Development of experimental database of isomeric ratios

Alberto Rodrigo Sáenz de Santa María

Contents

1. Motivation

2. Data sources

- 2.1 Nuclide properties
- 2.2 Experimental data
- 2.2 TALYS
- 2.3 Criteria for data selection
- 3. Summary of problems encountered
- 4. Calculations
- 5. Goodness of fit
- 6. Conclusions
- 7. Usage of the tool

1. MOTIVATION

• Improper interpretation of cross section measured with the g.s. activity

$$\sigma_{eff} = \sigma_g + I L \sigma_m = \frac{(\sigma_g + I \sigma_m) (1 - R + I L R)}{1 - R + I R} = (\sigma_g + I \sigma_m) D$$

 $\sigma_{eff} \sim \sigma_g + I \sigma_m$ When $T_{1/2}(m.s.) \ll T_{1/2}(g.s.)$

- $D \sim 1$ when approximation is reasonable
- D > 1 when σ_{eff} overestimates $\sigma_g + I \sigma_m$
- To evaluate D, we need:
 - $I \equiv$ Isomeric transition probability

$$L = \frac{\lambda_{\rm m}}{\lambda_{\rm m} + \lambda_{\rm g}}$$

$$L \equiv Cumulative factor$$

 $R \equiv$ Isomeric ratio

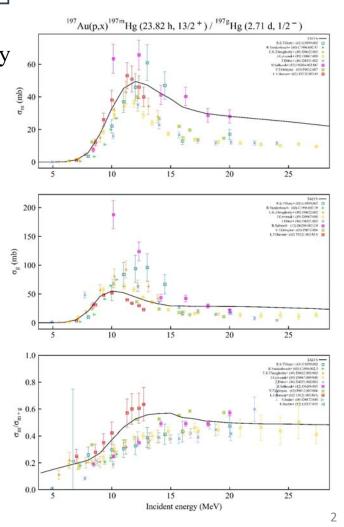
$$R = \frac{\sigma_m}{\sigma_m + \sigma_g}$$

1

 $D = \frac{1 - R + I L R}{1 - R + I R}$

1. MOTIVATION

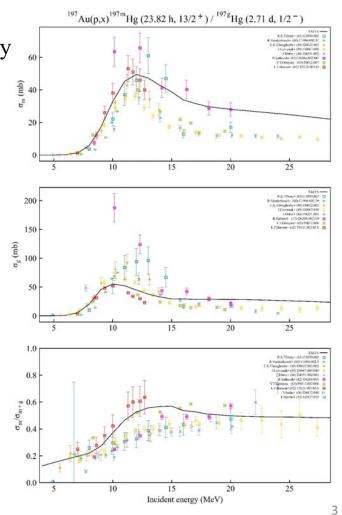
- Improper interpretation of cross section measured with the g.s. activity
- Tool for isomeric ratio calculation


	17.2 6 17.1 6 TARG.	0-ND-14: PROD.	2(N,2N) ISO.1	60-ND-14 ISO.2		<>.	0<				<		><						C> 2 1.0022E+00
#S.Sothra	as (77)																		
#10835.02					7-M,,SIG														
#10835.02					7-G,,SIG		_							-		-			_
# PROJ.		PROD.			DATA1-II		-	EN	DATA1	DATA1-ERE				1		L	M/T	M/T-ERF	Q D
1 #C.G.Huds	78198	78197	М	G 1	.0835.024.2	10835.024.	1 1.4800E	+07 7	.7700E-01	7.8000E-02	1.0700E+0	0 1.0000E	5-01 9.6	700E-01 1	.0869E+0	0 4.20	68E-01 3	3426E-02	2 1.0358E+00
#10836.00		1-sc-45	(N. 2N) 2	1-50-44-	MUSTG														
#10836.00		1-SC-45																	
# PROJ.	TARG.		ISO.1		DATA1-II	DATA2-I	D	EN	DATA1	DATA1-ERF	DATA	2 DATA2-	-ERR	I		L	M/T	M/T-ERF	R D
#><-	>o<	><	><	><-	>.0	<>.	 o<	><	><	;	<	><	><	><-		><	><-	>	<>
1	21045	21044	М	т 1	.0836.002.1	10836.002.	2 1.3300E	+07 7	.7000E-02	6.0000E-03	1.7200E-0	1 1.4000E	5-02 9.8	800E-01-7	.4076E-0	2 4.47	67E-01 5	.0444E-02	2 5.2237E-01
1	21045	21044	М	т 1	0836.002.1	10836.002.	2 1.4100E	+07 9	.7000E-02	8.0000E-03	2.3500E-0	1 1.9000E	5-02 9.8	800E-01-7	.4076E-0	2 4.12	77E-01 4	.7672E-02	2 5.5979E-01
1	21045	21044	М	т 1	.0836.002.1	10836.002.	2 1.5200E	+07 1	.2800E-01	1.0000E-02	3.2500E-0	1 2.6000E	5-02 9.8	800E-01-7	.4076E-0	2 3.93	85E-01 4	.4040E-02	2 5.8007E-01
1	21045	21044	М	т 1	.0836.002.1	10836.002.	2 1.6000E	+07 1	.3600E-01	1.1000E-02	3.5500E-0	1 2.8000E	5-02 9.8	800E-01-7	.4076E-0	2 3.83	10E-01 4	.3280E-02	2 5.9158E-01
1	21045	21044	М	т 1	.0836.002.1	10836.002.	2 1.7100E	+07 1	.5900E-01	1.6000E-02	4.3400E-0	1 3.5000E	5-02 9.8	800E-01-7	.4076E-0	2 3.66	36E-01 4	.7244E-02	2 6.0951E-01
1	21045	21044	М	т 1	.0836.002.1	10836.002.	2 1.8400E	+07 1	.7000E-01	1.7000E-02	4.9100E-0	1 4.9000E	5-02 9.8	800E-01-7	.4076E-0	2 3.46	23E-01 4	.8915E-02	2 6.3105E-01

• Projectile covered

 $\gamma, n, p, d, {}^{3}\text{He}, \alpha$

• Excluded reactions


-M1, -M2, -L

1. MOTIVATION

- Improper interpretation of cross section measured with the g.s. activity
- Tool for isomeric ratio calculation
- Atlas of Isomeric Ratios

86Kr(g,x)85K	r					
$T_{1/2}(g.s.)=10$	0.73 y	$J^{\pi}(g.s.)=9$	/2+			
$T_{1/2}(m.s.)=4$.48 h	$J^{\pi}(m.s.)=$	1/2-			
E_n (MeV)	IR	ΔIR	Type	EXFOR	Reference	
1.1000E+01	0.7962	0.0764	M+T	L0174	R.Raut+ (13)	[1]
1.1500E+01	0.5874	0.0639	M+T	L0174	R.Raut+ (13)	[1]
1.2000E+01	0.5459	0.0560	M+T	L0174	R.Raut+ (13)	[1]
¹⁵¹ Eu(g,x) ¹⁵⁰	Eu					
$T_{1/2}(g.s.)=30$	5.90 y					
$T_{1/2}(m.s.)=1$	2.80 h	$J^{\pi}(\mathbf{m}.\mathbf{s}.)=$	0-			
E_n (MeV)	IR	ΔIR	Туре	EXFOR	Reference	
1.7500E+01	0.6774	0.0161	M/G	M0786	A.P.Tonchev+ (98)	[2]
1.7500E+01	0.6047	0.0119	M/G	M0786	A.P.Tonchev+ (98)	[2]
³⁰ Si(n,x) ³⁰ Al						
E_n (MeV)	IR	ΔIR	Type	EXFOR	Reference	
1.4700E+01	0.7053	0.1760	M+T	21846	W.Schantl (70)	[3]
1.4700E+01	0.5368	0.1432	M+T	21846	W.Schantl (70)	[3]
1.4700E+01	0.6526	0.1677	M+T	21846	W.Schantl (70)	[3]
35Cl(n,x)34Cl	1					
$T_{1/2}(g.s.)=1.$	53 sec					
$T_{1/2}(m.s.)=3$	1.99 min					
E_n (MeV)	IR	ΔIR	Туре	EXFOR	Reference	
1.4800E+01	0.6667	0.0887	G+M	11550	R.S.Scalan+ (58)	[4]
1.4800E+01	0.6218	0.0622	G+M	30014	R.Prasad+(67)	[5]
1.5000E+01	0.8172	0.0297	G+M	30100	G.Peto+ (68)	[6]
1.5000E+01	0.8172	0.2194	M/G	30101	J.Karolyi+ (68)	[7]

Nuclide properties

Nucl-Undef-2022-08-03 from Nubase2020

Experimental data sources

Quasi-C4 Library generated from X4Pro for both production cross sections and IR X4Pro generated from EXFOR Master 2022-08-23

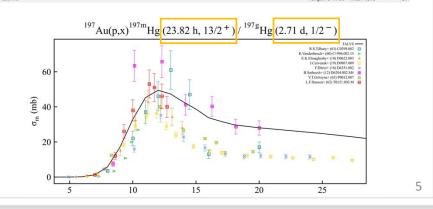
TALYS

Theorical data (TALYS 1.96)

2.1 Nuclide properties - Nucl-Undef-2022-08-03

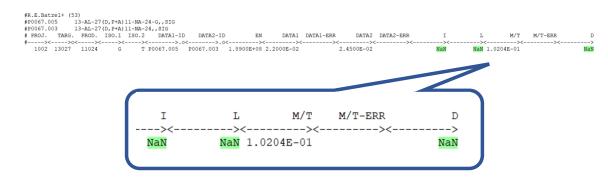
- Halflife of the isomers
 - Cumulative factor $L = \frac{\lambda_m}{\lambda_m + \lambda_g}$
- Spin
- Isomeric transition probability

