thermal energy.

different integral measurements and evaluations of ²⁴³ Am.						
Reference	Year	<i>σ</i> ₀ (b)				
This Work	2019	87.7 ± 5.4				
Hori et al. [6]	2009	76.6				
Marie et al. [14]	2006	81.8 ± 3.6				
Hatsukawa et`al. [15]	1997	84.4				
Gavrilov et al. [16]	1977	83 ± 6				
Eberle et al. [17]	1971	77 ± 2				
Folger et al. [18]	1968	78				
Bak et al. [19]	1967	73 ± 6				
lce et al. [20]	1966	66-84				
Butler et al. [21]	1957	73.6 ± 1.8				
Harvey et al. [22]	1954	140 ± 50				
Stevens et al. [23]	1954	115				
ENDF/B-VII.1 [24]	2011	80.4				
JENDL-4.0 [25]	2011	79.3				

Table 2. Thermal capture cross sections σ_0 provided by

Experiments of ²⁴³Am ~Total Cross section~

- A ⁶Li enriched Li-glass detector (GS-20) and a ⁷Li enriched detector were used (GS-30)
- Measurement time: 15時間
- Total cross-section was deduced from 4meV to 100 eV.
- 96±11 b @thermal energy

• Total cross section can be measured in ANNRI.

Experiments of ¹¹²Sn ~Tof spectrum~

Experiments of ¹¹²Sn ~ γ-ray spectrum ~

Experiments of ¹¹²Sn

~ Origin of the 27.1-eV resonance ~

Experiments of ¹¹²Sn

~ Origin of the 236.6-eV resonance ~

Origin of the 27.1-eV resonance

With subtracting the influences of the chemical and isotopic impurities, preliminary cross section for ¹¹²Sn was obtained.

Compilation at JAEA

JAEA is responsible for the compilation of the following papers:

- Published by JAEA members
- Experiments in J-PARC facilities.

In 2022, 6 papers were compiled at JAEA. 23741: Cm-244,246(n,g) in J-PARC by Dr. Kawase 23748: Am-243(n,g) in J-PARC by Mr. Kodama 23745: Np-237(n,g) in J-PARC by Dr. Rovira 23749: Tc-99(n,g) in YAYOI(Reactor) by Dr. Nakamura 23601: Np-237(n,g) in J-PARC in keV by Dr. Rovira 23602: Nb-93(n,g),(n,tot) in J-PARC by Mr. Endo

I still have some duties. I would like to compile them ASAP.

EXFOR Editor

EXFOR Editor is very useful and powerful tool for me.

It is very easy to set large data.
 In TOF experiments, we have to set huge number of data points.

The editor can import a text file with separator of commas (CSV format).

But I have two request.

Request for EXFOR Editor ①

	DAQ: CAEN V	1724 Digiti	zer (14bit,	TOOM	Hz)			23741	1	28
SAMPLE	The 244Cm s	ample and t	he 246Cm sa	mple 1	were u	sed. I	he	23741	1	29
	244Cm sampl	e and the 2	46Cm sample	cont	ained	curium	ı	23741	1	30
	oxide with	weight of 0	.6 and 2.1	mg.				23741	1	31
	The isotopi	c and chemi	cal impurit	ies (1	mol%):			23741	1	32
	2	44Cm sample	2	46Cm	sample			23741	1	33
	244Cm	87.3 +-1.7		21.9	+-0.4			23741	1	34
	245Cm	3.4 +-0.4		1.1	+-0.3			23741	1	35
	246Cm	9.3 +-0.4		64.1	+-1.4			23741	1	36
	247Cm			3.1	+-0.4			23741	1	37
	248Cm			9.8	+-0.3			23741	1	38
	240Pu	46.9 +-0.9		10.5	+-0.2			23741	1	39
	242Pu			0.10	2+-0.0	05		23741	1	40
	243Am	0.47+-0.05		1.02	+-0.1	0		23741	1	41
	Each sample	was sealed	in an alum	inum	case w	ith ar		23741	1	42
	outer diame	ter of 9 mm	and a wall	thic	kness	of 0.5	mm.	23741	1	43
	For the cal	ibration of	the time-t	o-ene	rgy co	nversi	on	23741	1	44
	function, a	thin 197Au	sample was	used				23741	1	45
CORRECTION	Dead Time C	orrection w	as applied	with a	a para	lyzabl	e	23741	1	46
	dead time m	odel						23741	1	47

	of accession and cigns countar of accession mion pos-		-		
	anti-coincidence shields.	23741	1	27	
	DAQ: CAEN V1724 Digitizer (14bit, 100MHz)	23741	1	28	
SAMPLE	The 244Cm sample and the 246Cm sample were used. The				
	244Cm sample and the 246Cm sample contained curium				
	oxide with weight of 0.6 and 2.1 mg. The isotopic and				
	chemical impurities (mol%) : 244Cm sample 246Cm				
	sample 244Cm 87.3 +-1.7 21.9 +-0.4 245Cm 3.4 +-0.4				
	1.1 +-0.3 246Cm 9.3 +-0.4 64.1 +-1.4 247Cm 3.1 +-0.4				
	248Cm 9.8 +-0.3 240Pu 46.9 +-0.9 10.5 +-0.2 242Pu				
	0.102+-0.005 243Am 0.47+-0.05 1.02 +-0.10 Each sample				
	was sealed in an aluminum case with an outer diameter				
	of 9 mm and a wall thickness of 0.5 mm. For the				
	calibration of the time-to-energy conversion function,				
	a thin 197Au sample was used.				
CORRECTION	Dead Time Correction was applied with a paralyzable	23741	1	46	
	dead time model.	23741	1	47	
	Correction fraters for colf shielding and multiple	00741	1	40	

Yes: Please tell me how to use it.