Tabulation


#C.G.H	udson+ (7)	5)													
#10836	.002.1 :	21-SC-45	(N, 2N) 2	1-SC-44-	M,,SIG										
#10836	.002.2	21-SC-45	(N, 2N) 2:	1-SC-44,	,SIG								-		
# PROJ	. TARG.	PROD.	ISO.1	ISO.2	DATA1-II	DATA2-ID	EN	DATA1	DATA1-ERR	DATA2	DATA2-ERI	II	M/T	M/T-ERR	D
f	><>0+	><	><	><-	>.0	<>.0	<>	(><	(>+	(><	(<><>>	<><	><-	>
	1 21045	21044	М	т 1	0836.002.1	10836.002.2	1.3300E+07	7.7000E-02	6.0000E-03	1.7200E-01	1.4000E-0	9.8800E-01-7.4076E-02	4.4767E-01	5.0444E-02 5	.2237E-01
	1 21045	21044	M	T 1	0836.002.1	10836.002.2	1.4100E+07	9.7000E-02	8.0000E-03	2.3500E-01	1.9000E-0	9.8800E-01-7.4076E-02	4.1277E-01	4.7672E-02 5	.5979E-01
	1 21045	21044	M	T 1	0836.002.1	10836.002.2	1.5200E+07	1.2800E-01	1.0000E-02	3.2500E-01	2.6000E-0	9.8800E-01-7.4076E-02	3.9385E-01	4.4040E-02 5	.8007E-01

Atlas of Isomeric Ratios

⁸⁶ Kr(g,x) ⁸⁵ Kr					
T _{1/2} (g.s.)= 10.73 y	$J^{\pi}(g.s.)=$	9/2+			
T _{1/2} (m.s.)= 4.48 h	$J^{\pi}(\mathbf{m}.\mathbf{s}.)$ =	= 1/2-			
E_n (MeV) IR	ΔIR	Type	EXFOR	Reference	
1.1000E+01 0.79	2 0.0764	M+T	L0174	R.Raut+ (13)	[1]
1.1500E+01 0.58	4 0.0639	M+T	L0174	R.Raut+ (13)	[1]
1.2000E+01 0.54	9 0.0560	M+T	L0174	R.Raut+ (13)	[1]


- Dictio	nary_updated.txt 🔀					
216	MTRA 20220	00 13-AL-24-G	24AL	130240	2.0530E+00U	23.99995
217	MTRA 20220	00 13-AL-24-M	24AL	130241	1.3000E-01U 82.5	24.00040
218	MTRA 20220	00 13-AL-25	25AL	130250	7.1666E+00U	24.99043
219	MTRA 20220	00 13-AL-26-G	26AL	130260	2.2626E+13U	25.98689
	MTRA 20220	00 13-AL-26-M	26AL	130261	6.3460E+00U	25.98714
221	MTRA 20220	00 13-AL-27	27AL	130270 +2.5	100.	26.98154
222	MTRA 20220	00 13-AL-28	28AL	130280 +3.0	1.3470E+02U	27.98191
223	MTRA 20220	00 13-AL-29	29AL	130290 +2.5	3.9360E+02U	28.98045
224	MTRA 20220	00 13-AL-30	30AL	130300 +3.0	3.6200E+00U	29.98297
225		13-AL-30-M*		130301	7.2000E+01	
226	MTRA 20220	00 13-AL-31	31AL	130310 +2.5	6.4400E-01U	30.98395
227	MTRA 20220	00 13-AL-32	32AL	130320 +1.0	3.2600E-02U	31.98808
	MTRA 20220	00 13-AL-33	33AL	130330 +2.5	4.1460E-02U	32.99088
229	MTRA 20220		34AL	130340	5.3730E-02U	33.99678
230	MTRA 20220	00 13-AL-35	35AL	130350	3.8160E-02U	34.99976
231	MTRA 20220	00 13-AL-36	36AL	130360	9.0000E-02U	36.00639
232	MTRA 20220	00 13-AL-37	37AL	130370	1.1400E-02U	37.01053
233	MTRA 20220	00 13-AL-38	38AL	130380	9.0000E-03U	
234	MTRA 20220	00 13-AL-39	39AL	130390	7.6000E-03U	
235	MTRA 20220	00 13-AL-40	40AL	130400	U	
236	MTRA 20220	00 13-AL-41	41AL	130410	U	
237	MTRA 20220	00 13-AL-42	42AL	130420	U	
238	MTRA 20220	00 13-AL-43	43AL	130430	U	
239	MTRA 20220	00 14-SI-0	SI	140000		28.0855
240	MTRA 20220	00 14-SI-22	22SI	140220	2.8700E-02U	
241	MTRA 20220	00 14-SI-23	23SI	140230	4.2300E-02U	
242	MTRA 20220	00 14-SI-24	245I	140240	1.4320E-01U	24.01154
243	MTRA 20220	00 14-SI-25	25SI	140250	2.2060E-01U	25.00411
244	MTRA 20220	00 14-SI-26	265I	140260	2.2453E+00U	25.99233
245	MTRA 20220	00 14-SI-27	27SI	140270	4.1170E+00U	26.98670
246	MTRA 20220	00 14-SI-28	28SI	140280	92.254	27.97693
247	MTRA 20220	00 14-SI-29	2951	140290 +0.5	4.672	28.97649
248	MTRA 20220	00 14-SI-30	30SI	140300	3.0735	29.97377
249	MTRA 20220	00 14-SI-31	31SI	140310	9.4296E+03U	30.97536
250	MTRA 20220	00 14-SI-32	32SI	140320	4.9544E+09U	31.97415
251	MTRA 20220	00 14-SI-33	33SI	140330 +1.5	6.1800E+00U	32.97798
252	MTRA 20220	00 14-SI-34	34SI	140340	2.7700E+00U	33.97854
253	MTRA 20220	00 14-SI-35	35SI	140350	7.8000E-01U	34.98455

 $J^{\pi} T_{1/2}[sec] I[\%]$

2.1 Nuclide properties - Nucl-Undef-2022-08-03

• Missing nuclear properties

	onary updated.txt 🔀			1	1	1 1	1 1	
216	MTRA 202200	13-AL-24-G	24AL	130240		2.0530E+00U		23,9999
210	MTRA 202200	13-AL-24-M	24AL	130240		1.3000E-01U	00 E	24.0004
218	MTRA 202200	13-AL-25	25AL	130241		7.1666E+00U	82.0	24.0004
210	MTRA 202200	13-AL-26-G	26AL	130250		2.2626E+13U		25.9868
220	MTRA 202200	13-AL-26-M	26AL	130260		6.3460E+00U		25.9808
221	MTRA 202200	13-AL-20-M 13-AL-27		130201		0.3460E+000	100.	26.9811
222	MTRA 202200	13-AL-27 13-AL-28	27AL	130270		1 04705.000	100.	26.9815
			28AL			1.3470E+02U		
223	MTRA 202200	13-AL-29	29AL	130290		3.9360E+02U		28.9804
224	MTRA 202200	13-AL-30	30AL	130300	+3.0	3.6200E+00U		29.9829
225		13-AL-30-M*		130301		7.2000E+01		
226	MTRA 202200	13-AL-31	31AL	130310		6.4400E-01U		30.9839
227	MTRA 202200	13-AL-32	32AL	130320		3.2600E-02U		31.9880
228	MTRA 202200	13-AL-33	33AL	130330	+2.5	4.1460E-02U		32.9908
229	MTRA 202200	13-AL-34	34AL	130340		5.3730E-02U		33.9967
230	MTRA 202200		35AL	130350		3.8160E-02U		34.9997
231	MTRA 202200	13-AL-36	36AL	130360		9.0000E-02U		36.0063
232	MTRA 202200		37AL	130370		1.1400E-02U		37.0105
233	MTRA 202200		38AL	130380		9.0000E-03U		
234	MTRA 202200	13-AL-39	39AL	130390		7.6000E-03U		
235	MTRA 202200	13-AL-40	40AL	130400		U		
236	MTRA 202200	13-AL-41	41AL	130410		U		
237	MTRA 202200	13-AL-42	42AL	130420		U		
238	MTRA 202200	13-AL-43	43AL	130430		U		
239	MTRA 202200	14-SI-0	SI	140000				28.0855
240	MTRA 202200	14-SI-22	22SI	140220		2.8700E-02U		
241	MTRA 202200	14-SI-23	23SI	140230		4.2300E-02U		
242	MTRA 202200	14-SI-24	24SI	140240		1.4320E-01U		24.0115
243	MTRA 202200	14-SI-25	25SI	140250		2.2060E-01U		25.0041
244	MTRA 202200	14-SI-26	26SI	140260		2.2453E+00U		25.9923
245	MTRA 202200	14-SI-27	27SI	140270		4.1170E+00U		26.9867
246	MTRA 202200	14-SI-28	28SI	140280			92.2545	27.9769
247	MTRA 202200	14-SI-29	295I	140290	+0.5		4.672	28.9764
248	MTRA 202200	14-SI-30	305I	140300			3.0735	29.9737
249	MTRA 202200	14-SI-31	31SI	140310		9.4296E+03U		30.9753
250	MTRA 202200	14-SI-32	32SI	140320		4.9544E+09U		31.9741
251	MTRA 202200	14-SI-33	33SI	140330	+1.5	6.1800E+00U		32.9779
252	MTRA 202200	14-SI-34	345I	140340		2.7700E+00U		33.9785
253	MTRA 202200	14-SI-35	35SI	140350		7.8000E-01U		34.9845

Туре **Examples of product nuclides** Τ D L Only G state defined in Dict NaN NaN NaN NA-24, AL-30, AS-74, AS-78 SE-77, AG-107, AG-109, IN-113, RH-103, SN-117, BA-137, ER-167, G or M state is stable (no half-life) NaN NaN HF-178, HF-179, TA-180, IR-191, IR-193, AU-197, PB-204, PB-207 AG-116, IN-109, IN-116, IN-118, IN-120, SB-124, SB-126, EU-152, M1, M2,... states defined in Dict HF-178, HF-179, TA-178, IR-190, IR-191, AU-196, PB-203 NaN NaN NaN

2.2 Experimental data sources

- First experimental data source
 - EXFOR-EXP-2022-08-10-v2.c5
 - Quasi-C4 file generated from X4Pro for IR

Different formats

- Second experimental data source
 - Quasi-C4 generated from X4Pro for both isomer production cross sections and IR
 - prodxs-c4like
 - prodxsem-c4like
 - isorat-c4like

Same format

We utilized this tool development for consistency checking of the isomer and total production cross sections and isomeric ratios compiled in EXFOR.

2.2 Experimental data sources

- First experimental data source
 - EXFOR-EXP-2022-08-10-v2.c5
 - Quasi-C4 file generated from X4Pro for IR

1. Datasets against the relation $0 < \sigma_M / \sigma_T < 1$

- Isomer production cross section larger than the total production cross section
- Negative isomer production cross section

Table 1: Isomer production cross section larger than the total production cross section (Error: EXFOR compilation error. (G), (M) and (T) following the subentry number indicate that the ground state production, metastable state production and total production cross section is compiled, separately.)

Author (year)	Dataset 1	Dataset 2	Error?	Remark
W.Poenitz (1966)	21193.005(G)	21193.002(T)	Yes9	-G in SF4 must be deleted in 004-007.
A.Gruetter (1982)	D0029.079.G(G)	D0029.079.M(T)	Yes	MN-52 -> MN-52-M in 079.M.
O.Lebeda+ (2010)	D0631.005(M)	D0631.004(T)	Yes	93-TC-94 -> 93-TC-94-G in 004
O.Lebeda+ (2012)	D0676.007(M)	D0676.006(T)	Yes	61-PM-148 -> 61-PM-148-G in 006
O.Lebeda+ (2014)	D0743.007(M)	D0743.006(T)	Yes	61-PM-148 -> 61-PM-148-G in 006
A.Hermanne+ (2010)	D4231.017(M)	D4231.018(T)	Yes	49-IN-110 -> 49-IN-110-G in 018.

22 Datasets with $\sigma_M / \sigma_T \notin [0,1]$, 9 of them are due to compilation errors

2. Datasets against the relations:

- $\sigma_{\rm T} = \sigma_{\rm G} + \sigma_{\rm M}$
- $IR(x/y) = \sigma_x/\sigma_y$ (x, y = G, M or T)

Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria

Memo CP-D/1058

Date: 27 September 2022

To: Distribution From: A Rodrigo N O

A. Rodrigo, N. Otsuka

Subject: EXFOR errors detected during calculation of isomeric ratios

2.2 Experimental data sources

- First experimental data source
 - EXFOR-EXP-2022-08-10-v2.c5
 - Quasi-C4 file generated from X4Pro for IR

2. Datasets against the relations:

 $\sigma_{\rm T} = \sigma_{\rm G} + \sigma_{\rm M}$

DEVIATION =
$$[\sigma_{T} - (\sigma_{G} + \sigma_{M})]/(\sigma_{G} + \sigma_{M})$$

#20836026 #20836025	34-SE-74(N, 34-SE-74(N,	2N)34-SE-7	3-G,,SIG
#20836024 # EN #>	34-SE-74(N, CALCULATED	EXFORDATA	DEVIATION
1.295E7 1.41E7			0.000000 0.574908

 $IR(x/y) = \sigma_x / \sigma_y$ (x, y = G, M or T)

DEVIATION = $IR(x/y) - \sigma_x/\sigma_y$

#327810051 80-HG-198(N,2N)80-HG-197-M,,SIG #327810052 80-HG-198(N,2N)80-HG-197-G,,SIG #327810054 80-HG-198(N,2N)80-HG-197-M/G,,SIG/RAT # EN CALCULATED EXFORDATA DEVIATION #-----><----><----><----> 1.35E7 1.055615 0.1 -0.955615 1.41E7 1.193878 0.1 -1.093878 1.48E7 1.408434 0.1 -1.308434

	EXFOR error	Author's typo	Unknown	Ok	Total
Cross sections	7	1	14	29	51
Isomeric ratios	6	0	8	22	36
Total	13	1	22	51	87

Nuclear Data Section
International Atomic Energy Agency
P.O.Box 100, A-1400 Vienna, Austria

Memo CP-D/1058

Date:	27 September 2022
To:	Distribution
From:	A. Rodrigo, N. Otsuka
Subject:	EXFOR errors detected during calculation of isomeric ratios

2.2 Experimental data sources

- First experimental data source
 - EXFOR-EXP-2022-08-10-v2.c5
 - Quasi-C4 file generated from X4Pro for IR
- **2. Datasets against the relations:** $\sigma_T = \sigma_G + \sigma_M$

IR(x/y) =
$$\sigma_x / \sigma_y$$
 (x, y = G, M or 7

- 1) Cases requiring a correction in EXFOR
- 2) Case which is suspicious but without a clear reason
- 3) Case where the deviation is understandable (not for corrections)

Table 2: Inconsistency between isomer production cross sections and total production cross sections or isomeric ratio (In column "Type", C is cross section and R is isomeric ratio.)

Туре	1st author	1st institute	Dataset 1	Dataset 2	Dataset 3	Deviation	Problem in	Keyword	Remarks
						(%)			
Г	P.K.Rath	3INDBDA	C1699.002.2	C1699.002.1	C1699.005	10811.8	C1699.005	REACTION	SF1-SF4: Must be 62-SM-144(3 LI-6,3N)65-TB-147.
Т	R.T.Skelton	1USACAL	C0304.003	C0304.005	C0304.002	498.0	C0304.005	REACTION	SF3-SF6 must be 13-AL- 26,PAR,SIG with e-LVL=0 (i.e., (p,n2) contribution excluded).
R	Junhua Luo	3CPRHXU	32781.005.1	32781.005.2	32781.005.4	130.8	32781.005.4	Heading	Swap DATA and ERR-T
Т	R.T.Skelton	1USACAL	C0304.007	C0304.009	C0304.006	99.9	C0304.009	REACTION	SF3-SF6 must be 13-AL- 26,PAR,SIG with E-LVL=0 (i.e. (a,n2) contribution excluded).
R	J.L.Casanova	2SPNVLD	20776.003.2	20776.003.1	20776.003.3	82.7	20776.003.3	REACTION	SF4: G/M -> M/T
R	J.L.Casanova	2SPNVLD	20776.002.2	20776.002.1	20776.002.3	70.9	20776.002.3	REACTION	SF4: G/M -> M/T
Г	M.Bormann	2GERHAM	20836.026	20836.025	20836.024	57.5	20836.024	Data	EN: 13.5 MeV -> 14.1 MeV, EN=14.1 MeV -> 14.9 MeV

Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria

Memo CP-D/1058

Date:	27 September 2022
To:	Distribution
From:	A. Rodrigo, N. Otsuka

Subject: EXFOR errors detected during calculation of isomeric ratios

2.2 Experimental data sources

- Second experimental data source
 - Quasi-C4 generated from X4Pro for both isomer production cross sections and IR

isorat-c4like.txt

#DATASET A0542	2002				
#REACTION 20-CA	A-44(P,N)21-SC-44-M/G	,,SIG/RAT			
# Prj Targ M MF N	MT PXC Energy dEner	gy Data dData Cos/	LO dCos/LO EI	LV/HL dELV/HL I78 Refer (YY)	EntrySubP
#><>o<-><-	>000<><	><><>	><><	><><-><><->	><>o
1001 20044	4.6000+6	8.0000-4 1.0000-4	21044.	E.A.Bogila+ (91)	A0542 2
1001 20044	5.1000+6	1.4000-3 2.0000-4	21044.	E.A.Bogila+ (91)	A0542 2
1001 20044	5.5000+6	2.6000-3 2.0000-4	21044.	E.A.Bogila+ (91)	A0542 2
prodxs-c4like.txt	t				
#DATASET 23018	Construction of the second		Product Z/A		
	G-198 (N, 2N) 80-HG-197-				
	31	gy Data dData Cos/	and the second sec	LV/HL dELV/HL 178 Refer (YY)	
	and the second sec		and the second sec	><><-><->	and the state of the
1 80198	1.3360+7	9.4000-1 6.0000-2	80197.1	Y.Kasugai+ (01)	
1 80198	1.3680+7	9.1000-1 6.0000-2	80197.1	Y.Kasugai+ (01)	23018 6
1 80198	1.4020+7	9.3000-1 6.0000-2	80197.1	Y.Kasugai+ (01)	23018 6
prodxsem-c4like					
#DATASET E1251					
#REACTION 22-TI	I-0(P,X)ELEM/MASS,IND	,SIG			
		gy Data dData Cos/		LV/HL dELV/HL 178 Refer (YY)	-
#><>0<-><-	>000<><	><><>	> <mark><></mark> <	><><-><-><->	><>0
1001 22000	5.0000+8	1.4200-3 9.0000-5	4007.9	Y.Asano+ (91)	E1251 2
1001 22000	5.0000+8	5.4000-4 1.1000-4	17039.9	Y.Asano+ (91)	E1251 2
1001 22000	5.0000+8	7.7700-3 6.8000-4	19042.9	Y.Asano+ (91)	E1251 2
1001 22000	5.0000+8	8.7600-3 4.6000-4	21044.0	Y.Asano+ (91)	E1251 2