No: Please add line feed code or accept multi (continuous) spaces.

Request for EXFOR Editor (2)

@Decay Data Sec.

	flux spectr	um.			23749	1	38
DECAY-DATA	(43-TC-100,	15.27SEC,D	G,539.59,0.0	66,	23749	1	39
		D	G,590.83,0.0	55)	23749	1	40
	(79-AU-198,	2.6943D,DG	,411.80,0.95	62)	23749	1	41
	(21-SC-46,8	3.79D,DG,8	89.28,0.9998	4,	23749	1	42
		DG,1	120.55,0.999	87)	23749	1	43
	(29-CU-64,1	2.700HR,DG	,1345.84,0.0	0473)	23749	1	44
	(25-MN-56,2	.57878HR,D	G,846.77,0.9	887)	23749	1	45
Miss	(13-AL-28,9	.458MIN,DG	,843.76,41.8	,	23749	1	46
			1014.44,0.2	80)	23749	1	47
	(49-IN-115-	М,4.486Н	G,336.24,0.	459)	23749	1	48
HISTORY	(20220915C)	Compile	y A. Kimura		23749	1	49
ENDBIB	47)		23749	1	50
NOCOMMON	0				22749	1	51

Correct: (12-MG-27,9.458MIN,DG,843.76,0.718, Could you install a checking system for the decay data section? The values (half-life, decay energy, and Intensity) are mostly the same (within a few %).

Thank you for your kind Attention!!

Experiments of ^{244,246}Cm ~Samples and Measurement conditions~

Outside 9mmФ 1.5mmt

Inside 5mmΦ 0.5mmt

Table 1 The isotopic composition of the244Cm sample or the 246Cm sample.[1]

	²⁴⁴ Cm sample	²⁴⁶ Cm sample
	TIMS (mole%)	TIMS (mole%)
²⁴⁴ Cm	90.1±1.7	27.5±0.5
²⁴⁵ Cm	2.71±0.34	1.06±0.28
²⁴⁶ Cm	7.22±0.34	59.4±1.3
²⁴⁷ Cm	N.D.	2.9±0.4
²⁴⁸ Cm	N.D.	9.10±0.24

Samples: Cm-244 ($T_{1/2}$ =18.1y: MA) Net weight = 0.6 mg Activity = 1.8 GBq Measurement Periods: 64 hours Cm-246 ($T_{1/2}$ =4753y: MA) Net weight = 2.1 mg Activity = 12.1 MBq (²⁴⁴Cm: 1.7GBq) Measurement Periods: 94 hours Both of the samples Chemical form = CmO₂ Container = Al capsule

For the background estimation, a dummy case (Al 278mg) and a blank sample was measured for done for 48 and 44 hours.

To reduce air scattering, the air in the beam duct was replaced with helium.

This graph shows TOF spectra የሆነትቲትም እሳት የርዝግ, የተትምድራሳ6 Cm sample, and the dummy case

Experiments of ^{244,246}Cm ~ γ-ray Spectrum at the 1st resonance of ²⁴⁴Cm ~

Cm-244

The252.4- and 380.8-keV γ -rays have already been studied in α decay of ²⁴⁹Cf, electron capture decay of ²⁴⁵Bk, and β -decay of ²⁴⁵Am.

The other γ-rays were previously unknown γ rays.

Experiments of ^{244,246}Cm ~γ-ray Spectrum at the 1st resonance of ²⁴⁶Cm ~

The all observed γ-rays were previously unknown γ rays. VIENNA EXFOR WORKSHOP (13-16 DEC.)

Experiments of ^{244,246}Cm ~Analysis~

The data were analyzed with the procedure.

- Dead-Time Correction
- Background Estimation and Subtraction
- Self-Shielding and Multiple-Scattering Correction
- Normalization (Using the 1st resonance of ²⁴⁰Pu)
- Evaluation and Subtraction of Influence of Fission Events
- Evaluation and Subtraction of Influence of Impurities

The obtained neutron-capture cross sections are....

Experiments of ^{244,246}Cm ~Cross Section of ²⁴⁴Cm~

Only one neutron-capture cross-section data of ²⁴⁴Cm (n,g) was reported in 1969[1].

VIENNA EXFOR WORKSHOP (13-16 DEC) [1]M. S. Moore et.al., Physical Review C, 3, 1656 (1971).

Experiments of ^{244,246}Cm ~Cross Section of ²⁴⁶Cm~

Only one neutron-capture cross-section data of ²⁴⁶Cm (n, γ) was made in 1971[1].

[1]M. S. Moore et.al., Physical Review C, 3, 1656 (1971).

Present status of nuclear data measurement

Pd-107(LLFP)

At thermal energy:

Prompt gamma Nakamura(JAEA) (2007)

keV region:

•TOF ORELA (1985) (C₆D₆)

⇒Only 2 data sets are available. There are large discrepancy between the evaluated data sets.

The capture cross sections were deduced from other reactions.

If we have some data sets ••••

⁹³Zr(LLFP, T1/2=1.5 × 10⁶ years)

$\sigma_{ ext{th}}$

Num. of exp. data : 2

•Reactor Neutron (1955, 2007)

Unresolved Resonance Region Num. of exp. data : 1 •TOF ORELA (1985: C₆D₆)

Resonance Region No experimental data

Se-79, Sn-126 (LLFP)

No experimental data

Cross sections were deduced from theoretical calculations.