2.2 Experimental data sources

- Second experimental data source
 - Quasi-C4 generated from X4Pro for both isomer production cross sections and IR

isorat-c4like.txt

#E.A.Bog #A0542.0 #			(P,N)21	-SC-44-M	1/G,,SIG/RAT											
# PROJ.	TARG.	PROD.	ISO.1	ISO.2	DATA1-ID	DATA2-ID	EN	DATA1	DATA1-ERR	DATA2	DATA2-ERR	I	L	M/T	M/T-ERR	D
#><	>o<	><	><	><-	>.o<	>.o<	><	><	(><-	><	<><	><	><-	><-	><	>
1001	20044	21044	M/G	A	0542.002	4.	6000E+06	8.0000E-04	1.0000E-04			9.8800E-01-7.	4076E-02 7	7.9936E-04 9	9.9920E-05	9.9915E-01
1001	20044	21044	M/G	A	0542.002	5.	1000E+06	1.4000E-03	2.0000E-04			9.8800E-01-7.	4076E-02 1	L.3980E-03 1	.9972E-04	9.9852E-01
1001	20044	21044	M/G	A	0542.002	5.	5000E+06	2.6000E-03	2.0000E-04			9.8800E-01-7.	4076E-02 2	2.5933E-03 1	.9948E-04	9.9725E-01
1001	20044	21044	M/G	A	0542.002	5.	9000E+06	3.9000E-03	3.0000E-04			9.8800E-01-7.	4076E-02 3	3.8848E-03 2	2.9883E-04	9.9588E-01

prodxs-c4like.txt and prodxsem-c4like.txt

#Y.Kasug #23018.0 #23018.0	06				7-M,,SIG												
# PROJ.		PROD.			DATA1-ID	DATA2-ID		EN	DATA1	DATA1-ERF	DATA2	DATA2-ERR	I	L	M/T	M/T-ERR	
#><	>0	<><	><-	><-	>.0<	(>.0	<	-><-	><	(>	<>	<>	<>	<>	<>	<>	<
1	80198	80197	М	т 2	3018.006	23018.005	1.3360E+	07	9.4000E-01	6.0000E-02	2.1900E+00	1.2000E-01	9.4680E-01	1.5794E+00	4.2922E-01	3.6108E-02	1.2410E+0
1	80198	80197	М	т 2	3018.006	23018.005	1.3680E+	07 9	9.1000E-01	6.0000E-02	2.0600E+00	1.3000E-01	9.4680E-01	1.5794E+00	4.4175E-01	4.0317E-02	1.2482E+0
1	80198	80197	М	т 2	3018.006	23018.005	1.4020E+	07 9	9.3000E-01	6.0000E-02	2.0400E+00	1.3000E-01	9.4680E-01	1.5794E+00	4.5588E-01	4.1340E-02	1.2563E+0
1	80198	80197	M	т 2	3018.006	23018.005	1.4370E+	07 9	9.3000E-01	6.0000E-02	2.0400E+00	1.3000E-01	9.4680E-01	1.5794E+00	4.5588E-01	4.1340E-02	1.2563E+0
W.G.Cro 11696.0	12 11	28-NI-58 28-NI-58	(N, P) 27-	-co-58,,	SIG			EN		D3 m3 1 mDD	D3 03 0				M/T	W/= ===	
PROJ.	TARG.		ISO.1		DATA1-ID	DATA2-ID		EN	DATA1	DATA1-ERR	DATAZ	DATA2-ERR	1	Ц	M/ T	M/T-ERR	L
t 1	28058	27058	><- M			11696.011		dat	a point pa	ir at the	same incider	nt energies	*****	******	*****	*******	******

Data from "isorat-c4like.txt" will only appear in the ratio plot as just the ratio can be calculated. 12

2.2 Experimental data sources

- Second experimental data source
 - Datasets against the relation $0 < \sigma_M / \sigma_T < 1$

-Isomer production cross section larger than the total production cross section

-Negative isomeric ratios

Table: Isomer production cross section larger than the total production cross section (Error: EXFOR compilation error. (G), (M) and (T) following the subentry number indicate that the ground state production, metastable state production and total production cross section is compiled, separately.)

Author (year)	Dataset 1	Dataset 2	Error?	Remark
Y.Kanda (1972)	20338.008(M)	20338.010(T)	No	Compiled as published.
Y.Kanda (1972)	20338.013(M)	20338.015(T)	Yes	013: Delete ERR-T=25.4% in COMMON.
W.Poenitz (1966)	21193.007(G)	21193.002(T)	Yes	79-AU-198-G -> 79-AU-198 in SF4 through this entry. Also check if only final values are compiled as active data.
B.N.Beljaev+ (1978)	A0041.002.A(G)	A0041.004(T)	Yes	002.A: Delete ISOMER=0 for 37-RB-84, 39-Y-86 and 39-Y-88.
B.N.Beljaev+ (78)	A0041.002.C(G)	A0041.006(T)	Yes	002.C: Delete ISOMER=0 for 37-RB-84, 39-Y-86 and 39-Y-88.
Yu.E.Titarenko+ (2011)	A0906.152(M)	A0906.154(T)	Yes?	154: The 799 and 1199 MeV in Table3 could be for g.s. only. Question sent to Titarenkov (2022-10-23).
N.T.Porile+ (1979)	C0263.003(M)	C0263.003(T)	No?	" ¹⁰² Rh" in Table1 means " ¹⁰² gRh" rather than " ¹⁰² g+mRh"? The table notation looks inconsistent.
N.T.Porile+ (1979)	C0263.005(M)	C0263.005(T)	No?	"44Sc" in Table1 means "44gSc" rather than "44g+mSc"? The table notation looks inconsistent.
N.T.Porile+ (1979)	C0263.005(M)	C0263.005(T)	No?	"99Rh" in Table1 means "99gRh" rather than "99g+mRh"? The table notation looks inconsistent.
R.T.Skelton+ (1987)	C0304.003(M)	C0304.002(T)	Yes	Under revision in PRELIM.C220.
R.T.Skelton+ (1987)	C0304.005(G)	C0304.002(T)	Yes	Under revision in PRELIM.C220.
R.T.Skelton+ (1987)	C0304.007(M)	C0304.006(T)	Yes	Under revision in PRELIM.C220.
R.T.Skelton+ (1987)	C0304.009(G)	C0304.006(T)	Yes	Under revision in PRELIM.C220.
J.Jastrzebski+ (1986)	C0306.003(G)	C0306.002(T)	No	003 from off-line measurement while 002 from on-line measurement.
E.Gadioli+ (1984)	C0312.002(M)	C0312.002(T)	Yes	Add ISOMER=0 for all ground state production cross sections.

Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria

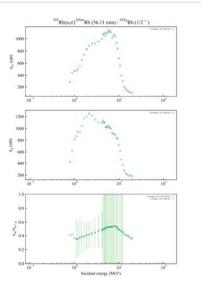
Memo CP-D/1060

Date:	7 November 2022
To:	Distribution
From:	A. Rodrigo, N. Otsuka
Subject:	EXFOR errors detected during calculation of isomeric ratios (2)
Reference:	Memo CP-D/1058

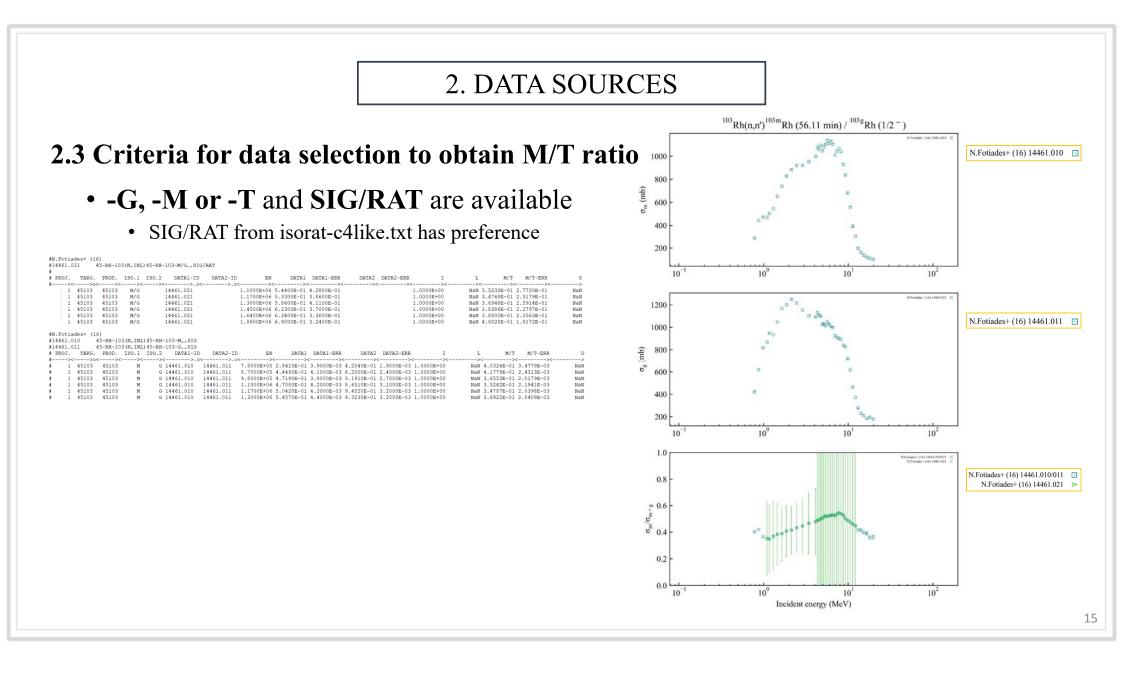
the second s	The local division in the second s	and the second se	and the second se
Nuclide	Type of yield	σ(¹² C) (mb)	$\sigma(P)$ (mb)
⁸⁴ Rb ^m	I	1.36 ± 0.16	1.18 ± 0.06
$^{84}\text{Rb}^{m+g}$	I	$3,82 \pm 0.52$	1.50 ± 0.03
⁸⁴ Y	C^{*}	6.42 ± 0.50	4.77 ± 0.14
⁸⁵ Y	PC^+	• • •	7.76 ± 0.80
85 Zr	PC^+	1.52 ± 0.23	1.06 ± 0.10
⁸⁶ Y ^m	Ι	9.89 ± 0.61	7.05 ± 0.14
⁸⁶ Y ^{m+g}	Ι	16.3 ± 1.4	9.57 ± 0.30
86 Zr	C^+	8.98 ± 0.22	5.93 ± 0.36
⁸⁷ Y	I		0.57 ± 0.32
⁸⁷ Y ^m	C^+	25.5 ± 1.6	15.9 ± 0.8
⁸⁸ Y	I	7.85 ± 0.85	3.11 ± 0.20
88 Zr	C^+	29.4 ± 2.3	14.7 ± 0.2
⁸⁸ Nb	PC^+	3.36 ± 0.52	2.65 ± 0.18
89 Zr	C^{+}	29.5 ± 1.6	15.8 ± 0.4
⁸⁹ Nb ^g	?	1.62 ± 0.16	0.83 ± 0.02
⁸⁹ Nb ^m	?	27.0 ± 1.9	9.5 ± 1.0
⁹⁹ Rh ^m	I	17.2 ± 1.1	8.42 ± 0.45
⁹⁹ Pd	C^+	3.63 ± 0.21	2.94 ± 0.11
¹⁰⁰ Rh	Ι	21.3 ± 1.4	12.4 ± 0.3
¹⁰⁰ Pd	C^+	8.47 ± 0.93	5.78 ± 0.25
¹⁰¹ Rh ^m	Ι	26.1 ± 2.8	•••
¹⁰¹ Pd	C^+	22.0 ± 1.3	12.9 ± 0.4
¹⁰² Rh	I	8.46 ± 2.17	2.88 ± 0.46
102 Rhm	Ι	9.86 ± 3.32	5.6 ± 1.0
¹⁰² Ag	PC^+	5.15 ± 0.48	2.71 ± 0.12

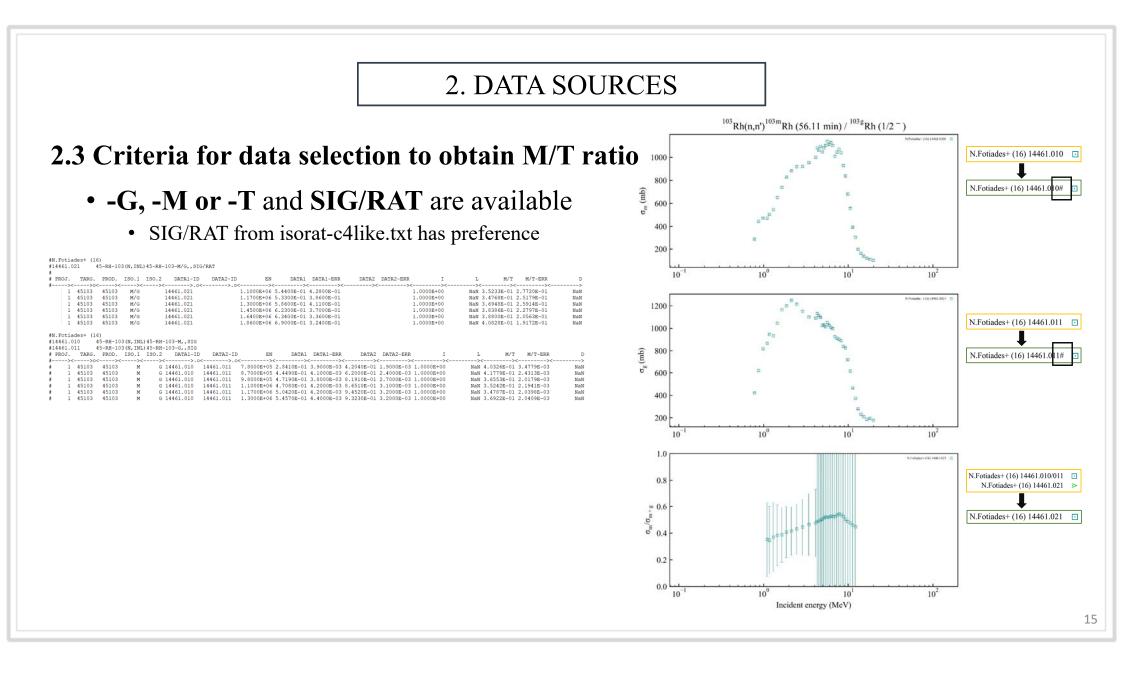
(e.g., "¹⁰²Rh" instead of "¹⁰²gRh" for tabulation of ¹⁰²gRh production cross section.)

2.3 Criteria for data selection to obtain M/T ratio

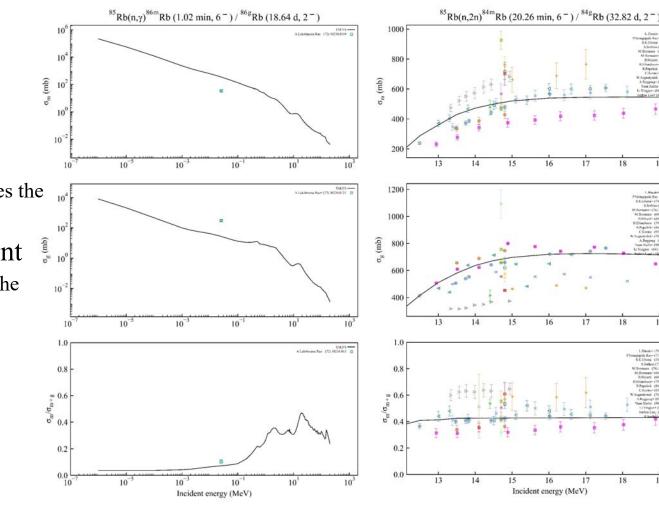

• -G, -M and -T are available

- -M with -T has preference
- -G is ignored unless -M with -T don't have matching incident energies


• -G, -M or -T and SIG/RAT are available


- SIG/RAT from isorat-c4like.txt has preference
- Repeated data is identified when they have the same entry and the same incident energies, assuming they also have the same data

#N.Fotia	des+ (16)														
#14461.0	21 4	5-RH-10	3(N,INL))45-RH-1	103-M/G,,SI	g/rat										
#												_	_			_
# PROJ.	TARG.		ISO.1		DATA1-ID			DATA1	DATA1-ERR		DATA2-ERR	I	L	M/T	M/T-ERR	D
						<>.0				><		><				
1	45103	45103	M/G	-	14461.021		1.1000E+06					1.0000E+00		.5233E-01		NaN
1	45103	45103	M/G	1	14461.021		1.1700E+06	5.3300E-01	3.8600E-01			1.0000E+00	NaN 3	.4768E-01	2.5179E-01	NaN
1	45103	45103	M/G	1	14461.021		1.3000E+06	5.8600E-01	4.1100E-01			1.0000E+00	NaN 3	.6948E-01	2.5914E-01	NaN
1	45103	45103	M/G	1	14461.021		1.4500E+06	6.2300E-01	3.7000E-01			1.0000E+00	NaN 3	.8386E-01	2.2797E-01	NaN
1	45103	45103	M/G	1	14461.021		1.6400E+06	6.3400E-01	3.3600E-01			1.0000E+00	NaN 3	.8800E-01	2.0563E-01	NaN
1	45103	45103	M/G	1	14461.021		1.8600E+06	6.9000E-01	3.2400E-01			1.0000E+00	NaN 4	.0828E-01	1.9172E-01	NaN
#N.Fotia #14461.0 #14461.0 # PROJ.	10 4	5-RH-10 5-RH-10)45-RH-:	103-M,,SIG 103-G,,SIG DATA1-ID	DATA2-ID	EN	DATA1	DATA1-ERR	DATA2	DATA2-ERR	I	L	M/T	M/T-ERR	D
#><	(>0<	><	><	><	>.0	<>.0	<>	<>	<><	(><	<><	<><	><	><	<><	>
# 1	45103	45103	М	G	14461.010	14461.011	7.8000E+05	2.8410E-01	3.9000E-03	4.2040E-01	1.9000E-03	1.0000E+00	NaN	4.0326E-01	3.4779E-03	NaN
# 1	45103	45103	М	G	14461.010	14461.011	8.7000E+05	4.4490E-01	4.1000E-03	6.2000E-01	2.4000E-03	1.0000E+00	NaN	4.1779E-01	2.4313E-03	NaN
# 1	45103	45103	М	G	14461.010	14461.011	9.8000E+05	4.7190E-01	3.8000E-03	8.1910E-01	2.7000E-03	1.0000E+00	NaN	3.6553E-01	2.0179E-03	NaN
# 1	45103	45103	М	G	14461.010	14461.011	1.1000E+06	4.7080E-01	4.2000E-03	8.6510E-01	3.1000E-03	1.0000E+00	NaN	3.5242E-01	2.1941E-03	NaN
# 1	45103	45103	М	G	14461.010	14461.011	1.1700E+06	5.0420E-01	4.2000E-03	9.4520E-01	3.2000E-03	1.0000E+00	NaN	3.4787E-01	2.0398E-03	NaN
# 1	45103	45103	М	G	14461.010	14461.011	1.3000E+06	5.4570E-01	4.4000E-03	9.3230E-01	3.2000E-03	1.0000E+00	NaN	3.6922E-01	2.0409E-03	NaN


Repeated data doesn't appear in "Atlas of Isomeric" Ratios. 14

2.4 TALYS

- Incident Energy 1eV to 200 MeV
- 1 Experimental datapoint TALYS energy range determines the energy range of plot
- > 1 Experimental datapoint Experimental data determines the energy range of plot

19

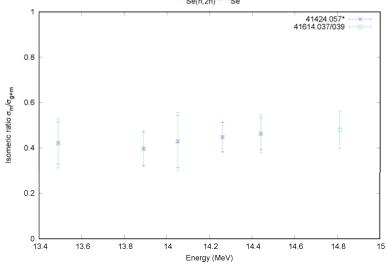
19

- Missing nuclear properties from Dictionary Nucl-Undef-2022-08-03 (due to isomers currently unknown)
- Unmatching energy of G, M, SIG/RAT datasets eligible for isomeric ratio calculation
- Experimental data not following basic relations
 - cpd1058
 - cpd1060
- Repeated data in the experimental data
- Repeated Incident Energy
- Twice appearance of data points from Filtaenkov's experiments
 - cpd1061
 - cpd1062

• Repeated Incident Energy (due to use of various samples)

#DATASET 23107003						
#REACTION 32-GE-74(N	,G)32-GE-75,,SIG					
# Prj Targ M MF MT PXC	Energy dEnergy	Data dData	Cos/LO dCos/LO	ELV/HL dELV/HL 178 F	efer (YY)	EntrySubP
#><>o<-><>ooo	<>	<>	~>	<><><-><-><-><-><-><-><-><-><-><		><>0
1 32074	2.5300-2	5.0700-1 5.2000-2	2 32075.9	G.	Meierhofer+ (10)	23107 3
1 32074	2.5300-2	5.1600-1 5.7000-2	2 32075.9	G.	Meierhofer+ (10)	23107 3
1 32074	2.5300-2	4.9400-1 5.1000-2	32075.9	G.	Meierhofer+ (10)	23107 3
#DAMA CRM 02107000						
#DATASET 23107002	C) 22 CE 75 M GTC					
	,G)32-GE-75-M,,SIG					
# Prj Targ M MF MT PXC	Energy dEnergy	Data dData	Cos/LO dCos/LO	ELV/HL dELV/HL 178 F	efer (YY)	EntrySubP
#><>0<-><>000	<>k>	<>	><>	<><><-><-><-><-><-><-><-><-><-><-		><>0
1 32074	2.5300-2	1.3280-1 7.3000-3	3 32075.1	G.	Meierhofer+ (10)	23107 2
1 32074	2.5300-2	1.3220-1 9.7000-3	3 32075.1	G.	Meierhofer+ (10)	23107 2
1 32074	2.5300-2	1.2980-1 8.2000-3	3 32075.1	G.	Meierhofer+ (10)	23107 2

Output


#G.Meie			4 (22, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64													
#23107.0			4 (N,G) 32													
#23107.0	003	32-GE-7	4 (N,G) 32	2-GE-75,	,SIG											
# PROJ.	TAF	G. PROD.	ISO.1	ISO.2	DATA1-ID	DATA2-ID	EN	DATA1	DATA1-ERR	DATA2	DATA2-ERR	I	L	M/T	M/T-ERR	D
#>	<	>o<>	<><	(><	(>.04	<>.o	<><	><	<>	<>	<>	<>	<>	<>	<>	<>
1	3207	4 32075	M	т	23107.002	23107.003	2.5300E-02	1.3280E-01	7.3000E-03	5.0700E-01	5.2000E-02	1.0000E+00	1.0097E+00	2.6193E-01	3.0480E-02	1.0025E+00
1	3207	4 32075	M	т	23107.002	23107.003	2.5300E-02	1.3280E-01	7.3000E-03	5.1600E-01	5.7000E-02	1.0000E+00	1.0097E+00	2.5736E-01	3.1755E-02	1.0025E+00
1	3207	4 32075	М	т	23107.002	23107.003	2.5300E-02	1.3280E-01	7.3000E-03	4.9400E-01	5.1000E-02	1.0000E+00	1.0097E+00	2.6883E-01	3.1442E-02	1.0026E+00
1	3207	4 32075	M	т	23107.002	23107.003	2.5300E-02	1.3280E-01	7.3000E-03	4.9200E-01	5.1000E-02	1.0000E+00	1.0097E+00	2.6992E-01	3.1670E-02	1.0026E+00
1	3207	4 32075	M	Т	23107.002	23107.003	2.5300E-02	1.3280E-01	7.3000E-03	4.9800E-01	5.6000E-02	1.0000E+00	1.0097E+00	2.6667E-01	3.3378E-02	1.0026E+00
1	3207	4 32075	M	т	23107.002	23107.003	2.5300E-02	1.3280E-01	7.3000E-03	4.8000E-01	5.0000E-02	1.0000E+00	1.0097E+00	2.7667E-01	3.2586E-02	1.0027E+0
1	3207	4 32075	M	Т	23107.002	23107.003	2.5300E-02	1.3220E-01	9.7000E-03	5.0700E-01	5.2000E-02	1.0000E+00	1.0097E+00	2.6075E-01	3.2882E-02	1.0025E+00
1	3207	4 32075	М	т	23107.002	23107.003	2.5300E-02	1.3220E-01	9.7000E-03	5.1600E-01	5.7000E-02	1.0000E+00	1.0097E+00	2.5620E-01	3.3976E-02	1.0025E+00

- Twice appearance of data points from Filatenkov's experiments
 - Activation cross sections compiled in **EXFOR 41424** from RI-258 (2001) were suppressed by the corresponding datasets in **EXFOR 41614** compiled from INDC(CCP)-0460 (2016)
 - Few subentries of EXFOR 41424 are still active entailing to compilation of same experimental results twice

• Possible cause

The datasets in two entries are not for direct comparison

-Elemental cross section v.s. isotopic cross section -Isomeric ratio v.s. isomer production cross sections

Nuclear Data Section
International Atomic Energy Agency
P.O.Box 100, A-1400 Vienna, Austria

 Date:
 9 December 2022

 To:
 Distribution

 From:
 N. Otsuka, A. Rodrigo

ect: Status of Filatenkov's activation cross sections (EXFOR 41424/41614)

- Twice appearance of data points from Filatenkov's experiments
 - Activation cross sections compiled in EXFOR 41424 from RI-258 (2001) were suppressed by the corresponding datasets in EXFOR 41614 compiled from INDC(CCP)-0460 (2016)
 - Few subentries of EXFOR 41424 are still active entailing to compilation of same experimental results twice
 - Possible cause

The datasets in two entries are not for direct comparison

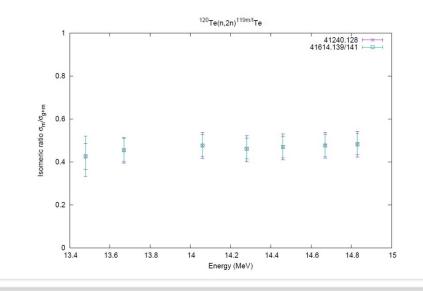
-Elemental cross section v.s. isotopic cross section -Isomeric ratio v.s. isomer production cross sections

Reaction	RI-258	INDC(CCP)-0460	
⁹³ Nb(n, a) ⁹⁰ Y	41424.021	41614.064/065	
Mo(n,x) ⁹⁵ Nb	41424.025 (isotopic xs)	41614.072	
Mo(n,x) ⁹⁶ Nb	41424.026 (isotopic xs)	41614.074	
74 Se(n,2n) 73 Se	41424.057	41614.037/039	
${}^{82}Se(n,2n){}^{81}Se$	41424.058	41614.048/050	
93 Nb(n, α) 90 Y	41424.059	41614.064/065	
¹⁰³ Rh(n,2n) ¹⁰² Rh	41424.060	41614.086/088	
$^{116}Cd(n,2n)^{115}Cd$	41424.061	41614.114/115	
181 Ta(n, α) 178 Lu	41424.062	41614.174/176	

Nu	iclear Data	a Section	
Internation	nal Atomie	: Energy	Agenc
P.O.Box 10	00, A-1400	Vienna,	Austri

Iemo CP-D/1061	
----------------	--

9 December 2022 Date: Distribution From: N. Otsuka, A. Rodrigo


To:

Status of Filatenkov's activation cross sections (EXFOR 41424/41614)

- Twice appearance of data points from Filatenkov's experiments
 - After comparison of Filatenkov's activation cross sections in EXFOR 41424 and 41614, we also found similar pairs between

-EXFOR 41420 from RI-252 (1999)

-EXFOR 41614 compiled from INDC(CCP)-0460 (2016).

Reaction	RI-252	INDC(CCP)-0460	Proposed action	
⁵⁹ Co(n,2n) ⁵⁸ Co	41240.121	41614.023/024	SPSDD	
⁵⁸ Ni(n,p) ⁵⁸ Co	41240.122	41614.026/027	?	
89 Y(n, α) 86 Rb	41240.123	41614.053/054	? (more points in 41240)	
$^{92}Mo(n,\alpha)^{89}Zr$	41240.125	41614.066/067	? (more points in 41240)	
¹¹⁵ In(n,p) ¹¹⁵ Cd	41240.127	41614.118/120	SPSDD	
¹²⁰ Te(n,2n) ¹¹⁹ Te	41240.128	41614.139/141	SPSDD	
¹²² Te(n,2n) ¹²¹ Te	41240.129	41614.143/145	SPSDD	
¹³⁰ Te(n,2n) ¹²⁹ Te	41240.130	41614.150/152	SPSDD	
¹³⁸ Ba(n,α) ¹³⁵ Xe	41240.131	41614.153/154	SPSDD	
151 Eu(n, α) 148 Pm	41240.132	41614.163/165	SPSDD	
¹⁵¹ Eu(n,2n) ¹⁵⁰ Eu	41240.133	41614.167/169	? (more points in 41240)	
¹⁸⁵ Re(n,2n) ¹⁸⁴ Re	41240.135	41614.196/198	SPSDD	

Nuclear Data Section	
International Atomic Energy A	genc
P.O.Box 100, A-1400 Vienna, A	ustri

Memo CP-D/1062

Date: 13 December 2022 Distribution N. Otsuka, A. Rodrigo From

To:

Subject: Status of Filatenkov's activation cross sections (EXFOR 41420/41614) Reference Memo CP-D/1061

4. CALCULATIONS

• Uncertainty propagation to isomeric ratio

- Mathematical operations were performed to obtain all uncertainties possible
- The uncertainties in x and y are propagated to the uncertainty in z=f(x,y) by

$$(\Delta z)^2 = \left(\frac{\partial z}{\partial x}\right)^2 (\Delta x)^2 + \left(\frac{\partial z}{\partial y}\right)^2 (\Delta y)^2$$

When *x* and *y* are independent

$$R_{X/Y} = \frac{\sigma_X}{\sigma_Y}$$
; $X, Y = M, G, T$

• IR uncertainty was calculated to allow examine goodness of Talys curve by calculation of the chi-square and the root mean square F-Factor

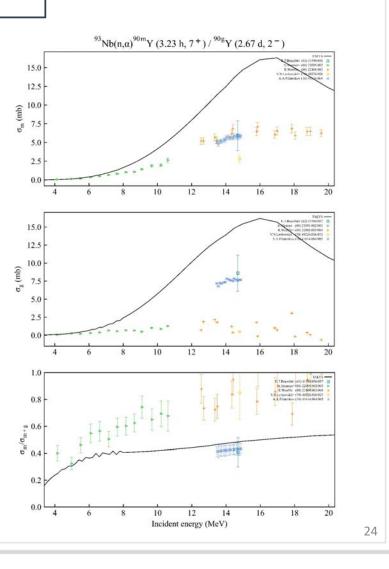
5. GOODNESS OF FIT

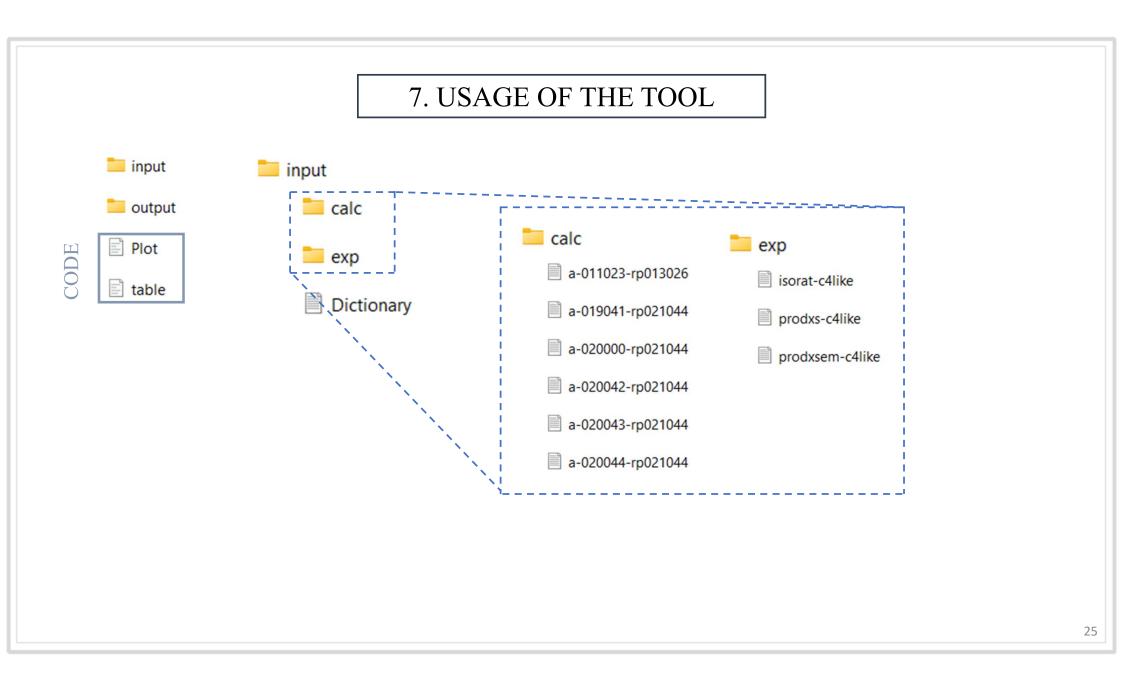
• Chi-square

$$\chi^{2} = (1/n)\sum_{i=1}^{n} \left[\frac{(IR_{T} - IR_{E})}{\Delta IR_{E}} \right]^{2} \qquad \begin{array}{c} \mathrm{E} \equiv \mathrm{EXFOR} \\ \mathrm{T} \equiv \mathrm{TALYS} \end{array}$$

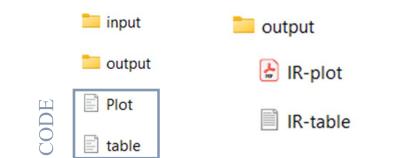
• F-Factor

$$f_{rms} = exp \left[\frac{1}{n} \sum_{i=1}^{n} \ln^2 r_i\right]^{1/2}$$

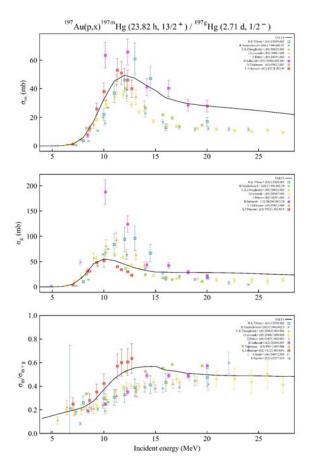

$$\mathbf{r} = \begin{cases} \frac{\langle IR \rangle_T}{\langle IR \rangle_E - \langle \Delta IR \rangle_E} & \text{if } \langle IR \rangle_T < \langle IR \rangle_E - \langle \Delta IR \rangle_E \\\\ \frac{\langle IR \rangle_T}{\langle IR \rangle_E + \langle \Delta IR \rangle_E} & \text{if } \langle IR \rangle_T > \langle IR \rangle_E + \langle \Delta IR \rangle_E \\\\ 1 & Otherwise \end{cases}$$


PRELIMINARY

Reaction	Chi-square		F-factor	
			n	exp[v(Σf/n)]
0lr(a,x)194lr	3	2645,7	3	337,1
197Au(n,x)198Au	6	326,2	1	200,5
0Pb(p,x)198Au	1	4,9	1	114,1
197Au(d,x)198Au	40	1954,6	40	103,5
0lr(d,x)194lr	20	381,5	20	28,0
197Au(h,x)198Au	14	301,9	12	24,9
196Hg(n,x)197Hg	3	102,7	3	22,1
198Pt(d,x)198Au	26	545,1	26	18,5
110Pd(n,x)111Pd	1	4,8	1	16,8
141Pr(n,x)142Pr	1	98,4	1	16,2
196Pt(n,x)197Pt	6	17,2	6	9,0
126Te(n,x)127Te	1	4,5	1	8,3
89Y(d,x)90Y	37	61,5	37	7,2
118Sn(p,x)118Sb	17	9,1	17	7,0
120Te(d,x)120I	26	27,1	26	6,4
170Er(n,x)170Ho	1	37,7	1	6,3
104Pd(p,x)104Ag	30	40,0	30	6,3
184W(p,x)184Re	7	6,7	7	6,1
0Pt(d,x)198Au	29	55,3	29	5,9
0Zr(p,x)95Nb	69	20,2	69	5,8
0Lu(d,x)177Lu	2	17,2	2	5,5
206Pb(p,x)198Au	1	3,3		5,4
176Yb(a,x)177Lu	2	19,3	2	5,2
90Zr(d,x)89Nb	6	3,3	6	5,1


6. CONCLUSIONS

- There might be more errors like described in memos (CP-D/ 1058, 1060) not detectable by us.
- IR Plots are useful for identifying compilation errors (CP-D/ 1061, 1062)
- IR Plots are a good way to identify overestimation of the g.s. and m.s.


7. USAGE OF THE TOOL

~ 40000 Datapoints

<pre>#S.Sothras (77) #10835.024.2 78-PT-198(N, 2N) 78-PT-197-M, SIG #10835.024.1 78-PT-198(N, 2N) 78-PT-197-G, SIG # PROJ. TARG. PROD. ISO.1 ISO.2 DATA1-ID DATA2-ID EN DATA1 DATA1-ERR DATA2 DATA2-ERR I L M/T M/T-ERR D # C.G.Hudson+ (78) #C.G.Hudson+ (78) #C.G.Hudson+ (78) #C.G.Hudson+ (78) #C.G.Hudson+ (78) # C.G.Hudson+ (78) # C.G.Hu</pre>	#10835.024.2 78-PT-198(N,2N)78-PT-197-M,SIG #10835.024.1 78-PT-198(N,2N)78-PT-197-G,SIG # PROJ. TARG. PROD. ISO.1 ISO.2 DATA1-ID DATA2-ID EN DATA1 DATA1-ERR DATA2 DATA2-ERR I L M/T M/T-ERR #><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><	D > 0022E+00
10333.024.1 78-PT-197-G, SIG # PROJ. TARG. PROD. ISO.1 ISO.2 DATA1 ID DATA2-ID EN DATA1 DATA1_LER DATA2_ERR I L M/T M/T-ERR D 1 78198 78197 M G 10835.024.1 1.4800E+07 7.7700E-01 7.8000E-02 1.0700E+00 1.0000E-01 9.6700E-01 1.0865E+00 4.2068E-01 3.3426E-02 1.0358E+00 #C.G.Hudson+ (78) #10836.002.1 21-sC-45(N,2N)21-SC-44-M, SIG #10836.002.2 21-sC-45(N,2N)21-SC-44-M, SIG #10836.002.2 21-sC-45(N,2N)21-SC-44-M, SIG #10836.002.2 21-sC-45(N,2N)21-SC-44-M, SIG #10836.002.1 10836-002.1 10836-002.1 N/T M/T M/T-ERR D # PROJ. TARG. PROD. ISO.1 ISO.2 DATA2-ID EN DATA1 DATA1-ERR DATA2_DATA2-ERR I L M/T M/T-ERR D # PROJ. TARG. PROD. ISO.1 ISO.2 1.8026+07 7.700E-02 6.0000E-03 1.7200E-01 1.4000E-02 9.8000E-01-7.407EE-02 4.4767E-01 S.044E-02 S.2277E-01 <td>#10835.024.1 78-PT-198(N,2N)78-PT-197-G,3IG # PROJ. TARG. FROD. ISO.1 ISO.2 DATA1-ID DATA2-ID EN DATA1 DATA1-ERR DATA2 DATA2-ERR I L M/T M/T-ERR #><><>.<>.<>.<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><</td> <td></td>	#10835.024.1 78-PT-198(N,2N)78-PT-197-G,3IG # PROJ. TARG. FROD. ISO.1 ISO.2 DATA1-ID DATA2-ID EN DATA1 DATA1-ERR DATA2 DATA2-ERR I L M/T M/T-ERR #><><>.<>.<>.<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><	
# PEOL TARG. PROL ISO.2 DATA1 DATA2 DATA1 DATA1 DATA2 DATA2 <th< td=""><td># PROJ. TARG. PROD. ISO.1 ISO.2 DATA1-ID DATA2-ID EN DATA1 DATA1-ERR DATA2 DATA2-ERR I L M/T M/T-ERR #><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> DATA1 DATA1-DATA1</td><td></td></th<>	# PROJ. TARG. PROD. ISO.1 ISO.2 DATA1-ID DATA2-ID EN DATA1 DATA1-ERR DATA2 DATA2-ERR I L M/T M/T-ERR #><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><> DATA1 DATA1-DATA1	
<pre>1 78198 78197 M G 10835.024.2 10835.024.1 1.4800E+07 7.7700E-01 7.8000E-02 1.0700E+00 1.0000E-01 9.6700E-01 1.0869E+00 4.2069E-00 3.3426E-02 1.0358E+00 #C.G.Hudson+ (76) #10836.002.1 21-SC-45(N,2N)21-SC-44-M,SIG #10836.002.2 21-SC-45(N,2N)21-SC-44-M,SIG # PROJ. T80.1 T80.1 T80.1 T80.2 DATA1-ID DATA2-ID EN DATA1 DATA1-ERR DATA2 DATA2-ERR I M/T M/T-ERR D #</pre>		D
<pre>#C.G.Hudson+ (78) #10386.002.1 21-SC-45(N,2N)21-SC-44-M,,SIG #10386.002.2 21-SC-45(N,2N)21-SC-44,SIG #10386.002.2 21-SC-45(N,2N)21-SC-44,SIG #10386.002.2 21-SC-45(N,2N)21-SC-44,SIG #10386.002.2 21-SC-45(N,2N)21-SC-44,SIG #10386.002.2 21-SC-45(N,2N)21-SC-44,SIG #10386.002.1 10836.002.2 1.3300E+07 7.000E-02 4.000E-03 1.7200E-01 1.4000E-02 9.8800E-01-7.407EE-02 4.4767E-01 5.0444E-02 5.2378E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.3200E+07 1.200E-01 1.000E-02 3.2500E-01 1.6000E-02 9.8800E-01-7.407EE-02 4.4767E-01 5.0444E-02 5.2378E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.5200E+07 1.2800E-01 1.000E-02 3.2500E-01 2.8000E-02 -7.407EE-02 3.9385E-01 4.4040E-02 5.8007E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.5200E+07 1.5800E-01 1.000E-02 3.2500E-01 2.8000E-02 -7.407EE-02 3.9310E-01 4.220E-02 5.9158E-01 1 21045 21044 M T 10836.002.2 1.10836.002.2 1.500E+07 1.5800E-01 1.000E-02 3.5500E-01 2.8000E-02 -7.407EE-02 3.8310E-01 4.220E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.5900E+07 1.5800E-01 1.000E-02 3.5500E-01 2.8000E-02 -7.407EE-02 3.8310E-01 4.220E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.5900E+07 1.5800E-01 1.000E-02 3.5500E-01 2.8000E-02 -7.407EE-02 3.8310E-01 4.220E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.5900E+07 1.5800E-01 1.000E-02 3.5500E-01 2.8000E-02 -7.407EE-02 3.636E-01 4.2424E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.5900E+07 1.5800E-01 1.000E-02 3.5500E-01 -7.407EE-02 3.8310E-01 4.2424E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.7016+07 1.5800E-01 1.000E-02 3.5500E-01 2.800DE-01 -7.407EE-02 3.8310E-01 4.2424E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.71590E+07 1.5800E-01 1.000E-02 3.5500E-01 -7.407EE-02 3.8310E-01 4.242E-02 5.9158E-01 1 21045 21044 M T 10836.002.2 1.71590E+07 1.5800E-01 1.100E-02 3.5500E-01 -7.407EE-02 3.830E-01 -7.407EE-02 3.830E-01 4.242E-02 5.9158E-01 1 21045 21044 M T 10836.002.2 1.71590E+07 1.5800E-01 1.1000E-02 3.4300E-01 3.5000E-02 9.8800E-01-7.407EE-02 3.830E-0</pre>	1 78198 78197 M G 10835.024.2 10835.024.1 1.4800E+07 7.7700E-01 7.8000E-02 1.0700E+00 1.0000E-01 9.6700E-01 1.0869E+00 4.2068E-01 3.3426E-02 1.	>
10336.002.1 21-sC-45 (N, 2N) 21-sC-44, N, STC 10336.002.2 21-sC-45 (N, 2N) 21-sC-44, N, STC 10336.002.2 21-sC-45 (N, 2N) 21-sC-44, STC 10336.002.2 21-sC-45 (N, 2N) 21-sC-44, STC 10336.002.1 10301 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10303 1002.1 10304 10036.002.1 10304 1002.1 10304 1002.1 10305 1002.1 10304 1002.1 10304 1002.1 1021045 21044 N 103036.002.2 10036.002.2 1.5008-01 103036.002.1 10330.002.2 1.5008-01 1.6008-		0358E+00
* PROJ. TARG. PROJ. ISO.2 DATA1 DMTA1 DMTA1_SER DMTA2_ERR I M/T_ERR D * >>> >>> >>> >>> >>> >>> >>> >>>> >>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>	#10836.002.1 21-SC-45(N,2N)21-SC-44-M,,SIG	
<pre>#><><><><><><><><</pre>		-
1 21045 21044 m T 10836.002.1 10836.002.2 1.3300±07 7.7000E-02 6.0000E-03 1.2400E-01 4.407E-02 4.4767E-01 5.0444E-02 5.2237E-01 1 21045 21044 M T 10836.002.2 1.4300E+07 7.7000E-02 6.2000E-03 1.2500E-01 1.4000E+02 9.8800E-01-7.407EE-02 4.4767E-01 5.0444E-02 5.597E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.500E+01 1.0000E-02 9.8800E-01-7.407EE-02 3.935E=01 4.4040E-02 5.8007E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.5000E+01 1.0000E-02 9.8800E-01-7.407EE-02 3.935E=01 4.4040E-02 5.8007E-01 1 21045 21044 M T 10836.002.2 1.5000E+07 1.5000E-01 1.5000E-02 9.8800E-01-7.407EE-02 3.931E=01 4.2040E-02 5.915E-01 1 21045 21044 M T 10836.002.2 1.700E+07 1.500E+01 1.600E-02 9.8800E-01-7.407EE-02		-
1 21045 21044 M T 10836.002.1 10836.002.2 1.4100E+07 9.7000E-02 8.300E-01 1.9000E-02 9.8800E-01-7.4076E-02 4.1277E-01 4.7672E-02 5.5979E-01 1 21045 21044 M T 10836.002.2 1.5200E+07 1.2000E-02 3.2500E-01 2.6000E-02 9.8800E-01-7.4076E-02 3.935E-01 4.4040E-02 5.807E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.600E+02 3.5500E-01 2.6000E-02 9.8800E-01-7.4076E-02 3.935E-01 4.4040E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 1.0366.002.2 1.7100E+07 1.5900E-01 3.5000E-02 9.8800E-01-7.4076E-02 3.8310E-01 4.3280E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 1.0306.002.2 1.7100E+07 1.5900E-01 3.5000E-02 9.8800E-01-7.4076E-02 3.636E-01 4.3280E-02 5.9158E-01 1 21045 21044 M T 10836.002.2 1.7100E+07 1.5900E		
1 21045 21044 M T 10836.002.2 1.5200E+07 1.2800E-01 1.0000E-02 3.2500E-01 2.6000E-02 9.8800E-01-7.4076E-02 3.9385E-01 4.4040E-02 5.8007E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.6000E+07 1.5800E-01 1.0000E-02 3.5500E-01 2.8000E-01-7.4076E-02 3.8310E-01 4.3280E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.7500E+07 1.5900E-01 1.6000E-02 4.3400E-01 3.5000E-02 9.8800E-01-7.4076E-02 3.6636E-01 4.724E-02 6.0551E-01		
1 21045 21044 M T 10836.002.1 10836.002.2 1.6000E+07 1.3600E-01 1.1000E-02 3.5500E-01 2.8000E-02 9.8800E-01-7.4076E-02 3.8310E-01 4.3280E-02 5.9158E-01 1 21045 21044 M T 10836.002.1 10836.002.2 1.7100E+07 1.5900E-01 1.6000E-02 4.3400E-01 3.5000E-02 9.8800E-01-7.4076E-02 3.6636E-01 4.7244E-02 6.0951E-01		
1 21045 21044 M T 10836.002.1 10836.002.2 1.8400E+07 1.7000E-01 1.7000E-02 4.9100E-01 4.9000E-02 9.8800E-01-7.4076E-02 3.4623E-01 4.8915E-02 6.3105E-01	1 21045 21044 M T 10836.002.1 10836.002.2 1.7100E+07 1.5900E-01 1.6000E-02 4.3400E-01 3.5000E-02 9.8800E-01-7.4076E-02 3.6636E-01 4.7244E-02 6.	0951E-01
	1 21045 21044 M T 10836.002.1 10836.002.2 1.8400E+07 1.7000E-01 1.7000E-01 4.9000E-01 4.9000E-02 9.8800E-01-7.4076E-02 3.4623E-01 4.8915E-02 6.	

1035 Reaction - Plots

ACKNOLEDGEMENT

I would like to thank Naohiko, Viktor, Georg, Arjan and the people in the NDS for the opportunity and their fruitful job environment.

THANK YOU FOR YOUR KIND ATTENTION